• This record comes from PubMed

Magnetic Superporous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Bone Tissue Engineering

. 2021 Jun 04 ; 13 (11) : . [epub] 20210604

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
20-07015S Grantová Agentura České Republiky

Magnetic maghemite (γ-Fe2O3) nanoparticles obtained by a coprecipitation of iron chlorides were dispersed in superporous poly(2-hydroxyethyl methacrylate) scaffolds containing continuous pores prepared by the polymerization of 2-hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA) in the presence of ammonium oxalate porogen. The scaffolds were thoroughly characterized by scanning electron microscopy (SEM), vibrating sample magnetometry, FTIR spectroscopy, and mechanical testing in terms of chemical composition, magnetization, and mechanical properties. While the SEM microscopy confirmed that the hydrogels contained communicating pores with a length of ≤2 mm and thickness of ≤400 μm, the SEM/EDX microanalysis documented the presence of γ-Fe2O3 nanoparticles in the polymer matrix. The saturation magnetization of the magnetic hydrogel reached 2.04 Am2/kg, which corresponded to 3.7 wt.% of maghemite in the scaffold; the shape of the hysteresis loop and coercivity parameters suggested the superparamagnetic nature of the hydrogel. The highest toughness and compressive modulus were observed with γ-Fe2O3-loaded PHEMA hydrogels. Finally, the cell seeding experiments with the human SAOS-2 cell line showed a rather mediocre cell colonization on the PHEMA-based hydrogel scaffolds; however, the incorporation of γ-Fe2O3 nanoparticles into the hydrogel improved the cell adhesion significantly. This could make this composite a promising material for bone tissue engineering.

See more in PubMed

Matos A.M., Gonçalves A.I., El Haj A.J., Gomes M.E. Magnetic biomaterials and nano-instructive tools as mediators of tendon mechanotransduction. Nanoscale Adv. 2020;2:140–148. doi: 10.1039/C9NA00615J. PubMed DOI PMC

Ortolani A., Bianchi M., Mosca M., Caravelli S., Fuiano M., Marcacci M., Russo A. The prospective opportunities offered by magnetic scaffolds for bone tissue engineering: A review. Joints. 2017;4:228–235. doi: 10.11138/jts/2016.4.4.228. PubMed DOI PMC

Panseri S., Russo A., Giavaresi G., Sartori M., Veronesi F., Fini M., Salter D., Ortolani A., Strazzari A., Visani A., et al. Innovative magnetic scaffolds for orthopedic tissue engineering. J. Biomed. Mater. Res. A. 2012;100:2278–2286. doi: 10.1002/jbm.a.34167. PubMed DOI

Zhao X.H., Kim J., Cezar C.A., Huebsch N., Lee K., Bouhadir K., Mooney D.J. Active scaffolds for on-demand drug and cell delivery. Proc. Natl. Acad. Sci. USA. 2011;108:67–72. doi: 10.1073/pnas.1007862108. PubMed DOI PMC

Hu S.H., Liu T.Y., Tsai C.H., Chen S.Y. Preparation and characterization of magnetic ferroscaffolds for tissue engineering. J. Magn. Magn. Mater. 2007;310:2871–2873. doi: 10.1016/j.jmmm.2006.11.081. DOI

Wang Y.L., Li B.Q., Zhou Y., Jia D.C. Chitosan-induced synthesis of magnetite nanoparticles via iron ions assembly. Polym. Adv. Technol. 2008;19:1256–1261. doi: 10.1002/pat.1121. DOI

Liu H.X., Wang C.Y., Gao Q.X., Liu X.X., Tong Z. Magnetic hydrogels with supracolloidal structures prepared by suspension polymerization stabilized by Fe2O3 nanoparticles. Acta Biomater. 2010;6:275–281. doi: 10.1016/j.actbio.2009.06.018. PubMed DOI

Bannerman A.D., Li X.Y., Wan W.K. A “degradable” poly(vinyl alcohol) iron oxide nanoparticle hydrogel. Acta Biomater. 2017;58:376–385. doi: 10.1016/j.actbio.2017.05.018. PubMed DOI

Gao W., Wang X., Xu W. Magneto-mechanical properties of polydimethylsiloxane composites with a binary magnetic filler system. Polym. Compos. 2019;40:337–345. doi: 10.1002/pc.24656. DOI

Zhang H., Xia J.Y., Pang X.L., Zhao M., Wang B.Q., Yang L.L., Wan H.S., Wu J.B., Fu S.Z. Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering. Mater. Sci. Eng. C. 2016;73:537–543. doi: 10.1016/j.msec.2016.12.116. PubMed DOI

Horák D. Application of poly(2-hydroxyethyl methacrylate) in medicine. In: Pethrick R.A., Zaikov G.E., Horák D., editors. Polymers and Composites: Synthesis, Properties, and Applications, Polymer Yearbook. Volume 21. Nova Science Publishers; New York, NY, USA: 2007. pp. 1–33.

