Different approaches to explore the impact of COVID-19 lockdowns on carbonaceous aerosols at a European rural background site
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37268131
PubMed Central
PMC10229439
DOI
10.1016/j.scitotenv.2023.164527
PII: S0048-9697(23)03148-0
Knihovny.cz E-zdroje
- Klíčová slova
- Atmospheric aerosols, COVID-19 lockdowns, Organic - elemental carbon, Rural background site, Temporal variation, Vertical distribution,
- MeSH
- COVID-19 * prevence a kontrola MeSH
- kontrola infekčních nemocí MeSH
- látky znečišťující vzduch * analýza MeSH
- lidé MeSH
- monitorování životního prostředí MeSH
- pevné částice analýza MeSH
- respirační aerosoly a kapénky MeSH
- roční období MeSH
- senioři MeSH
- uhlík analýza MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Čína MeSH
- Názvy látek
- látky znečišťující vzduch * MeSH
- pevné částice MeSH
- uhlík MeSH
To prevent the fast spread of COVID-19, worldwide restrictions have been put in place, leading to a reduction in emissions from most anthropogenic sources. In this study, the impact of COVID-19 lockdowns on elemental (EC) and organic (OC) carbon was explored at a European rural background site combining different approaches: - "Horizontal approach (HA)" consists of comparing concentrations of pollutants measured at 4 m a.g.l. during pre-COVID period (2017-2019) to those measured during COVID period (2020-2021); - "Vertical approach (VA)" consists of inspecting the relationship between OC and EC measured at 4 m and those on top (230 m) of a 250 m-tall tower in Czech Republic. The HA showed that the lockdowns did not systematically result in lower concentrations of both carbonaceous fractions unlike NO2 (25 to 36 % lower) and SO2 (10 to 45 % lower). EC was generally lower during the lockdowns (up to 35 %), likely attributed to the traffic restrictions whereas increased OC (up to 50 %) could be attributed to enhanced emissions from the domestic heating and biomass burning during this stay-home period, but also to the enhanced concentration of SOC (up to 98 %). EC and OC were generally higher at 4 m suggesting a greater influence of local sources near the surface. Interestingly, the VA revealed a significantly enhanced correlation between EC and OC measured at 4 m and those at 230 m (R values up to 0.88 and 0.70 during lockdown 1 and 2, respectively), suggesting a stronger influence of aged and long distance transported aerosols during the lockdowns. This study reveals that lockdowns did not necessarily affect aerosol absolute concentrations but it certainly influenced their vertical distribution. Therefore, analyzing the vertical distribution can allow a better characterization of aerosol properties and sources at rural background sites, especially during a period of significantly reduced human activities.
Zobrazit více v PubMed
Altstädter B., Deetz K., Vogel B., Babic K., Dione C., Pacifico F., Jambert C., Ebus F., Bärfuss K., Pätzold F., Lampert A., Adler B., Kalthoff N., Lohou F. The vertical variability of black carbon observed in the atmospheric boundary layer during DACCIWA. Atmos. Chem. Phys. 2020;20:7911–7928.
Altuwayjiri A., Soleimanian E., Moroni S., Palomba P., Borgini A., Marco C.D., Ruprecht A.A., Siouta C. The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM2.5 in the metropolitan area of Milan, Italy. Sci. Total Environ. 2021;758 PubMed PMC
Andreae M.O., Gelencsér A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 2006;6:3131–3148.
Andreae M.O., Ramanathan V. Climate's dark forcings. Science. 2013;340:280–281. PubMed
Antony Chen L.-W., Chien L.C., Li Yi, Lin G. Nonuniform impacts of COVID-19 lockdown on air quality over the United States. Sci. Total Environ. 2020;745 PubMed PMC
Arhami M., Kuhn T., Fine P.M., Delfino R.J., Sioutas C. Effects of sampling artifacts and operating parameters on the performance of a semicontinuous particulate elemental carbon/organic carbon monitor. Environ. Sci. Technol. 2006;40:945–954. PubMed
Ashrafi K., Shafie-Pour M., Kamalan H. Estimating temporal and seasonal variation of ventilation coefficients. Int. J. Environ. Res. 2009;3:637–644.
