Inhibition of Hsp90 Counteracts the Established Experimental Dermal Fibrosis Induced by Bleomycin
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
00023728
Ministerstvo Zdravotnictví Ceské Republiky
16-33542A
Ministerstvo Zdravotnictví Ceské Republiky
SVV 260523
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34200311
PubMed Central
PMC8226767
DOI
10.3390/biomedicines9060650
PII: biomedicines9060650
Knihovny.cz E-zdroje
- Klíčová slova
- established dermal fibrosis, heat shock protein 90, systemic sclerosis, treatment,
- Publikační typ
- časopisecké články MeSH
Our previous study demonstrated that heat shock protein 90 (Hsp90) is overexpressed in the involved skin of patients with systemic sclerosis (SSc) and in experimental dermal fibrosis. Pharmacological inhibition of Hsp90 prevented the stimulatory effects of transforming growth factor-beta on collagen synthesis and the development of dermal fibrosis in three preclinical models of SSc. In the next step of the preclinical analysis, herein, we aimed to evaluate the efficacy of an Hsp90 inhibitor, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), in the treatment of established experimental dermal fibrosis induced by bleomycin. Treatment with 17-DMAG demonstrated potent antifibrotic and anti-inflammatory properties: it decreased dermal thickening, collagen content, myofibroblast count, expression of transforming growth factor beta receptors, and pSmad3-positive cell counts, as well as leukocyte infiltration and systemic levels of crucial cytokines/chemokines involved in the pathogenesis of SSc, compared to vehicle-treated mice. 17-DMAG effectively prevented further progression and may induce regression of established bleomycin-induced dermal fibrosis to an extent comparable to nintedanib. These findings provide further evidence of the vital role of Hsp90 in the pathophysiology of SSc and characterize it as a potential target for the treatment of fibrosis with translational implications due to the availability of several Hsp90 inhibitors in clinical trials for other indications.
Zobrazit více v PubMed
Denton C.P., Khanna D. Systemic sclerosis. Lancet. 2017;390:1685–1699. doi: 10.1016/S0140-6736(17)30933-9. PubMed DOI
Stern E.P., Denton C.P. The pathogenesis of systemic sclerosis. Rheum. Dis. Clin. N. Am. 2015;41:367–382. doi: 10.1016/j.rdc.2015.04.002. PubMed DOI
Distler J.H.W., Gyorfi A.H., Ramanujam M., Whitfield M.L., Konigshoff M., Lafyatis R. Shared and distinct mechanisms of fibrosis. Nat. Rev. Rheumatol. 2019;15:705–730. doi: 10.1038/s41584-019-0322-7. PubMed DOI
Bond J.E., Ho T.Q., Selim M.A., Hunter C.L., Bowers E.V., Levinson H. Temporal spatial expression and function of non-muscle myosin ii isoforms iia and iib in scar remodeling. Lab. Investig. 2011;91:499–508. doi: 10.1038/labinvest.2010.181. PubMed DOI PMC
Van Caam A., Vonk M., van den Hoogen F., van Lent P., van der Kraan P. Unraveling ssc pathophysiology; the myofibroblast. Front. Immunol. 2018;9:2452. doi: 10.3389/fimmu.2018.02452. PubMed DOI PMC
Kendall R.T., Feghali-Bostwick C.A. Fibroblasts in fibrosis: Novel roles and mediators. Front. Pharmacol. 2014;5:123. doi: 10.3389/fphar.2014.00123. PubMed DOI PMC
Raja J., Denton C.P. Cytokines in the immunopathology of systemic sclerosis. Semin. Immunopathol. 2015;37:543–557. doi: 10.1007/s00281-015-0511-7. PubMed DOI
