Encapsulation of Amikacin into Microparticles Based on Low-Molecular-Weight Poly(lactic acid) and Poly(lactic acid-co-polyethylene glycol)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34196555
PubMed Central
PMC8397404
DOI
10.1021/acs.molpharmaceut.1c00193
Knihovny.cz E-zdroje
- Klíčová slova
- amikacin encapsulation, drug delivery systems, microparticles, poly(lactic acid), targeted therapy,
- MeSH
- amikacin aplikace a dávkování chemie MeSH
- antibakteriální látky aplikace a dávkování chemie MeSH
- Escherichia coli účinky léků MeSH
- Klebsiella pneumoniae účinky léků MeSH
- laktáty chemie MeSH
- mikrobiální testy citlivosti MeSH
- molekulová hmotnost MeSH
- nosiče léků chemie MeSH
- polyestery chemie MeSH
- polyethylenglykoly chemie MeSH
- polyvinylalkohol chemie MeSH
- příprava léků metody MeSH
- Pseudomonas aeruginosa účinky léků MeSH
- rozpustnost MeSH
- Staphylococcus aureus účinky léků MeSH
- tobolky MeSH
- uvolňování léčiv MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amikacin MeSH
- antibakteriální látky MeSH
- laktáty MeSH
- nosiče léků MeSH
- poly(lactic acid-ethylene glycol) MeSH Prohlížeč
- poly(lactide) MeSH Prohlížeč
- polyestery MeSH
- polyethylenglykoly MeSH
- polyvinylalkohol MeSH
- tobolky MeSH
The aim of this study was to fabricate novel microparticles (MPs) for efficient and long-term delivery of amikacin (AMI). The emulsification method proposed for encapsulating AMI employed low-molecular-weight poly(lactic acid) (PLA) and poly(lactic acid-co-polyethylene glycol) (PLA-PEG), both supplemented with poly(vinyl alcohol) (PVA). The diameters of the particles obtained were determined as less than 30 μm. Based on an in-vitro release study, it was proven that the MPs (both PLA/PVA- and PLA-PEG/PVA-based) demonstrated long-term AMI release (2 months), the kinetics of which adhered to the Korsmeyer-Peppas model. The loading efficiencies of AMI in the study were determined at the followings levels: 36.5 ± 1.5 μg/mg for the PLA-based MPs and 106 ± 32 μg/mg for the PLA-PEG-based MPs. These values were relatively high and draw parallels with studies published on the encapsulation of aminoglycosides. The MPs provided antimicrobial action against the Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae bacterial strains. The materials were also comprehensively characterized by the following methods: differential scanning calorimetry; gel permeation chromatography; scanning electron microscopy; Fourier transform infrared spectroscopy-attenuated total reflectance; energy-dispersive X-ray fluorescence; and Brunauer-Emmett-Teller surface area analysis. The findings of this study contribute toward discerning new means for conducting targeted therapy with polar, broad spectrum antibiotics.
Zobrazit více v PubMed
Krause K. M.; Serio A. W.; Kane T. R.; Connolly L. E. Aminoglycosides: An Overview. Cold Spring Harbor Perspect. Med. 2016, 6, a027029.10.1101/cshperspect.a027029. PubMed DOI PMC
Duszynska W.; Taccone F.; Hurkacz M.; Kowalska-Krochmal B.; Wiela-Hojeńska A.; Kübler A. Therapeutic Drug Monitoring of Amikacin in Septic Patients. Crit. Care 2013, 17, R165.10.1186/cc12844. PubMed DOI PMC
Ristuccia A. M.; Cunha B. A. An Overview of Amikacin. Ther. Drug Monit. 1985, 7, 12–25. 10.1097/00007691-198503000-00003. PubMed DOI
Nalini T.; Basha S. K.; Mohamed Sadiq A. M.; Kumari V. S.; Kaviyarasu K. Development and characterization of alginate / chitosan nanoparticulate system for hydrophobic drug encapsulation. J. Drug Delivery Sci. Technol. 2019, 52, 65–72. 10.1016/j.jddst.2019.04.002. DOI
Ozaltin K.; Postnikov P. S.; Trusova M. E.; Sedlarik V.; Di Martino A. Polysaccharides Based Microspheres for Multiple Encapsulations and Simultaneous Release of Proteases. Int. J. Biol. Macromol. 2019, 132, 24–31. 10.1016/j.ijbiomac.2019.03.189. PubMed DOI