Kopeček J. Hydrogels from soft contact lenses and implants to self-assembled nanomaterials. J. Polym. Sci. A. 2009;47:5929–5946. doi: 10.1002/pola.23607. PubMed DOI PMC

Park S., Nam S.H., Koh W.-G. Preparation of collagen-immobilized poly(ethylene glycol)/poly(2-hydroxyethyl methacrylate) interpenetrating network hydrogels for potential application of artificial cornea. J. Appl. Polym. Sci. 2012;123:637–645. doi: 10.1002/app.34532. DOI

Hidzir N.M., Radzali N.A.M., Rahman I.A., Shamsudin S.A. Gamma irradiation-induced grafting of 2-hydroxyethyl methacrylate (HEMA) onto ePTFE for implant applications. Nucl. Eng. Technol. 2020;52:2320–2327. doi: 10.1016/j.net.2020.03.016. DOI

Passos M.F., Dias D.R.C., Bastos G.N.T., Jardini A.L., Benatti A.C.B., Dias C.G.B.T., Maciel Filho R. pHEMA hydrogels: Synthesis, kinetics and in vitro tests. J. Therm. Anal. Calorim. 2016;125:361–368. doi: 10.1007/s10973-016-5329-6. DOI

Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985;57:603–619. doi: 10.1351/pac198557040603. DOI

Park K., Chen J., Park H. Superporous hydrogel composites: A new generation of hydrogels with fast swelling kinetics, high swelling ratio and high mechanical strength. In: Ottenbrite R.M., Kim S.W., editors. Polymeric Drugs and Drug Delivery Systems. CRC Press; Boca Raton, FL, USA: 2001. pp. 145–156.

Annabi N., Nichol J.W., Zhong X., Ji C., Koshy S., Khademhosseini A., Dehghani F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. B. 2010;16:371–383. doi: 10.1089/ten.teb.2009.0639. PubMed DOI PMC

Bao G., Jiang T., Ravanbakhsh H., Reyes A., Ma Z., Strong M., Wang H., Kinsella J.M., Li J., Mongeau L. Triggered micropore-forming bioprinting of porous viscoelastic hydrogels. Mater. Horiz. 2020;7:2336–2347. doi: 10.1039/D0MH00813C. PubMed DOI PMC

Hou R., Zhang G., Du G., Zhan D., Cong Y., Cheng Y., Fu J. Magnetic nanohydroxyapatite/PVA composite hydrogels for promoted osteoblast adhesion and proliferation. Colloids Surf. B. 2013;103:318–325. PubMed

Arno M.C., Inam M., Weems A.C., Li Z., Binch A.L.A., Platt C.I., Richardson S.M., Hoyland J.A., Dove A.P., O’Reilly R.K. Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties. Nat. Commun. 2020;11:1420. doi: 10.1038/s41467-020-15206-y. PubMed DOI PMC

Darouie S., Majd S.A., Rahimi F., Hashemi E., Kabirsalmani M., Dolatshahi-Pirouz A., Arpanaei A. The fate of mesenchymal stem cells is greatly influenced by the surface chemistry of silica nanoparticles in 3D hydrogel-based culture systems. Mater. Sci. Eng. C. 2020;106:110259. doi: 10.1016/j.msec.2019.110259. PubMed DOI

Macková H., Plichta Z., Proks V., Kotelnikov I., Kučka J., Hlídková H., Horák D., Kubinová Š., Jiráková K. RGDS- and SIKVAVS-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering applications. Macromol. Biosci. 2016;16:1621–1631. doi: 10.1002/mabi.201600159. PubMed DOI

Qin L., Liu W., Cao H., Xiao G. Molecular mechanosensors in osteocytes. Bone Res. 2020;8:23. doi: 10.1038/s41413-020-0099-y. PubMed DOI PMC

Wang J.H.C., Thampatty B.P. An introductory review of cell mechanobiology. Biomech. Model Mechanobiol. 2006;5:1–16. doi: 10.1007/s10237-005-0012-z. PubMed DOI

Mokhtari-Jafari F., Amoabediny G., Dehghan M.M. Role of biomechanics in vascularization of tissue-engineered bones. J. Biomech. 2020;110:109920. doi: 10.1016/j.jbiomech.2020.109920. PubMed DOI

Valtanen R.S., Yang Y.P., Gurtner G.C., Maloney W.J., Lowenberg D.W. Synthetic bone tissue engineering graft substitutes: What is the future? Injury. 2020 doi: 10.1016/j.injury.2020.07.040. in press. PubMed DOI

Zasońska B.A., Boiko N., Horák D., Klyuchivska O., Macková H., Beneš M.J., Babič M., Trchová M., Hromádková J., Stoika R. The use of hydrophilic poly(N,N-dimethylacrylamide) for promoting engulfment of magnetic γ-Fe2O3 nanoparticles by mammalian cells. J. Biomed. Nanotechnol. 2013;9:479–491. doi: 10.1166/jbn.2013.1552. PubMed DOI

Dunlop D., Özdemir Ö. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press; Cambridge, UK: 1997.