Distler J.H., Feghali-Bostwick C., Soare A., Asano Y., Distler O., Abraham D.J. Review: Frontiers of antifibrotic therapy in systemic sclerosis. Arthritis Rheumatol. 2017;69:257–267. doi: 10.1002/art.39865. PubMed DOI
Poudel D.R., Derk C.T. Mortality and survival in systemic sclerosis: A review of recent literature. Curr. Opin. Rheumatol. 2018;30:588–593. doi: 10.1097/BOR.0000000000000551. PubMed DOI
Schlesinger M.J. Heat shock proteins. J. Biol. Chem. 1990;265:12111–12114. doi: 10.1016/S0021-9258(19)38314-0. PubMed DOI
Santoro M.G. Heat shock factors and the control of the stress response. Biochem. Pharmacol. 2000;59:55–63. doi: 10.1016/S0006-2952(99)00299-3. PubMed DOI
Lindquist S., Craig E.A. The heat-shock proteins. Annu. Rev. Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215. PubMed DOI
Biebl M.M., Buchner J. Structure, function, and regulation of the hsp90 machinery. Cold Spring Harb. Perspect. Biol. 2019;11:a034017. doi: 10.1101/cshperspect.a034017. PubMed DOI PMC
Burrows F., Zhang H., Kamal A. Hsp90 activation and cell cycle regulation. Cell Cycle. 2004;3:1530–1536. doi: 10.4161/cc.3.12.1277. PubMed DOI
Echeverria P.C., Picard D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim. Biophys. Acta. 2010;1803:641–649. doi: 10.1016/j.bbamcr.2009.11.012. PubMed DOI
Jackson S.E. Hsp90: Structure and function. Top. Curr. Chem. 2013;328:155–240. PubMed
Li J., Buchner J. Structure, function and regulation of the hsp90 machinery. Biomed. J. 2013;36:106–117. PubMed
Mahalingam D., Swords R., Carew J.S., Nawrocki S.T., Bhalla K., Giles F.J. Targeting hsp90 for cancer therapy. Br. J. Cancer. 2009;100:1523–1529. doi: 10.1038/sj.bjc.6605066. PubMed DOI PMC
Wong D.S., Jay D.G. Emerging roles of extracellular hsp90 in cancer. Adv. Cancer Res. 2016;129:141–163. PubMed
Geller R., Taguwa S., Frydman J. Broad action of hsp90 as a host chaperone required for viral replication. Biochim. Biophys. Acta. 2012;1823:698–706. doi: 10.1016/j.bbamcr.2011.11.007. PubMed DOI PMC
Kalia S.K., Kalia L.V., McLean P.J. Molecular chaperones as rational drug targets for parkinson’s disease therapeutics. CNS Neurol. Disord. Drug Targets. 2010;9:741–753. doi: 10.2174/187152710793237386. PubMed DOI PMC
Zuehlke A.D., Moses M.A., Neckers L. Heat shock protein 90: Its inhibition and function. Philos. Trans. R Soc. Lond. B Biol. Sci. 2018;373:20160527. doi: 10.1098/rstb.2016.0527. PubMed DOI PMC
Koga F., Xu W., Karpova T.S., McNally J.G., Baron R., Neckers L. Hsp90 inhibition transiently activates src kinase and promotes src-dependent akt and erk activation. Proc. Natl. Acad. Sci. USA. 2006;103:11318–11322. doi: 10.1073/pnas.0604705103. PubMed DOI PMC
Skhirtladze C., Distler O., Dees C., Akhmetshina A., Busch N., Venalis P., Zwerina J., Spriewald B., Pileckyte M., Schett G., et al. Src kinases in systemic sclerosis: Central roles in fibroblast activation and in skin fibrosis. Arthritis Rheum. 2008;58:1475–1484. doi: 10.1002/art.23436. PubMed DOI
Wrighton K.H., Lin X., Feng X.H. Critical regulation of tgfbeta signaling by hsp90. Proc. Natl. Acad. Sci. USA. 2008;105:9244–9249. doi: 10.1073/pnas.0800163105. PubMed DOI PMC
