Mass absorption cross-section and absorption enhancement from long term black and elemental carbon measurements: A rural background station in Central Europe
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34198082
PubMed Central
PMC8434419
DOI
10.1016/j.scitotenv.2021.148365
PII: S0048-9697(21)03436-7
Knihovny.cz E-zdroje
- Klíčová slova
- Absorption enhancement, Aerosol light absorption, Black carbon, Brown carbon, Elemental carbon, MAC,
- MeSH
- aerosoly analýza MeSH
- látky znečišťující vzduch * analýza MeSH
- monitorování životního prostředí MeSH
- uhlík analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- aerosoly MeSH
- látky znečišťující vzduch * MeSH
- uhlík MeSH
Black carbon (BC) is a dominant aerosol light absorber, and its brown carbon (BrC) coating can enhance absorption and lead to uncertainties concerning the radiative forcing estimation. This study investigates the mass absorption cross-section of equivalent BC (MACeBC) during a long-term field measurement (2013-2017) at a rural Central European site. The MAC enhancement factor (Eabs) and the contribution of BrC coatings to the absorption coefficient (Babs) were estimated by combining different approaches. The annual mean Babs and MACeBC values decreased slightly over the measurement period associated with change in the submicron aerosol size distribution. Regardless of the wavelength, Babs exhibited clear seasonal and diurnal variations, with higher values in winter when a higher absorption Ångström exponent (1.4) was observed due to the local biomass burning (BB). In contrast, MACeBC did not have a distinct temporal trend at 600 nm (7.84 ± 2.79 m2 g-1), while it showed a seasonal trend at 370 nm with higher values in winter (15.64 ± 4.77 m2 g-1). During this season, Eabs_660 was 1.18 ± 0.27 and did not exhibit any clear wavelength dependence, despite the influence of BB. During the study period, BrC-attributed absorption was observed in 31% of the samples, with a contribution of up to 40% of total Babs. In summer, the Eabs_660 increased to 1.59 ± 0.60, when a larger BC coating could be formed by secondary aerosol fractions. During this season, MACeBC_660 and Eabs_660 showed comparable source profiles that were mainly associated with aged air masses over central Europe, thereby supporting the fact that characteristics of coating materials formed during atmospheric aging are a major factor driving the MACeBC_660 measured at the regional background site. Further field investigations of the composition of BC coatings would help to better understand and estimate uncertainties related to the radiative effect of aerosols.
Global Change Research Institute of the CAS Brno 603 00 Czech Republic
Institute of Chemical Process Fundamentals of the CAS Prague 180 00 Czech Republic
Zobrazit více v PubMed
Andreae M.O., Gelencsér A. 2006. Black Carbon or Brown Carbon? The Nature of Light-absorbing Carbonaceous Aerosols.
Arnott W.P., Hamasha K., Moosmüller H., Sheridan P.J., Ogren J.A. Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci. Technol. 2005;39:17–29. doi: 10.1080/027868290901972. DOI
Baumgardner D., Avallone L., Bansemer A., Borrmann S., Brown P., Bundke U., Chuang P.Y., Cziczo D., Field P., Gallagher M., Gayet J.F., Heymsfield A., Korolev A., Krámer M., McFarquhar G., Mertes S., Möhler O., Lance S., Lawson P., Petters D., Pratt K., Roberts G., Rogers D., Stetzer O., Stith J., Strapp W., Twohy C., Wendisch M. In situ, airborne instrumentation: addressing and solving measurement problems in ice clouds. Bull. Am. Meteorol. Soc. 2012;93:29–34. doi: 10.1175/BAMS-D-11-00123.1. DOI
Bond T.C., Bergstrom R.W. Light absorption by carbonaceous particles: an investigative review. Aerosol Sci. Technol. 2006;40:27–67. doi: 10.1080/02786820500421521. DOI
Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., Berntsen T., DeAngelo B.J., Flanner M.G., Ghan S., Kärcher B., Koch D., Kinne S., Kondo Y., Quinn P.K., Sarofim M.C., Schultz M.G., Schulz M., Venkataraman C., Zhang H., Zhang S., Bellouin N., Guttikunda S.K., Hopke P.K., Jacobson M.Z., Kaiser J.W., Klimont Z., Lohmann U., Schwarz J.P., Shindell D., Storelvmo T., Warren S.G., Zender C.S. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 2013;118:5380–5552. doi: 10.1002/jgrd.50171. DOI
Cabada J.C., Pandis S.N., Subramanian R., Robinson A.L., Polidori A., Turpin B. Estimating the secondary organic aerosol contribution to PM2. 5 using the EC tracer method special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Sci. Technol. 2004;38:140–155.