Ospina-Villa J. D.; Gómez-Hoyos C.; Zuluaga-Gallego R.; Triana-Chávez O. Encapsulation of Proteins from Leishmania Panamensis into PLGA Particles by a Single Emulsion-Solvent Evaporation Method. J. Microbiol. Methods 2019, 162, 1–7. 10.1016/j.mimet.2019.05.004. PubMed DOI
Tyler B.; Gullotti D.; Mangraviti A.; Utsuki T.; Brem H. Polylactic Acid (PLA) Controlled Delivery Carriers for Biomedical Applications. Adv. Drug Delivery Rev. 2016, 107, 163–175. 10.1016/j.addr.2016.06.018. PubMed DOI
Santoro M.; Shah S. R.; Walker J. L.; Mikos A. G. Poly(Lactic Acid) Nanofibrous Scaffolds for Tissue Engineering. Adv. Drug Delivery Rev. 2016, 107, 206–212. 10.1016/j.addr.2016.04.019. PubMed DOI PMC
Sabaeifard P.; Abdi-Ali A.; Gamazo C.; Irache J. M.; Soudi M. R. Improved Effect of Amikacin-Loaded Poly(D,L-Lactide-Co-Glycolide) Nanoparticles against Planktonic and Biofilm Cells of Pseudomonas Aeruginosa. J. Med. Microbiol. 2017, 66, 137–148. 10.1099/jmm.0.000430. PubMed DOI
Racovita S.; Vasiliu A.-L.; Bele A.; Schwarz D.; Steinbach C.; Boldt R.; Schwarz S.; Mihai M. Complex Calcium Carbonate/Polymer Microparticles as Carriers for Aminoglycoside Antibiotics. RSC Adv. 2018, 8, 23274–23283. 10.1039/c8ra03367f. PubMed DOI PMC
Vijayakrishna K.; Patil S.; Shaji L. K.; Panicker R. R. Gentamicin Loaded PLGA Based Biodegradable Material for Controlled Drug Delivery. ChemistrySelect 2019, 4, 8172–8177. 10.1002/slct.201900737. DOI
Posadowska U.; Brzychczy-Włoch M.; Pamuła E. Gentamicin Loaded PLGA Nanoparticles as Local Drug Delivery System for the Osteomyelitis Treatment. Acta Bioeng. Biomech. 2015, 17, 41–47. 10.5277/ABB-00188-2014-02. PubMed DOI
Miryala B.; Godeshala S.; Grandhi T. S. P.; Christensen M. D.; Tian Y.; Rege K. Aminoglycoside-Derived Amphiphilic Nanoparticles for Molecular Delivery. Colloids Surf., B 2016, 146, 924–937. 10.1016/j.colsurfb.2016.06.028. PubMed DOI
Hill M.; Cunningham R. N.; Hathout R. M.; Johnston C.; Hardy J. G.; Migaud M. E. Formulation of Antimicrobial Tobramycin Loaded PLGA Nanoparticles via Complexation with AOT. J. Funct. Biomater. 2019, 10, 26.10.3390/jfb10020026. PubMed DOI PMC
Thu Trang T. T.; Jaafar M.; Yahaya B. H.; Kawashita M.; Thanh Tram N. X.; Abdul Hamid Z. A. Surface Roughness, Hydrophilicity and Encapsulation Efficiency of Gentamicin Loaded Surface Engineered PLA Microspheres. J. Phys.: Conf. Ser. 2018, 1082, 012068.10.1088/1742-6596/1082/1/012068. DOI
Sabaeifard P.; Abdi-Ali A.; Soudi M. R.; Gamazo C.; Irache J. M. Amikacin Loaded PLGA Nanoparticles against Pseudomonas Aeruginosa. Eur. J. Pharm. Sci. 2016, 93, 392–398. 10.1016/j.ejps.2016.08.049. PubMed DOI
Sharma U. K.; Verma A.; Prajapati S. K.; Pandey H.; Pandey A. C. In vitro, in vivo and pharmacokinetic assessment of amikacin sulphate laden polymeric nanoparticles meant for controlled ocular drug delivery. Appl. Nanosci. 2015, 5, 143–155. 10.1007/s13204-014-0300-y. DOI
Abdelghany S.; Parumasivam T.; Pang A.; Roediger B.; Tang P.; Jahn K.; Britton W. J.; Chan H.-K. Alginate Modified-PLGA Nanoparticles Entrapping Amikacin and Moxifloxacin as a Novel Host-Directed Therapy for Multidrug-Resistant Tuberculosis. J. Drug Delivery Sci. Technol. 2019, 52, 642–651. 10.1016/j.jddst.2019.05.025. DOI
Pavelkova A.; Kucharczyk P.; Stloukal P.; Koutny M.; Sedlarik V. Novel Poly(Lactic Acid)-Poly(Ethylene Oxide) Chain-Linked Copolymer and Its Application in Nano-Encapsulation. Polym. Adv. Technol. 2014, 25, 595–604. 10.1002/pat.3241. DOI
Pandey H.; Parashar V.; Parashar R.; Prakash R.; Ramteke P. W.; Pandey A. C. Controlled Drug Release Characteristics and Enhanced Antibacterial Effect of Graphene Nanosheets Containing Gentamicin Sulfate. Nanoscale 2011, 3, 4104–4108. 10.1039/c1nr10661a. PubMed DOI
Athanasoulia I.-G.; Tarantili P. A. Preparation and Characterization of Polyethylene Glycol/Poly(L-Lactic Acid) Blends. Pure Appl. Chem. 2017, 89, 141–152. 10.1515/pac-2016-0919. DOI