Tomcik M., Zerr P., Pitkowski J., Palumbo-Zerr K., Avouac J., Distler O., Becvar R., Senolt L., Schett G., Distler J.H. Heat shock protein 90 (hsp90) inhibition targets canonical tgf-beta signalling to prevent fibrosis. Ann. Rheum. Dis. 2014;73:1215–1222. doi: 10.1136/annrheumdis-2012-203095. PubMed DOI
Akhmetshina A., Venalis P., Dees C., Busch N., Zwerina J., Schett G., Distler O., Distler J.H. Treatment with imatinib prevents fibrosis in different preclinical models of systemic sclerosis and induces regression of established fibrosis. Arthritis Rheum. 2009;60:219–224. doi: 10.1002/art.24186. PubMed DOI
Huang J., Beyer C., Palumbo-Zerr K., Zhang Y., Ramming A., Distler A., Gelse K., Distler O., Schett G., Wollin L., et al. Nintedanib inhibits fibroblast activation and ameliorates fibrosis in preclinical models of systemic sclerosis. Ann. Rheum. Dis. 2016;75:883–890. doi: 10.1136/annrheumdis-2014-207109. PubMed DOI
King J., Abraham D., Stratton R. Chemokines in systemic sclerosis. Immunol. Lett. 2018;195:68–75. doi: 10.1016/j.imlet.2017.12.001. PubMed DOI
Gao C., Peng Y.N., Wang H.Z., Fang S.L., Zhang M., Zhao Q., Liu J. Inhibition of heat shock protein 90 as a novel platform for the treatment of cancer. Curr. Pharm. Des. 2019;25:849–855. doi: 10.2174/1381612825666190503145944. PubMed DOI
Li L., Wang L., You Q.D., Xu X.L. Heat shock protein 90 inhibitors: An update on achievements, challenges, and future directions. J. Med. Chem. 2020;63:1798–1822. doi: 10.1021/acs.jmedchem.9b00940. PubMed DOI
Mellatyar H., Talaei S., Pilehvar-Soltanahmadi Y., Barzegar A., Akbarzadeh A., Shahabi A., Barekati-Mowahed M., Zarghami N. Targeted cancer therapy through 17-dmag as an hsp90 inhibitor: Overview and current state of the art. Biomed. Pharmacother. 2018;102:608–617. doi: 10.1016/j.biopha.2018.03.102. PubMed DOI
Sanchez J., Carter T.R., Cohen M.S., Blagg B.S.J. Old and new approaches to target the hsp90 chaperone. Curr. Cancer Drug Targets. 2020;20:253–270. doi: 10.2174/1568009619666191202101330. PubMed DOI PMC
Beyer C., Schett G., Distler O., Distler J.H. Animal models of systemic sclerosis: Prospects and limitations. Arthritis Rheum. 2010;62:2831–2844. doi: 10.1002/art.27647. PubMed DOI
Beyer C., Reich N., Schindler S.C., Akhmetshina A., Dees C., Tomcik M., Hirth-Dietrich C., von Degenfeld G., Sandner P., Distler O., et al. Stimulation of soluble guanylate cyclase reduces experimental dermal fibrosis. Ann. Rheum. Dis. 2012;71:1019–1026. doi: 10.1136/annrheumdis-2011-200862. PubMed DOI
Dees C., Zerr P., Tomcik M., Beyer C., Horn A., Akhmetshina A., Palumbo K., Reich N., Zwerina J., Sticherling M., et al. Inhibition of notch signaling prevents experimental fibrosis and induces regression of established fibrosis. Arthritis Rheum. 2011;63:1396–1404. doi: 10.1002/art.30254. PubMed DOI PMC
Dees C., Akhmetshina A., Zerr P., Reich N., Palumbo K., Horn A., Jungel A., Beyer C., Kronke G., Zwerina J., et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J. Exp. Med. 2011;208:961–972. doi: 10.1084/jem.20101629. PubMed DOI PMC
Distler J.H., Jungel A., Huber L.C., Schulze-Horsel U., Zwerina J., Gay R.E., Michel B.A., Hauser T., Schett G., Gay S., et al. Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum. 2007;56:311–322. doi: 10.1002/art.22314. PubMed DOI