Cappa C.D., Zhang X., Russell L.M., Collier S., Lee A.K.Y., Chen C.-L., Betha R., Chen S., Liu J., Price D.J. Light absorption by ambient black and brown carbon and its dependence on black carbon coating state for two California, USA, cities in winter and summer. J. Geophys. Res. Atmos. 2019;124:1550–1577.
Carslaw D.C., Ropkins K. openair -- an R package for air quality data analysis. Environ. Model. Softw. 2012;27–28:52–61. doi: 10.1016/j.envsoft.2011.09.008. DOI
Castro L.M., Pio C.A., Harrison R.M., Smith D.J.T. Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmos. Environ. 1999;33:2771–2781.
Cavalli F., Viana M., Yttri K.E., Genberg J., Putaud J.P. Toward a standardized thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmos. Meas. Tech. 2010;3:79–89. doi: 10.5194/amtd-2-2321-2009. DOI
Cheng Y., He K.B., Zheng M., Duan F.K., Du Z.Y., Ma Y.L., Tan J.H., Yang F.M., Liu J.M., Zhang X.L., Weber R.J., Bergin M.H., Russell A.G. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China. Atmos. Chem. Phys. 2011;11:11497–11510. doi: 10.5194/acp-11-11497-2011. DOI
Cheng Y., He K. bin, Engling G., Weber R., Liu J. meng, Du Z. yu, Dong S. ping. Brown and black carbon in Beijing aerosol: implications for the effects of brown coating on light absorption by black carbon. Sci. Total Environ. 2017;599–600:1047–1055. doi: 10.1016/j.scitotenv.2017.05.061. PubMed DOI
Cheng Z., Atwi K., El Hajj O., Ijeli I., Al Fischer D., Smith G., Saleh R. Discrepancies between brown carbon light-absorption properties retrieved from online and offline measurements. Aerosol Sci. Technol. 2021;55:92–103.
Cho C., Kim S.-W., Lee M., Lim S., Fang W., Gustafsson Ö., Andersson A., Park R.J., Sheridan P.J. Observation-based estimates of the mass absorption cross-section of black and brown carbon and their contribution to aerosol light absorption in East Asia. Atmos. Environ. 2019;212:65–74.
Chow J.C., Watson J.G., Green M.C., Wang X., Chen L.-W.A., Trimble D.L., Cropper P.M., Kohl S.D., Gronstal S.B. Separation of brown carbon from black carbon for IMPROVE and Chemical Speciation Network PM2. 5 samples. J. Air Waste Manage. Assoc. 2018;68:494–510. PubMed
Clarke A.D., Shinozuka Y., Kapustin V.N., Howell S., Huebert B., Doherty S., Anderson T., Covert D., Anderson J., Hua X., Moore K.G., II, McNaughton C., Carmichael G., Weber R. Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: Physiochemistry and optical properties. J. Geophys. Res. 2004;109:D15S09. doi: 10.1029/2003JD004378. DOI
Collaud Coen M., Weingartner E., Apituley A., Ceburnis D., Fierz-Schmidhauser R., Flentje H., Henzing J.S., Jennings S.G., Moerman M., Petzold A., Schmid O., Baltensperger U. Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms. Atmos. Meas. Tech. 2010;3:457–474. doi: 10.5194/amt-3-457-2010. DOI
CSD Traffic census [WWW Document] 2016. https://www.rsd.cz/wps/portal/web/Silnice-a-dalnice/Scitani-dopravy URL.
CSO . Czech Stat. Off; 2021. Statistical Yearbook Hl. of Prague - 2020 [WWW Document]https://www.czso.cz/csu/czso/statisticka-rocenka-hl-m-prahy-2020 URL.