Porosimeter Pascal 140 and Pascal 440, Instruction Manual. ThermoFinnigan; Rodano, Italy: 1996. p. 8.

Rigby S.P., Barwick D., Fletcher R.S., Riley S.N. Interpreting mercury porosimetry data for catalyst supports using semi-empirical alternatives to the Washburn equation. Appl. Catal. A. 2003;238:303–318. doi: 10.1016/S0926-860X(02)00348-4. DOI

Taktak F., Yildiz M., Sert H., Soykan C. A novel triple-responsive hydrogels based on 2-(dimethylamino) ethyl methacrylate by copolymerization with 2-(N-morpholino) ethyl methacrylate. J. Macromol. Sci. A. 2015;52:39–46. doi: 10.1080/10601325.2014.976747. DOI

Horák D., Hlídková H., Hradil J., Lapčíková M., Šlouf M. Superporous poly(2-hydroxyethyl methacrylate) based scaffolds: Preparation and characterization. Polymer. 2008;49:2046–2054. doi: 10.1016/j.polymer.2008.02.041. DOI

Li Q., Kartikowati C.W., Horie S., Ogi T., Iwaki T., Okuyama K. Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep. 2017;7:9894. doi: 10.1038/s41598-017-09897-5. PubMed DOI PMC

Salazar J.S., Perez L., de Abril O., Phuoc L.T., Ihiawakrim D., Vazquez M., Greneche J.-M., Begin-Colin S., Pourroy G. Magnetic iron oxide nanoparticles in 10-40 nm range: Composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chem. Mater. 2011;23:1379–1386. doi: 10.1021/cm103188a. DOI

Davardoostmanesh M., Hossein A., Elaheh K.G., Azadeh M., Elnaz S. Graphitic carbon nitride nanosheets prepared by electrophoretic size fractionation as an anticancer agent against human bone carcinoma. Mater. Sci. Eng. C. 2020;111:110803. doi: 10.1016/j.msec.2020.110803. PubMed DOI

Abdelrahman R.M., Abdel-Mohsen A.M., Zboncak M., Frankova J., Lepcio P., Kobera L., Steinhart M., Pavlinak D., Spotaz Z., Sklenářová R., et al. Hyaluronan biofilms reinforced with partially deacetylated chitin nanowhiskers: Extraction, fabrication, in-vitro and antibacterial properties of advanced nanocomposites. Carbohydr. Polym. 2020;235:115951. doi: 10.1016/j.carbpol.2020.115951. PubMed DOI

Çetin D., Kahraman A.S., Gümüşderelioğlu M. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering. J. Biomater. Sci. Polym. Ed. 2011;22:1157–1178. PubMed

Hanak B.W., Hsieh C.Y., Donaldson W., Browd S.R., Lau K.K.S., Shain W. Reduced cell attachment to poly(2-hydroxyethyl methacrylate)-coated ventricular catheters in vitro. J. Biomed. Mater. Res. B. 2017;106:1268–1279. doi: 10.1002/jbm.b.33915. PubMed DOI PMC

Rabe M., Verdes D., Seeger S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 2011;162:87–106. doi: 10.1016/j.cis.2010.12.007. PubMed DOI

Oexle H., Gnaiger E., Weiss G. Iron-dependent changes in cellular energy metabolism: Influence on citric acid cycle and oxidative phosphorylation. Biochim. Biophys. Acta Bioenerg. 1999;1413:99–107. doi: 10.1016/S0005-2728(99)00088-2. PubMed DOI

Yang J.-X., Tang W.-L., Wang X.-X. Superparamagnetic iron oxide nanoparticles may affect endothelial progenitor cell migration ability and adhesion capacity. Cytotherapy. 2010;12:251–259. doi: 10.3109/14653240903446910. PubMed DOI

Stancu I.C., Layrolle P., Libouban H., Filmon R., Legeay G., Cincu C., Baslé M.F., Chappard D. Preparation of macroporous poly(2-hydroxyethyl methacrylate) with interconnected porosity. J. Optoelectron. Adv. Mater. 2007;9:2125–2129.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...