Yamamoto T., Takagawa S., Katayama I., Yamazaki K., Hamazaki Y., Shinkai H., Nishioka K. Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma. J. Investig. Dermatol. 1999;112:456–462. doi: 10.1046/j.1523-1747.1999.00528.x. PubMed DOI
Lang S.A., Klein D., Moser C., Gaumann A., Glockzin G., Dahlke M.H., Dietmaier W., Bolder U., Schlitt H.J., Geissler E.K., et al. Inhibition of heat shock protein 90 impairs epidermal growth factor-mediated signaling in gastric cancer cells and reduces tumor growth and vascularization in vivo. Mol. Cancer Ther. 2007;6:1123–1132. doi: 10.1158/1535-7163.MCT-06-0628. PubMed DOI
Hertlein E., Wagner A.J., Jones J., Lin T.S., Maddocks K.J., Towns W.H., 3rd, Goettl V.M., Zhang X., Jarjoura D., Raymond C.A., et al. 17-dmag targets the nuclear factor-kappab family of proteins to induce apoptosis in chronic lymphocytic leukemia: Clinical implications of hsp90 inhibition. Blood. 2010;116:45–53. doi: 10.1182/blood-2010-01-263756. PubMed DOI PMC
Huang J., Maier C., Zhang Y., Soare A., Dees C., Beyer C., Harre U., Chen C.W., Distler O., Schett G., et al. Nintedanib inhibits macrophage activation and ameliorates vascular and fibrotic manifestations in the fra2 mouse model of systemic sclerosis. Ann. Rheum. Dis. 2017;76:1941–1948. doi: 10.1136/annrheumdis-2016-210823. PubMed DOI
Avouac J., Furnrohr B.G., Tomcik M., Palumbo K., Zerr P., Horn A., Dees C., Akhmetshina A., Beyer C., Distler O., et al. Inactivation of the transcription factor stat-4 prevents inflammation-driven fibrosis in animal models of systemic sclerosis. Arthritis Rheum. 2011;63:800–809. doi: 10.1002/art.30171. PubMed DOI
Woessner J.F., Jr. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 1961;93:440–447. doi: 10.1016/0003-9861(61)90291-0. PubMed DOI
Tomcik M., Palumbo-Zerr K., Zerr P., Sumova B., Avouac J., Dees C., Distler A., Becvar R., Distler O., Schett G., et al. Tribbles homologue 3 stimulates canonical tgf-beta signalling to regulate fibroblast activation and tissue fibrosis. Ann. Rheum. Dis. 2016;75:609–616. doi: 10.1136/annrheumdis-2014-206234. PubMed DOI
Zheng Z., Nguyen C., Zhang X., Khorasani H., Wang J.Z., Zara J.N., Chu F., Yin W., Pang S., Le A., et al. Delayed wound closure in fibromodulin-deficient mice is associated with increased tgf-beta3 signaling. J. Investig. Dermatol. 2011;131:769–778. doi: 10.1038/jid.2010.381. PubMed DOI PMC
Kropackova T., Vernerova L., Storkanova H., Horvathova V., Vokurkova M., Klein M., Oreska S., Spiritovic M., Hermankova B., Kubinova K., et al. Clusterin is upregulated in serum and muscle tissue in idiopathic inflammatory myopathies and associates with clinical disease activity and cytokine profile. Clin. Exp. Rheumatol. 2020 Epub ahead of print. PubMed
Noh H., Kim H.J., Yu M.R., Kim W.Y., Kim J., Ryu J.H., Kwon S.H., Jeon J.S., Han D.C., Ziyadeh F. Heat shock protein 90 inhibitor attenuates renal fibrosis through degradation of transforming growth factor-beta type ii receptor. Lab. Investig. 2012;92:1583–1596. doi: 10.1038/labinvest.2012.127. PubMed DOI
Prescott R.J., Freemont A.J., Jones C.J., Hoyland J., Fielding P. Sequential dermal microvascular and perivascular changes in the development of scleroderma. J. Pathol. 1992;166:255–263. doi: 10.1002/path.1711660307. PubMed DOI