Dal Maso M., Kulmala M., Riipinen I., Wagner R., Hussein T., Aalto P.P., Lehtinen K.E.J. Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Environ. Res. 2005;10:323–336.
Dvorská A., Sedlák P., Schwarz J., Fusek M., Hanuš V., Vodička P., Trusina J. Atmospheric station Křešín u Pacova, Czech Republic – a Central European research infrastructure for studying greenhouse gases, aerosols and air quality. Adv. Sci. Res. 2015;12:79–83. doi: 10.5194/asr-12-79-2015. DOI
Feng Y., Ramanathan V., Kotamarthi V.R. Brown carbon: a significant atmospheric absorber of solar radiation? Atmos. Chem. Phys. Discuss. 2013:13.
Genberg J., van der Gon D.H.A.C., Simpson D., Swietlicki E., Areskoug H., Beddows D., Ceburnis D., Fiebig M., Hansson H.-C., Harrison R.M. Light-absorbing carbon in Europe-measurement and modelling, with a focus on residential wood combustion emissions. Atmos. Chem. Phys. 2013;13:8719–8738.
Hansen A.D.A. Magee Sci. Company; California, USA: 2005. The Aethalometer--User Manual [WWW Document]https://www.psi.ch/sites/default/files/import/lac/ProjectAddonCatcosOperationsEN/Aethalometer_book_2005.07.02.pdf URL.
Harrison R.M., Beddows D.C.S., Jones A.M., Calvo A., Alves C., Pio C. An evaluation of some issues regarding the use of aethalometers to measure woodsmoke concentrations. Atmos. Environ. 2013;80:540–548. doi: 10.1016/j.atmosenv.2013.08.026. DOI
Herich H., Hueglin C., Buchmann B. A 2.5 year’s source apportionment study of black carbon from wood burning and fossil fuel combustion at urban and rural sites in Switzerland. Atmos. Meas. Tech. 2011;4:1409.
Karanasiou A., Panteliadis P., Pérez N., Minguillón M.C., Pandolfi M., Titos G., Viana M., Moreno T., Querol X., Alastuey A. Evaluation of the semi-continuous OCEC analyzer performance with the EUSAAR2 protocol. Sci. Total Environ. 2020;747 PubMed
Kirchstetter T.W., Novakov T., Hobbs P.V. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. Atmos. 2004:109.
Kirillova E.N., Marinoni A., Bonasoni P., Vuillermoz E., Facchini M.C., Fuzzi S., Decesari S. Light absorption properties of brown carbon in the high Himalayas. J. Geophys. Res. Atmos. 2016;121:9621–9639.
Knox A., Evans G.J., Brook J.R., Yao X., Jeong C.-H., Godri K.J., Sabaliauskas K., Slowik J.G. Mass absorption cross-section of ambient black carbon aerosol in relation to chemical age. Aerosol Sci. Technol. 2009;43:522–532. doi: 10.1080/02786820902777207. DOI
Kondo Y., Sahu L., Kuwata M., Miyazaki Y., Takegawa N., Moteki N., Imaru J., Han S., Nakayama T., Oanh N.T.K. Stabilization of the mass absorption cross section of black carbon for filter-based absorption photometry by the use of a heated inlet. Aerosol Sci. Technol. 2009;43:741–756.
Krasowsky T.S., McMeeking G.R., Wang D., Sioutas C., Ban-Weiss G.A. Measurements of the impact of atmospheric aging on physical and optical properties of ambient black carbon particles in Los Angeles. Atmos. Environ. 2016;142:496–504.
Laborde M., Crippa M., Tritscher T., Jurányi Z., Decarlo P.F., Temime-Roussel B., Marchand N., Eckhardt S., Stohl A., Baltensperger U. Black carbon physical properties and mixing state in the European megacity Paris. Atmos. Chem. Phys. 2013;13:5831–5856.
Lack D.A., Langridge J.M. On the attribution of black and brown carbon light absorption using the Ångström exponent. Atmos. Chem. Phys. 2013:13.
