Magnetic Superporous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Bone Tissue Engineering
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20-07015S
Grantová Agentura České Republiky
PubMed
34199994
PubMed Central
PMC8200184
DOI
10.3390/polym13111871
PII: polym13111871
Knihovny.cz E-resources
- Keywords
- SAOS-2 cells, magnetic, poly(2-hydroxyethyl methacrylate), scaffold, superporous,
- Publication type
- Journal Article MeSH
Magnetic maghemite (γ-Fe2O3) nanoparticles obtained by a coprecipitation of iron chlorides were dispersed in superporous poly(2-hydroxyethyl methacrylate) scaffolds containing continuous pores prepared by the polymerization of 2-hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA) in the presence of ammonium oxalate porogen. The scaffolds were thoroughly characterized by scanning electron microscopy (SEM), vibrating sample magnetometry, FTIR spectroscopy, and mechanical testing in terms of chemical composition, magnetization, and mechanical properties. While the SEM microscopy confirmed that the hydrogels contained communicating pores with a length of ≤2 mm and thickness of ≤400 μm, the SEM/EDX microanalysis documented the presence of γ-Fe2O3 nanoparticles in the polymer matrix. The saturation magnetization of the magnetic hydrogel reached 2.04 Am2/kg, which corresponded to 3.7 wt.% of maghemite in the scaffold; the shape of the hysteresis loop and coercivity parameters suggested the superparamagnetic nature of the hydrogel. The highest toughness and compressive modulus were observed with γ-Fe2O3-loaded PHEMA hydrogels. Finally, the cell seeding experiments with the human SAOS-2 cell line showed a rather mediocre cell colonization on the PHEMA-based hydrogel scaffolds; however, the incorporation of γ-Fe2O3 nanoparticles into the hydrogel improved the cell adhesion significantly. This could make this composite a promising material for bone tissue engineering.
Geophysical Institute CAS Boční 2 1401 141 31 Prague 4 Czech Republic
Institute of Macromolecular Chemistry CAS Heyrovského nám 2 162 06 Prague 6 Czech Republic
Institute of Physiology CAS Vídeňská 1083 142 20 Prague 4 Czech Republic
See more in PubMed
Matos A.M., Gonçalves A.I., El Haj A.J., Gomes M.E. Magnetic biomaterials and nano-instructive tools as mediators of tendon mechanotransduction. Nanoscale Adv. 2020;2:140–148. doi: 10.1039/C9NA00615J. PubMed DOI PMC
Ortolani A., Bianchi M., Mosca M., Caravelli S., Fuiano M., Marcacci M., Russo A. The prospective opportunities offered by magnetic scaffolds for bone tissue engineering: A review. Joints. 2017;4:228–235. doi: 10.11138/jts/2016.4.4.228. PubMed DOI PMC
Panseri S., Russo A., Giavaresi G., Sartori M., Veronesi F., Fini M., Salter D., Ortolani A., Strazzari A., Visani A., et al. Innovative magnetic scaffolds for orthopedic tissue engineering. J. Biomed. Mater. Res. A. 2012;100:2278–2286. doi: 10.1002/jbm.a.34167. PubMed DOI
Zhao X.H., Kim J., Cezar C.A., Huebsch N., Lee K., Bouhadir K., Mooney D.J. Active scaffolds for on-demand drug and cell delivery. Proc. Natl. Acad. Sci. USA. 2011;108:67–72. doi: 10.1073/pnas.1007862108. PubMed DOI PMC
Hu S.H., Liu T.Y., Tsai C.H., Chen S.Y. Preparation and characterization of magnetic ferroscaffolds for tissue engineering. J. Magn. Magn. Mater. 2007;310:2871–2873. doi: 10.1016/j.jmmm.2006.11.081. DOI
Wang Y.L., Li B.Q., Zhou Y., Jia D.C. Chitosan-induced synthesis of magnetite nanoparticles via iron ions assembly. Polym. Adv. Technol. 2008;19:1256–1261. doi: 10.1002/pat.1121. DOI
Liu H.X., Wang C.Y., Gao Q.X., Liu X.X., Tong Z. Magnetic hydrogels with supracolloidal structures prepared by suspension polymerization stabilized by Fe2O3 nanoparticles. Acta Biomater. 2010;6:275–281. doi: 10.1016/j.actbio.2009.06.018. PubMed DOI
Bannerman A.D., Li X.Y., Wan W.K. A “degradable” poly(vinyl alcohol) iron oxide nanoparticle hydrogel. Acta Biomater. 2017;58:376–385. doi: 10.1016/j.actbio.2017.05.018. PubMed DOI
Gao W., Wang X., Xu W. Magneto-mechanical properties of polydimethylsiloxane composites with a binary magnetic filler system. Polym. Compos. 2019;40:337–345. doi: 10.1002/pc.24656. DOI
Zhang H., Xia J.Y., Pang X.L., Zhao M., Wang B.Q., Yang L.L., Wan H.S., Wu J.B., Fu S.Z. Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering. Mater. Sci. Eng. C. 2016;73:537–543. doi: 10.1016/j.msec.2016.12.116. PubMed DOI
Horák D. Application of poly(2-hydroxyethyl methacrylate) in medicine. In: Pethrick R.A., Zaikov G.E., Horák D., editors. Polymers and Composites: Synthesis, Properties, and Applications, Polymer Yearbook. Volume 21. Nova Science Publishers; New York, NY, USA: 2007. pp. 1–33.