Baldasano J.M. COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain) Sci. Total Environ. 2020;741 PubMed
Bhatti U.A., Zeeshan Z., Nizamani M.M., Bazai S., Yu Z., Yuan L. Assessing the change of ambient air quality patterns in Jiangsu Province of China pre-to post-COVID-19. Chemosphere. 2022;288 PubMed PMC
Bond T.C., Bergstrom R.W. Light absorption by carbonaceous particles: an investigative review. Aerosol Sci. Technol. 2006;40:27–67.
Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., Berntsen T., DeAngelo B.J., Flanner M.G., Ghan S., Kärcher B., Koch D., Kinne S., Kondo Y., Quinn P.K., Sarofim M.C., Schultz M.G., Schulz M., Venkataraman C., Zhang H., Zhang S., Bellouin N., Guttikunda S.K., Hopke P.K., Jacobson M.Z., Kaiser J.W., Klimont Z., Lohmann U., Schwarz J.P., Shindell D., Storelvmo T., Warren S.G., Zender C.S. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 2013;118:5380–5552.
Carslaw, D.C., Ropkins, K., 2012. openair -- an R package for air quality data analysis. Environ. Model. Softw. 27--28, 52–61.
Cavalli F., Viana M., Yttri K.E., Genberg J., Putaud J.P. Toward a standardized thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmos. Meas. Tech. 2010;3:79–89.
Cavalli F., Alastuey A., Areskoug H., Ceburnis D., Cech J., Genberg J., Harrison R.M., Jaffrezo J.L., Kiss G., Laj P., Mihalopoulos N., Perez N., Quincey P., Schwarz J., Sellegri K., Spindler G., Swietlicki E., Theodosi C., Yttri K.E., Aas W., Putaud J.P. A European aerosol phenomenology −4: harmonized concentrations of carbonaceous aerosol at 10 regional background sites across Europe. Atmos. Environ. 2016;144:133–145.
Choomanee P., Bualert S., Thongyen T., Salao S., Szymanski W.W., Rungratanaubon T. Vertical variation of carbonaceous aerosols within the PM2.5 fraction in Bangkok, Thailand. Aerosol Air Qual. Res. 2020;20:43–52.
Clappier A., Thunis P., Beekmann M., Putaud J.P., de Meij A. Impact of SOx, NOx and NH3 emission reductions on PM2.5 concentrations across Europe: hints for future measure development. Environ. Int. 2021;156 PubMed PMC
Clemente A., Yubero E., Nicolas J.F., Caballero S., Crespo J., Galindo N. Changes in the concentration and composition of urban aerosols during the COVID-19 lockdown. Environ. Res. 2022;203 PubMed PMC
Collivignarelli M.C., Abbà A., Bertanza G., Pedrazzani R., Ricciardi P., Miino M.C. Lockdown for CoViD-2019 in Milan: what are the effects on air quality? Sci. Total Environ. 2020;732 PubMed PMC
CSD Traffic Census [WWW Document] 2016. https://www.rsd.cz/wps/portal/web/Silnice-a-dalnice/Scitani-dopravy URL.
CSO, 2021. Statistical Yearbook Hl. of Prague - 2020 [WWW Document]. Czech Stat. Off URL. https://www.czso.cz/csu/czso/statisticka-rocenka-hl-m-prahy-2020. (Accessed 8 January 2021).
Dai Q., Liu B., Bi X., Wu J., Liang D., Zhang Y., Feng Y., Hopke P.K. Dispersion normalized PMF provides insights into the significant changes in source contributions to PM2.5 after the COVID-19 outbreak. Environ. Sci. Technol. 2020;54:9917–9927. PubMed
Dantas G., Siciliano B., França B.B., da Silva C.M., Arbilla G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020;729 PubMed PMC
Sicard P., De Marco A., Agathokleous E., Feng Z., Xu X., Paoletti E., Rodriguez J.J.D., Calatayud V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020;735 PubMed PMC
Dvorská A., Sedlák P., Schwarz J., Fusek M., Hanuš V., Vodička P., Trusina J. Atmospheric station Křešín u Pacova, Czech Republic – a central European research infrastructure for studying greenhouse gases, aerosols and air quality. Adv. Sci. Res. 2015;12:79–83.