Yoshizaki A., Iwata Y., Komura K., Ogawa F., Hara T., Muroi E., Takenaka M., Shimizu K., Hasegawa M., Fujimoto M., et al. Cd19 regulates skin and lung fibrosis via toll-like receptor signaling in a model of bleomycin-induced scleroderma. Am. J. Pathol. 2008;172:1650–1663. doi: 10.2353/ajpath.2008.071049. PubMed DOI PMC
Sontake V., Wang Y., Kasam R.K., Sinner D., Reddy G.B., Naren A.P., McCormack F.X., White E.S., Jegga A.G., Madala S.K. Hsp90 regulation of fibroblast activation in pulmonary fibrosis. JCI Insight. 2017;2:e91454. doi: 10.1172/jci.insight.91454. PubMed DOI PMC
Dong H., Luo L., Zou M., Huang C., Wan X., Hu Y., Le Y., Zhao H., Li W., Zou F., et al. Blockade of extracellular heat shock protein 90alpha by 1g6-d7 attenuates pulmonary fibrosis through inhibiting erk signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 2017;313:L1006–L1015. doi: 10.1152/ajplung.00489.2016. PubMed DOI
Li X., Yu H., Liang L., Bi Z., Wang Y., Gao S., Wang M., Li H., Miao Y., Deng R., et al. Myricetin ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting tgf-beta signaling via targeting hsp90beta. Biochem. Pharmacol. 2020;178:114097. doi: 10.1016/j.bcp.2020.114097. PubMed DOI
Marinova M., Solopov P., Dimitropoulou C., Colunga Biancatelli R.M.L., Catravas J.D. Post-treatment with a heat shock protein 90 inhibitor prevents chronic lung injury and pulmonary fibrosis, following acute exposure of mice to hcl. Exp. Lung Res. 2020;46:203–216. doi: 10.1080/01902148.2020.1764148. PubMed DOI
Sibinska Z., Tian X., Korfei M., Kojonazarov B., Kolb J.S., Klepetko W., Kosanovic D., Wygrecka M., Ghofrani H.A., Weissmann N., et al. Amplified canonical transforming growth factor-beta signalling via heat shock protein 90 in pulmonary fibrosis. Eur. Respir J. 2017;49:1501941. doi: 10.1183/13993003.01941-2015. PubMed DOI
Solopov P., Biancatelli R., Marinova M., Dimitropoulou C., Catravas J.D. The hsp90 inhibitor, auy-922, ameliorates the development of nitrogen mustard-induced pulmonary fibrosis and lung dysfunction in mice. Int. J. Mol. Sci. 2020;21:4740. doi: 10.3390/ijms21134740. PubMed DOI PMC
Caceres R.A., Chavez T., Maestro D., Palanca A.R., Bolado P., Madrazo F., Aires A., Cortajarena A.L., Villar A.V. Reduction of cardiac tgfbeta-mediated profibrotic events by inhibition of hsp90 with engineered protein. J. Mol. Cell Cardiol. 2018;123:75–87. doi: 10.1016/j.yjmcc.2018.08.016. PubMed DOI
Wollin L., Wex E., Pautsch A., Schnapp G., Hostettler K.E., Stowasser S., Kolb M. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur. Respir J. 2015;45:1434–1445. doi: 10.1183/09031936.00174914. PubMed DOI PMC
Distler O., Highland K.B., Gahlemann M., Azuma A., Fischer A., Mayes M.D., Raghu G., Sauter W., Girard M., Alves M., et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. N. Engl. J. Med. 2019;380:2518–2528. doi: 10.1056/NEJMoa1903076. PubMed DOI
Yamamoto T. The bleomycin-induced scleroderma model: What have we learned for scleroderma pathogenesis? Arch. Dermatol. Res. 2006;297:333–344. doi: 10.1007/s00403-005-0635-z. PubMed DOI
Dello Russo C., Polak P.E., Mercado P.R., Spagnolo A., Sharp A., Murphy P., Kamal A., Burrows F.J., Fritz L.C., Feinstein D.L. The heat-shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. J. Neurochem. 2006;99:1351–1362. doi: 10.1111/j.1471-4159.2006.04221.x. PubMed DOI