Lack D.A., Langridge J.M., Bahreini R., Cappa C.D., Middlebrook A.M., Schwarz J.P. Brown carbon and internal mixing in biomass burning particles. Proc. Natl. Acad. Sci. 2012;109:14802–14807. PubMed PMC
Lee H.J., Aiona P.K., Laskin A., Laskin J., Nizkorodov S.A. Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon. Environ. Sci. Technol. 2014;48:10217–10226. PubMed
Leskinen A., Ruuskanen A., Kolmonen P., Zhao Y., Fang D., Wang Q., Gu C., Jokiniemi J., Hirvonen M.-R., Lehtinen K.E.J. The contribution of black carbon and non-BC absorbers to the aerosol absorption coefficient in Nanjing, China. Aerosol Air Qual. Res. 2020;20:590–605.
Li S., Zhu M., Yang W., Tang M., Huang X., Yu Y., Fang H., Yu X., Yu Q., Fu X. Filter-based measurement of light absorption by brown carbon in PM2. 5 in a megacity in South China. Sci. Total Environ. 2018;633:1360–1369. PubMed
Liousse C., Cachier H., Jennings S.G. Optical and thermal measurements of black carbon aerosol content in different environments: variation of the specific attenuation cross-section, sigma ($σ$) Atmos. Environ. A Gen. Top. 1993;27:1203–1211.
Mbengue S., Fusek M., Schwarz J., Vodička P., Šmejkalová A.H., Holoubek I. Four years of highly time resolved measurements of elemental and organic carbon at a rural background site in Central Europe. Atmos. Environ. 2018;182:335–346.
Mbengue S., Serfozo N., Schwarz J., Ziková N., Šmejkalová A.H., Holoubek I. Characterization of equivalent black carbon at a regional background site in Central Europe: variability and source apportionment☆. Environ. Pollut. 2020;260 doi: 10.1016/j.envpol.2019.113771. PubMed DOI
Motos G., Corbin J.C., Schmale J., Modini R.L., Bertò M., Kupiszewski P., Baltensperger U., Gysel-Beer M. Black carbon aerosols in the lower free troposphere are heavily coated in summer but largely uncoated in winter at Jungfraujoch in the Swiss Alps. Geophys. Res. Lett. 2020;47
Müller T., Henzing J.S., de Leeuw G., Wiedensohler A., Alastuey A., Angelov H., Bizjak M., Collaud Coen M., Engström J.E., Gruening C., Hillamo R., Hoffer A., Imre K., Ivanow P., Jennings G., Sun J.Y., Kalivitis N., Karlsson H., Komppula M., Laj P., Li S.-M., Lunder C., Marinoni A., Martins dos Santos S., Moerman M., Nowak A., Ogren J.A., Petzold A., Pichon J.M., Rodriquez S., Sharma S., Sheridan P.J., Teinilä K., Tuch T., Viana M., Virkkula A., Weingartner E., Wilhelm R., Wang Y.Q. Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops. Atmos. Meas. Tech. 2011;4:245–268. doi: 10.5194/amt-4-245-2011. DOI
Nordmann S., Birmili W., Weinhold K., Müller K., Spindler G., Wiedensohler A. Measurements of the mass absorption cross section of atmospheric soot particles using Raman spectroscopy. J. Geophys. Res. Atmos. 2013;118:12–75.
Pandolfi M., Cusack M., Alastuey A., Querol X. Variability of aerosol optical properties in the Western Mediterranean Basin. Atmos. Chem. Phys. 2011;11:8189–8203.
Pandolfi M., Ripoll A., Querol X., Alastuey A. 2014. Climatology of Aerosol Optical Properties and Black Carbon Mass Absorption Cross Section at a Remote High-altitude Site in the Western Mediterranean Basin.
Petzold A., Ogren J.A., Fiebig M., Laj P., Li S.M., Baltensperger U., Holzer-Popp T., Kinne S., Pappalardo G., Sugimoto N., Wehrli C., Wiedensohler A., Zhang X.Y. Recommendations for reporting black carbon measurements. Atmos. Chem. Phys. 2013;13:8365–8379. doi: 10.5194/acp-13-8365-2013. DOI
Pileci R.E., Modini R.L., Bertò M., Yuan J., Corbin J.C. Comparison of co-located refractory black carbon (rBC) andelemental carbon (EC) mass concentration measurements duringfield campaigns at several European sites. Atmos. Meas. Tech. 2021;14:1379–1403.