Verhoeven J.; Schaeffer R.; Bouwstra J. A.; Junginger H. E. The physico-chemical characterization of poly (2-hydroxyethyl methacrylate-co-methacrylic acid): 2. Effect of water, PEG 400 and PEG 6000 on the glass transition temperature. Polymer 1989, 30, 1946–1950. 10.1016/0032-3861(89)90371-6. DOI
Li F.-J.; Zhang S.-D.; Liang J.-Z.; Wang J.-Z. Effect of Polyethylene Glycol on the Crystallization and Impact Properties of Polylactide-Based Blends. Polym. Adv. Technol. 2015, 26, 465–475. 10.1002/pat.3475. DOI
Dzierzkowska E.; Ścisłowska-Czarnecka A.; Matwally S.; Romaniszyn D.; Chadzińska M.; Stodolak-Zych E. Porous Poly(Lactic Acid) Based Fibres as Drug Carriers in Active Dressings. Acta Bioeng. Biomech. 2020, 22, 185–197. 10.37190/ABB-01548-2020-03. PubMed DOI
Chafran L. S.; Paiva M. F.; França J. O. C.; Sales M. J. A.; Dias S. C. L.; Dias J. A. Preparation of PLA Blends by Polycondensation of D,L-Lactic Acid Using Supported 12-Tungstophosphoric Acid as a Heterogeneous Catalyst. Heliyon 2019, 5, e0181010.1016/j.heliyon.2019.e01810. PubMed DOI PMC
Abdal-Hay A.; Hussein K. H.; Casettari L.; Khalil K. A.; Hamdy A. S. Fabrication of Novel High Performance Ductile Poly(Lactic Acid) Nanofiber Scaffold Coated with Poly(Vinyl Alcohol) for Tissue Engineering Applications. Mater. Sci. Eng., C 2016, 60, 143–150. 10.1016/j.msec.2015.11.024. PubMed DOI
Rafat M.; Cléroux C. A.; Fong W. G.; Baker A. N.; Leonard B. C.; O’Connor M. D.; Tsilfidis C. PEG-PLA Microparticles for Encapsulation and Delivery of Tat-EGFP to Retinal Cells. Biomaterials 2010, 31, 3414–3421. 10.1016/j.biomaterials.2010.01.031. PubMed DOI
Wu Y.; Li L.; Chen S.; Qin J.; Chen X.; Zhou D.; Wu H. Synthesis, Characterization, and Crystallization Behaviors of Poly(D-Lactic Acid)-Based Triblock Copolymer. Sci. Rep. 2020, 10, 1–12. 10.1038/s41598-020-60458-9. PubMed DOI PMC
Grumezescu V.; Socol G.; Grumezescu A. M.; Holban A. M.; Ficai A.; Truşcǎ R.; Bleotu C.; Balaure P. C.; Cristescu R.; Chifiriuc M. C. Functionalized Antibiofilm Thin Coatings Based on PLA-PVA Microspheres Loaded with Usnic Acid Natural Compounds Fabricated by MAPLE. Appl. Surf. Sci. 2014, 302, 262–267. 10.1016/j.apsusc.2013.09.081. DOI
Chieng B. W.; Ibrahim N. A.; Yunus W. M. Z. W.; Hussein M. Z. Poly(Lactic Acid)/Poly(Ethylene Glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers 2014, 6, 93–104. 10.3390/polym6010093. DOI
Ovalles J. F.; Gallignani M.; Brunetto M. R.; Rondón R. A.; Ayala C. Reagent-Free Determination of Amikacin Content in Amikacin Sulfate Injections by FTIR Derivative Spectroscopy in a Continuous Flow System. J. Pharm. Anal. 2014, 4, 125–131. 10.1016/j.jpha.2013.08.001. PubMed DOI PMC
Ferro L.; Gojkovic Z.; Gorzsás A.; Funk C. Statistical Methods for Rapid Quantification of Proteins, Lipids, and Carbohydrates in Nordic Microalgal Species Using ATR-FTIR Spectroscopy. Molecules 2019, 24, 3237.10.3390/molecules24183237. PubMed DOI PMC
Lewandowska K. Miscibility and Thermal Stability of Poly(Vinyl Alcohol)/Chitosan Mixtures. Thermochim. Acta 2009, 493, 42–48. 10.1016/j.tca.2009.04.003. DOI
Wang N.; Yu J.; Ma X. Preparation and Characterization of Thermoplastic Starch/PLA Blends by One-Step Reactive Extrusion. Polym. Int. 2007, 56, 1440–1447. 10.1002/pi.2302. DOI
Faradilla R. F.; Lee G.; Sivakumar P.; Stenzel M.; Arcot J. Effect of Polyethylene Glycol (PEG) Molecular Weight and Nanofillers on the Properties of Banana Pseudostem Nanocellulose Films. Carbohydr. Polym. 2019, 205, 330–339. 10.1016/j.carbpol.2018.10.049. PubMed DOI
Prior S.; Gamazo C.; Irache J. M.; Merkle H. P.; Gander B. Gentamicin Encapsulation in PLA/PLGA Microspheres in View of Treating Brucella Infections. Int. J. Pharm. 2000, 196, 115–125. 10.1016/S0378-5173(99)00448-2. PubMed DOI
Antibacterial Porous Systems Based on Polylactide Loaded with Amikacin