Kopeček J. Hydrogels from soft contact lenses and implants to self-assembled nanomaterials. J. Polym. Sci. A. 2009;47:5929–5946. doi: 10.1002/pola.23607. PubMed DOI PMC
Park S., Nam S.H., Koh W.-G. Preparation of collagen-immobilized poly(ethylene glycol)/poly(2-hydroxyethyl methacrylate) interpenetrating network hydrogels for potential application of artificial cornea. J. Appl. Polym. Sci. 2012;123:637–645. doi: 10.1002/app.34532. DOI
Hidzir N.M., Radzali N.A.M., Rahman I.A., Shamsudin S.A. Gamma irradiation-induced grafting of 2-hydroxyethyl methacrylate (HEMA) onto ePTFE for implant applications. Nucl. Eng. Technol. 2020;52:2320–2327. doi: 10.1016/j.net.2020.03.016. DOI
Passos M.F., Dias D.R.C., Bastos G.N.T., Jardini A.L., Benatti A.C.B., Dias C.G.B.T., Maciel Filho R. pHEMA hydrogels: Synthesis, kinetics and in vitro tests. J. Therm. Anal. Calorim. 2016;125:361–368. doi: 10.1007/s10973-016-5329-6. DOI
Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985;57:603–619. doi: 10.1351/pac198557040603. DOI
Park K., Chen J., Park H. Superporous hydrogel composites: A new generation of hydrogels with fast swelling kinetics, high swelling ratio and high mechanical strength. In: Ottenbrite R.M., Kim S.W., editors. Polymeric Drugs and Drug Delivery Systems. CRC Press; Boca Raton, FL, USA: 2001. pp. 145–156.
Annabi N., Nichol J.W., Zhong X., Ji C., Koshy S., Khademhosseini A., Dehghani F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. B. 2010;16:371–383. doi: 10.1089/ten.teb.2009.0639. PubMed DOI PMC
Bao G., Jiang T., Ravanbakhsh H., Reyes A., Ma Z., Strong M., Wang H., Kinsella J.M., Li J., Mongeau L. Triggered micropore-forming bioprinting of porous viscoelastic hydrogels. Mater. Horiz. 2020;7:2336–2347. doi: 10.1039/D0MH00813C. PubMed DOI PMC
Hou R., Zhang G., Du G., Zhan D., Cong Y., Cheng Y., Fu J. Magnetic nanohydroxyapatite/PVA composite hydrogels for promoted osteoblast adhesion and proliferation. Colloids Surf. B. 2013;103:318–325. PubMed
Arno M.C., Inam M., Weems A.C., Li Z., Binch A.L.A., Platt C.I., Richardson S.M., Hoyland J.A., Dove A.P., O’Reilly R.K. Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties. Nat. Commun. 2020;11:1420. doi: 10.1038/s41467-020-15206-y. PubMed DOI PMC
Darouie S., Majd S.A., Rahimi F., Hashemi E., Kabirsalmani M., Dolatshahi-Pirouz A., Arpanaei A. The fate of mesenchymal stem cells is greatly influenced by the surface chemistry of silica nanoparticles in 3D hydrogel-based culture systems. Mater. Sci. Eng. C. 2020;106:110259. doi: 10.1016/j.msec.2019.110259. PubMed DOI
Macková H., Plichta Z., Proks V., Kotelnikov I., Kučka J., Hlídková H., Horák D., Kubinová Š., Jiráková K. RGDS- and SIKVAVS-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering applications. Macromol. Biosci. 2016;16:1621–1631. doi: 10.1002/mabi.201600159. PubMed DOI
Qin L., Liu W., Cao H., Xiao G. Molecular mechanosensors in osteocytes. Bone Res. 2020;8:23. doi: 10.1038/s41413-020-0099-y. PubMed DOI PMC
Wang J.H.C., Thampatty B.P. An introductory review of cell mechanobiology. Biomech. Model Mechanobiol. 2006;5:1–16. doi: 10.1007/s10237-005-0012-z. PubMed DOI
Mokhtari-Jafari F., Amoabediny G., Dehghan M.M. Role of biomechanics in vascularization of tissue-engineered bones. J. Biomech. 2020;110:109920. doi: 10.1016/j.jbiomech.2020.109920. PubMed DOI
Valtanen R.S., Yang Y.P., Gurtner G.C., Maloney W.J., Lowenberg D.W. Synthetic bone tissue engineering graft substitutes: What is the future? Injury. 2020 doi: 10.1016/j.injury.2020.07.040. in press. PubMed DOI
Zasońska B.A., Boiko N., Horák D., Klyuchivska O., Macková H., Beneš M.J., Babič M., Trchová M., Hromádková J., Stoika R. The use of hydrophilic poly(N,N-dimethylacrylamide) for promoting engulfment of magnetic γ-Fe2O3 nanoparticles by mammalian cells. J. Biomed. Nanotechnol. 2013;9:479–491. doi: 10.1166/jbn.2013.1552. PubMed DOI
Dunlop D., Özdemir Ö. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press; Cambridge, UK: 1997.