Pio C., Cerqueira M., Harrison R.M., Nunes T., Mirante F., Alves C., Oliveira C., Sanchez de la Campa A., Artíñano B., Matos M. OC/EC ratio observations in Europe: re-thinking the approach for apportionment between primary and secondary organic carbon. Atmos. Environ. 2011;45:6121–6132. doi: 10.1016/j.atmosenv.2011.08.045. DOI
Putaud J.P., Raes F., Van Dingenen R., Brüggemann E., Facchini M.C., Decesari S., Fuzzi S., Gehrig R., Hüglin C., Laj P., Lorbeer G., Maenhaut W., Mihalopoulos N., Müller K., Querol X., Rodriguez S., Schneider J., Spindler G., Ten Brink H., Tørseth K., Wiedensohler A. A European aerosol phenomenology - 2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ. 2004;38:2579–2595. doi: 10.1016/j.atmosenv.2004.01.041. DOI
R Core Team R: A Language and Environment for Statistical Computing [WWW Document] 2020. https://www.r-project.org/ URL.
Rolph G., Stein A., Stunder B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 2017;95:210–228. doi: 10.1016/j.envsoft.2017.06.025. DOI
Sandradewi J., Prévôt A.S.H., Szidat S., Perron N., Alfarra M.R., Lanz V.A., Weingartner E., Baltensperger U.R.S. Using aerosol light abosrption measurements for the quantitative determination of wood burning and traffic emission contribution to particulate matter. Environ. Sci. Technol. 2008;42:3316–3323. doi: 10.1021/es702253m. PubMed DOI
Schmid O., Artaxo P., Arnott W.P., Chand D., Gatti L.V., Frank G.P., Hoffer A., Schnaiter M., Andreae M.O. Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin – I. Comparison and field calibration of absorption measurement techniques. Atmos. Chem. Phys. 2006;6:3443–3462. doi: 10.5194/acpd-5-9355-2005. DOI
Schnaiter M., Linke C., Möhler O., Naumann K.H., Saathoff H., Wagner R., Schurath U., Wehner B. Absorption amplification of black carbon internally mixed with secondary organic aerosol. J. Geophys. Res. D Atmos. 2005;110:1–11. doi: 10.1029/2005JD006046. DOI
Schwarz J., Cusack M., Karban J., Chalupníčková E., Havránek V., Smolík J., Ždímal V. PM2. 5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis. Atmos. Res. 2016;176:108–120.
Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015;96:2059–2077. doi: 10.1175/BAMS-D-14-00110.1. DOI
Strader R., Lurmann F., Pandis S.N. Evaluation of secondary organic aerosol formation in winter. Atmos. Environ. 1999;33:4849–4863.
Sun J.Y., Wu C., Wu D., Cheng C., Li M., Li L., Deng T., Yu J.Z., Li Y.J., Zhou Q. Amplification of black carbon light absorption induced by atmospheric aging: temporal variation at seasonal and diel scales in urban Guangzhou. Atmos. Chem. Phys. 2020;20:2445–2470.
Turpin B.J., Huntzicker J.J. Secondary formation of organic aerosol in the Los Angeles Basin: a descriptive analysis of organic and elemental carbon concentrations. Atmos. Environ. A Gen. Top. 1991;25:207–215.
Turpin B.J., Huntzicker J.J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos. Environ. 1995;29:3527–3544.
Turpin B.J., Saxena P., Andrews E. Measuring and simulating particulate organics in the atmosphere: problems and prospects. Atmos. Environ. 2000;34:2983–3013.
Uria-Tellaetxe I., Carslaw D.C. Conditional bivariate probability function for source identification. Environ. Model. Softw. 2014;59:1–9. doi: 10.1016/j.envsoft.2014.05.002. DOI
Vaishya A., Singh P., Rastogi S., Babu S.S. Aerosol black carbon quantification in the central Indo-Gangetic Plain: seasonal heterogeneity and source apportionment. Atmos. Res. 2017;185:13–21.