Ehn M., Thornton J.A., Kleist E., Sipilä M., Junninen H., Pullinen I., Springer M., Rubach F., Tillmann R., Lee B., Lopez-Hilfiker F., Andres S., Acir I.H., Rissanen M., Jokinen T., Schobesberger S., Kangasluoma J., Kontkanen J., Nieminen T., Kurtén T., Nielsen L.B., Jørgensen S., Kjaergaard H.G., Canagaratna M., Maso M.D., Berndt T., Petäjä T., Wahner A., Kerminen V.M., Kulmala M., Worsnop D.R., Wildt J., Mentel T.F. A large source of low-volatility secondary organic aerosol. Nature. 2014;506:476–479. PubMed
Feng Y., Ramanathan V., Kotamarthi V.R. Brown carbon: a significant atmospheric absorber of solar radiation? Atmos. Chem. Phys. 2013;13:8607–8621.
Feng Z., Zheng F., Liu Y., Fan X., Yan C., Zhang Y., Daellenbach K.R., Bianchi F., Petäjä T., Kulmala M., Bao X. Evolution of organic carbon during COVID-19 lockdown period: possible contribution of nocturnal chemistry. Sci. Total Environ. 2022;808 PubMed PMC
Geiß A., Wiegner M., Bonn B., Schäfer K., Forkel R., von Schneidemesser E., Münkel C., Chan K.L., Nothard R. Mixing layer height as an indicator for urban air quality? Atmos. Meas. Tech. 2017;10:2969–2988.
Grange S.K., Carslaw D.C., Lewis A.C., Boleti E., Hueglin C. Random forest meteorological normalisation models for Swiss PM10 trend analysis. Atmos. Chem. Phys. 2018;18:6223–6239.
Hudda N., Simon M.C., Patton A.P., Durant J.L. Reductions in traffic-related black carbon and ultrafine particle number concentrations in an urban neighborhood during the COVID-19 pandemic. Sci. Total Environ. 2020;742 PubMed PMC
IPCC . In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J.A., Nauels Y.X., Bex V., Midgley P.M., editors. Cambridge University Press; Cambridge, United Kingdom and New York, NY, USA: 2013. Summary for Policymakers. 1535 pp.
Kanawade V.P., Srivastava A.K., Ram K., Asmi E., Vakkari V., Soni V.K., Varaprasad V., Sarangi C. What caused severe air pollution episode of November 2016 in New Delhi? Atmos. Environ. 2019;222
Karanasiou A., Panteliadis P., Pérez N., Minguillón M.C., Pandolfi M., Titos G., Viana M., Moreno T., Querol X., Alastuey A. Evaluation of the Semi-Continuous OCEC analyzer performance with the EUSAAR2 protocol. Sci. Total Environ. 2020;747 PubMed
Kim Y.P., Moon K.C., Lee J.H. Organic and elemental carbon in fine particles at Kosan, Korea. Atmos. Environ. 2000;34:3309–3317.
Kirchstetter T.W., Novakov T., Hobbs P.V. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. Atmos. 2004;109
Li L., Lu C., Chan P.-W., Zhang X., Yang H.L., Lan Z.J., Zhang W.H., Liu Y.W., Pan L., Zhang L. Tower observed vertical distribution of PM2.5, O3 and NOx in the Pearl River Delta. Atmos. Environ. 2020;220
Li Z., Meng J., Zhou L., Zhou R., Fu M., Wang Y., Yi Y., Song A., Guo Q., Hou Z., Yan L. Impact of the COVID-19 event on the characteristics of atmospheric single particle in the northern China. Aerosol Air Qual. Res. 2020;20:1716–1726.
Lin C., Lau A.K.H., Fung J.C.H., Song Y., Li Y., Tao M., Lu X., Ma J., Lao X.Q. Removing the effects of meteorological factors on changes in nitrogen dioxide and ozone concentrations in China from 2013 to 2020. Sci. Total Environ. 2021;793 PubMed
Lotteraner C., Piringer M. Mixing-height time series from operational ceilometer aerosol-layer heights. Boundary-Layer Meteorol. 2016;161:265.
Lu Y., Zhu B., Huang Y., Shi S., Wang H., An J., Yu X. Vertical distributions of black carbon aerosols over rural areas of the Yangtze River Delta in winter. Sci. Total Environ. 2019;661:1–9. PubMed
Mbengue S., Fusek M., Schwarz J., Vodička P., Šmejkalová A.H., Holoubek I. Four years of highly time resolved measurements of elemental and organic carbon at a rural background site in Central Europe. Atmos. Environ. 2018;182:335–346.