Porosimeter Pascal 140 and Pascal 440, Instruction Manual. ThermoFinnigan; Rodano, Italy: 1996. p. 8.
Rigby S.P., Barwick D., Fletcher R.S., Riley S.N. Interpreting mercury porosimetry data for catalyst supports using semi-empirical alternatives to the Washburn equation. Appl. Catal. A. 2003;238:303–318. doi: 10.1016/S0926-860X(02)00348-4. DOI
Taktak F., Yildiz M., Sert H., Soykan C. A novel triple-responsive hydrogels based on 2-(dimethylamino) ethyl methacrylate by copolymerization with 2-(N-morpholino) ethyl methacrylate. J. Macromol. Sci. A. 2015;52:39–46. doi: 10.1080/10601325.2014.976747. DOI
Horák D., Hlídková H., Hradil J., Lapčíková M., Šlouf M. Superporous poly(2-hydroxyethyl methacrylate) based scaffolds: Preparation and characterization. Polymer. 2008;49:2046–2054. doi: 10.1016/j.polymer.2008.02.041. DOI
Li Q., Kartikowati C.W., Horie S., Ogi T., Iwaki T., Okuyama K. Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep. 2017;7:9894. doi: 10.1038/s41598-017-09897-5. PubMed DOI PMC
Salazar J.S., Perez L., de Abril O., Phuoc L.T., Ihiawakrim D., Vazquez M., Greneche J.-M., Begin-Colin S., Pourroy G. Magnetic iron oxide nanoparticles in 10-40 nm range: Composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chem. Mater. 2011;23:1379–1386. doi: 10.1021/cm103188a. DOI
Davardoostmanesh M., Hossein A., Elaheh K.G., Azadeh M., Elnaz S. Graphitic carbon nitride nanosheets prepared by electrophoretic size fractionation as an anticancer agent against human bone carcinoma. Mater. Sci. Eng. C. 2020;111:110803. doi: 10.1016/j.msec.2020.110803. PubMed DOI
Abdelrahman R.M., Abdel-Mohsen A.M., Zboncak M., Frankova J., Lepcio P., Kobera L., Steinhart M., Pavlinak D., Spotaz Z., Sklenářová R., et al. Hyaluronan biofilms reinforced with partially deacetylated chitin nanowhiskers: Extraction, fabrication, in-vitro and antibacterial properties of advanced nanocomposites. Carbohydr. Polym. 2020;235:115951. doi: 10.1016/j.carbpol.2020.115951. PubMed DOI
Çetin D., Kahraman A.S., Gümüşderelioğlu M. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering. J. Biomater. Sci. Polym. Ed. 2011;22:1157–1178. PubMed
Hanak B.W., Hsieh C.Y., Donaldson W., Browd S.R., Lau K.K.S., Shain W. Reduced cell attachment to poly(2-hydroxyethyl methacrylate)-coated ventricular catheters in vitro. J. Biomed. Mater. Res. B. 2017;106:1268–1279. doi: 10.1002/jbm.b.33915. PubMed DOI PMC
Rabe M., Verdes D., Seeger S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 2011;162:87–106. doi: 10.1016/j.cis.2010.12.007. PubMed DOI
Oexle H., Gnaiger E., Weiss G. Iron-dependent changes in cellular energy metabolism: Influence on citric acid cycle and oxidative phosphorylation. Biochim. Biophys. Acta Bioenerg. 1999;1413:99–107. doi: 10.1016/S0005-2728(99)00088-2. PubMed DOI
Yang J.-X., Tang W.-L., Wang X.-X. Superparamagnetic iron oxide nanoparticles may affect endothelial progenitor cell migration ability and adhesion capacity. Cytotherapy. 2010;12:251–259. doi: 10.3109/14653240903446910. PubMed DOI
Stancu I.C., Layrolle P., Libouban H., Filmon R., Legeay G., Cincu C., Baslé M.F., Chappard D. Preparation of macroporous poly(2-hydroxyethyl methacrylate) with interconnected porosity. J. Optoelectron. Adv. Mater. 2007;9:2125–2129.