Virkkula A., Mäkelä T., Hillamo R., Yli-Tuomi T., Hirsikko A., Hämeri K., Koponen I.K. A simple procedure for correcting loading effects of aethalometer data. J. Air Waste Manage. Assoc. 2007;57:1214–1222. doi: 10.3155/1047-3289.57.10.1214. PubMed DOI
Vodička P., Schwarz J., Cusack M., Ždímal V. Detailed comparison of OC/EC aerosol at an urban and a rural Czech background site during summer and winter. Sci. Total Environ. 2015;518–519:424–433. doi: 10.1016/j.scitotenv.2015.03.029. PubMed DOI
Wang X., Sedlacek A.J., DeSá S.S., Martin S.T., Alexander M.L., Alexander M.L., Watson T.B., Aiken A.C., Springston S.R., Artaxo P. Deriving brown carbon from multiwavelength absorption measurements: method and application to AERONET and Aethalometer observations. Atmos. Chem. Phys. 2016;16:12733–12752. doi: 10.5194/acp-16-12733-2016. DOI
Washenfelder R.A., Attwood A.R., Brock C.A., Guo H., Xu L., Weber R.J., Ng N.L., Allen H.M., Ayres B.R., Baumann K., Cohen R.C., Draper D.C., Duffey K.C., Edgerton E., Fry J.L., Hu W.W., Jimenez J.L., Palm B.B., Romer P., Stone E.A., Wooldridge P.J., Brown S.S. Biomass burning dominates brown carbon absorption in the rural southeastern United States. Geophys. Res. Lett. 2015;42:653–664. doi: 10.1002/2014GL062444. DOI
Weingartner E., Saathoff H., Schnaiter M., Streit N., Bitnar B., Baltensperger U. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci. 2003;34:1445–1463. doi: 10.1016/S0021-8502(03)00359-8. DOI
WMO . 2nd edition. 2016. WMO/GAW Aerosol Measurement Procedures, Guidelines and Recommendations.
Wu C. 2017. Minimum R Squared Method (MRS) DOI
Wu C. 2017. Mie Scattering [WWW Document] DOI
Wu C., Yu J.Z. Determination of primary combustion source organic carbon-to-elemental carbon (OC/EC) ratio using ambient OC and EC measurements: secondary OC-EC correlation minimization method. Atmos. Chem. Phys. 2016;16:5453–5465.
Wu C., Wu D., Yu J.Z. Quantifying black carbon light absorption enhancement with a novel statistical approach. Atmos. Chem. Phys. 2018;18:289.
Yttri K.E., Aas W., Bjerke A., Cape J.N., Cavalli F., Ceburnis D., Dye C., Emblico L., Facchini M.C., Forster C. Elemental and organic carbon in PM 10: a one year measurement campaign within the European Monitoring and Evaluation Programme EMEP. Atmos. Chem. Phys. 2007;7:5711–5725.
Yuan J., Modini R.L., Zanatta M., Herber A.B., Müller T., Wehner B., Poulain L., Tuch T., Baltensperger U., Gysel-Beer M. Variability in the mass absorption cross-section of black carbon (BC) aerosols is driven by BC internal mixing state at a central European background site (Melpitz, Germany) in winter. Atmos. Chem. Phys. Discuss. 2020:1–36.
Zanatta M., Gysel M., Bukowiecki N., Müller T., Weingartner E., Areskoug H., Fiebig M., Yttri K.E., Mihalopoulos N., Kouvarakis G. A European aerosol phenomenology-5: climatology of black carbon optical properties at 9 regional background sites across Europe. Atmos. Environ. 2016;145:346–364.
Zhang Y., Favez O., Canonaco F., Liu D., Močnik G., Amodeo T., Sciare J., Prévôt A.S.H., Gros V., Albinet A. Evidence of major secondary organic aerosol contribution to lensing effect black carbon absorption enhancement. npj Clim. Atmos. Sci. 2018;1 doi: 10.1038/s41612-018-0056-2. DOI
Zíková N., Ždímal V. Long-term measurement of aerosol number size distributions at rural background station Košetice. Aerosol Air Qual. Res. 2013;13:1–11. doi: 10.4209/aaqr.2013.02.0056. DOI
Zíková N., Wang Y., Yang F., Li X., Tian M., Hopke P.K. On the source contribution to Beijing PM2.5 concentrations. Atmos. Environ. 2016;134:84–95. doi: 10.1016/j.atmosenv.2016.03.047. DOI