Mbengue S., Serfozo N., Schwarz J., Ziková N., Šmejkalová A.H., Holoubek I. Characterization of equivalent black carbon at a regional background site in Central Europe: variability and source apportionment. Environ. Pollut. 2020;260 PubMed
Mbengue S., Zikova N., Schwarz J., Vodička P., Šmejkalová A.H., Holoubek I. Mass absorption cross-section and absorption enhancement from long term black and elemental carbon measurements: a rural background station in Central Europe. Sci. Total Environ. 2021;794 PubMed PMC
Meng J., Li Z., Zhou R., Chen M., Li Y., Yi Y., Ding Z., Li H., Yan L., Hou Z., Wang G. Enhanced photochemical formation of secondary organic aerosols during the COVID-19 lockdown in Northern China. Sci. Total Environ. 2021;758 PubMed PMC
Otmani A., Benchrif A., Tahri M., Bounakhla M., Chakir E.M., El Bouch M., Krombi M. Impact of Covid-19 lockdown on PM10, SO2 and NO2 concentrations in Salé City (Morocco) Sci. Total Environ. 2020;735 PubMed PMC
Petetin H., Bowdalo D., Soret A., Guevara M., Jorba O., Serradell K., Pérez García-Pando C. Meteorology-normalized impact of the COVID-19 lockdown upon NO2 pollution in Spain. Atmos. Chem. Phys. 2020;20:11119–11141.
Pio C., Cerqueira M., Harrison R.M., Nunes T., Mirante F., Alves C., Oliveira C., Sanchez de la Campa A., Artíñano B., Matos M. OC/EC ratio observations in Europe: re-thinking the approach for apportionment between primary and secondary organic carbon. Atmos. Environ. 2011;45:6121–6132.
Pio C.A., Legrand M., Oliveira T., Afonso J., Santos C., Caseiro A., Fialho P., Barata F., Puxbaum H., Sanchez-Ochoa A., Kasper-Giebl A., Gelencsér A., Preunkert S., Schock M. Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west–east transect across Europe. J. Geophys. Res. 2007;112(D23):D23S02.
Putaud J.P., Raes F., Van Dingenen R., Brüggemann E., Facchini M.C., Decesari S., Fuzzi S., Gehrig R., Hüglin C., Laj P., Lorbeer G., Maenhaut W., Mihalopoulos N., Müller K., Querol X., Rodriguez S., Schneider J., Spindler G., Ten Brink H., Tørseth K., Wiedensohler A. A European aerosol phenomenology - 2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ. 2004;38:2579–2595.
R Core Team R: A Language and Environment for Statistical Computing [WWW Document] 2020. https://www.r-project.org/ URL.
Rajesh T.A., Ramachandran S. Assessment of the coronavirus disease 2019 (COVID-19) pandemic imposed lockdown and unlock effects on black carbon aerosol, its source apportionment, and aerosol radiative forcing over an urban city in India. Atmos. Res. 2022;267 PubMed PMC
Rolph G., Stein A., Stunder B. Real-time environmental applications and display sYstem: READY. Environ. Model. Softw. 2017;95:210–228.
Sahu M., Hu S., Ryan P.H., Masters G.L., Grinshpun S.A., Chow J.C., Biswas P. Chemical compositions and source identification of PM2.5 aerosols for estimation of a diesel source surrogate. Sci. Total Environ. 2011;409:2642–2651. PubMed
Sandradewi J., Prévôt A.S.H., Szidat S., Perron N., Alfarra M.R., Lanz V.A., Weingartner E., Baltensperger U.R.S. Using aerosol light abosrption measurements for the quantitative determination of wood burning and traffic emission contribution to particulate matter. Environ. Sci. Technol. 2008;42:3316–3323. PubMed
Schwarz J., Chi X., Maenhaut W., Civiš M., Hovorka J., Smolík J. Elemental and organic carbon in atmospheric aerosols at downtown and suburban sites in Prague. Atmos. Res. 2008;90:287–302.
Schwarz J., Cusack M., Karban J., Chalupníčková E., Havránek V., Smolík J., Ždímal V. PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis. Atmos. Res. 2016;176–177:108–120.
Sharma S., Zhang M., Gao J., Zhang H., Kota S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020;728 PubMed PMC
Shi Z., Song C., Liu B., Lu G., Xu J., Van Vu T., Elliott R.J.R., Li W., Bloss W.J., Harrison R.M. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Sci. Adv. 2021;7:eabd6696. PubMed PMC
Sillanpää M., Frey A., Hillamo R., Pennanen A.S., Salonen R.O. Organic, elemental and inorganic carbon in particulate matter of six urban environments in Europe. Atmos. Chem. Phys. 2005;5:2869–2879.
Singh R.P., Kumar S., Singh A.K. Elevated black carbon concentrations and atmospheric pollution around Singrauli coal-fired thermal power plants (India) using ground and satellite data. Int. J. Environ. Res. Public Health. 2018;15:2472. PubMed PMC
Srivastava A.K., Bisht D.S., Ram K., Tiwari S. The vertical variability of black carbon observed in the atmospheric boundary layer during DACCIWA. Environ. Sci. Pollut. Res. 2014;21:8610–8619. PubMed
Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015;96:2059–2077.
Stull R.B. Springer Science & Business Media; 1988. An Introduction to Boundary Layer Meteorology, Atmospheric and Oceanographic Sciences Library 13.
Sun T., Wu C., Wu D., Liu B., Sun J.S., Mao X., Yang H., Deng T., Song L., Li M., Li Y.J., Zhou Z. Time-resolved black carbon aerosol vertical distribution measurements using a 356-m meteorological tower in Shenzhen. Theor. Appl. Climatol. 2020 doi: 10.1007/s00704-020-03168-6. DOI
Tang G., Zhang J., Zhu X., Song T., Münkel C., Hu B., Schäfer K., Liu Z., Zhang J., Wang L., Xin J., Suppan P., Wang Y. Mixing layer height and its implications for air pollution over Beijing, China. Atmos. Chem. Phys. 2016;16:2459–2475.
Tiwari S., Tunved P., Hopke P.K., Srivastava A.K., Bisht D.S., Pandey A.K. Observations of ambient concentrations of trace gases and PM10 at Patna, Central Ganga Basin during 2013-2014: a role of meteorological variables on atmospheric pollutants. Atmos. Res. 2016;180:138–149.
Turpin B.J., Saxena P., Andrews E. Measuring and simulating particulate organics in the atmosphere: problems and prospects. Atmos. Environ. 2000;34:2983–3013.
Uria-Tellaetxe I., Carslaw D.C. Conditional bivariate probability function for source identification. Environ. Model. Softw. 2014;59:1–9.
Vodička P., Schwarz J., Cusack M., Ždímal V. Detailed comparison of OC/EC aerosol at an urban and a rural Czech background site during summer and winter. Sci. Total Environ. 2015;518–519:424–433. PubMed
WHO COVID-19 Weekly Epidemiological Update. 2022. https://COVID19.who.int/ Edition 99 published 6 July 2022.
Wu C. 2017. Minimum R Squared Method (MRS) DOI
Wu C., Yu J.Z. Determination of primary combustion source organic carbon-to-elemental carbon (OC/EC) ratio using ambient OC and EC measurements: secondary OC-EC correlation minimization method. Atmos. Chem. Phys. 2016;16:5453–5465.
Wu C., Wu D., Yu J.Z. Quantifying black carbon light absorption enhancement with a novel statistical approach. Atmos. Chem. Phys. 2018;18:289.
Xie F., Lin Y.C., Ren L., Gul C., Wang J.Q., Cao F., Zhang X.X., Xie T., Wu J.Y., Zhang Y.L. Decrease of atmospheric black carbon and CO2 concentrations due to COVID-19 lockdown at the Mt. Waliguan WMO/GAW baseline station in China. Environ. Res. 2022;211 PubMed PMC
Xu K., Cui K., Young L.H., Wang Y.F., Hsieh Y.K., Wan S., Zhang J. Air quality index, indicatory air pollutants and impact of COVID-19 event on the air quality near Central China. Aerosol Air Qual. Res. 2020;20:1204–1221.
Zangari S., Hill D.T., Charette A.T., Mirowsky J.E. Air quality changes in new York City during the COVID-19 pandemic. Sci. Total Environ. 2020;742 PubMed PMC
Zhu C.-S., Cao J.J., Tsai C.J., Shen Z.X., Han Y.M., Liu S.X., Zhao Z.Z. Comparison and implications of PM2.5 carbon fractions in different environments. Sci. Total Environ. 2014;466–467:203–209. PubMed
Zíková N., Wang Y., Yang F., Li X., Tian M., Hopke P.K. On the source contribution to Beijing PM2.5 concentrations. Atmos. Environ. 2016;134:84–95.