Rice J.W., Veal J.M., Fadden R.P., Barabasz A.F., Partridge J.M., Barta T.E., Dubois L.G., Huang K.H., Mabbett S.R., Silinski M.A., et al. Small molecule inhibitors of hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthritis Rheum. 2008;58:3765–3775. doi: 10.1002/art.24047. PubMed DOI
Han J.M., Kwon N.H., Lee J.Y., Jeong S.J., Jung H.J., Kim H.R., Li Z., Kim S. Identification of gp96 as a novel target for treatment of autoimmune disease in mice. PLoS ONE. 2010;5:e9792. doi: 10.1371/journal.pone.0009792. PubMed DOI PMC
Kasperkiewicz M., Muller R., Manz R., Magens M., Hammers C.M., Somlai C., Westermann J., Schmidt E., Zillikens D., Ludwig R.J., et al. Heat-shock protein 90 inhibition in autoimmunity to type vii collagen: Evidence that nonmalignant plasma cells are not therapeutic targets. Blood. 2011;117:6135–6142. doi: 10.1182/blood-2010-10-314609. PubMed DOI
Storkanova H., Oreska S., Spiritovic M., Hermankova B., Bubova K., Komarc M., Pavelka K., Vencovsky J., Dislter J., Senolt L., et al. Plasma hsp90 levels in patients with systemic sclerosis and relation to lung and skin involvement: A cross-sectional and longitudinal study. Sci. Rep. 2020;11:1. doi: 10.1038/s41598-020-79139-8. PubMed DOI PMC
Degryse A.L., Lawson W.E. Progress toward improving animal models for idiopathic pulmonary fibrosis. Am. J. Med. Sci. 2011;341:444–449. doi: 10.1097/MAJ.0b013e31821aa000. PubMed DOI PMC
Kawaguchi Y., Hara M., Wright T.M. Endogenous il-1alpha from systemic sclerosis fibroblasts induces il-6 and pdgf-a. J. Clin. Investig. 1999;103:1253–1260. doi: 10.1172/JCI4304. PubMed DOI PMC
Kawaguchi Y., McCarthy S.A., Watkins S.C., Wright T.M. Autocrine activation by interleukin 1alpha induces the fibrogenic phenotype of systemic sclerosis fibroblasts. J. Rheumatol. 2004;31:1946–1954. PubMed
Khanna D., Denton C.P., Jahreis A., van Laar J.M., Frech T.M., Anderson M.E., Baron M., Chung L., Fierlbeck G., Lakshminarayanan S., et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (fasscinate): A phase 2, randomised, controlled trial. Lancet. 2016;387:2630–2640. doi: 10.1016/S0140-6736(16)00232-4. PubMed DOI
Khanna D., Denton C.P., Lin C.J.F., van Laar J.M., Frech T.M., Anderson M.E., Baron M., Chung L., Fierlbeck G., Lakshminarayanan S., et al. Safety and efficacy of subcutaneous tocilizumab in systemic sclerosis: Results from the open-label period of a phase ii randomised controlled trial (fasscinate) Ann. Rheum. Dis. 2018;77:212–220. doi: 10.1136/annrheumdis-2017-211682. PubMed DOI PMC
Furuse S., Fujii H., Kaburagi Y., Fujimoto M., Hasegawa M., Takehara K., Sato S. Serum concentrations of the cxc chemokines interleukin 8 and growth-regulated oncogene-alpha are elevated in patients with systemic sclerosis. J. Rheumatol. 2003;30:1524–1528. PubMed
Tukaj S., Gruner D., Zillikens D., Kasperkiewicz M. Hsp90 blockade modulates bullous pemphigoid igg-induced il-8 production by keratinocytes. Cell Stress Chaperones. 2014;19:887–894. doi: 10.1007/s12192-014-0513-8. PubMed DOI PMC
Chung S.W., Lee J.H., Choi K.H., Park Y.C., Eo S.K., Rhim B.Y., Kim K. Extracellular heat shock protein 90 induces interleukin-8 in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 2009;378:444–449. doi: 10.1016/j.bbrc.2008.11.063. PubMed DOI
Yeo M., Park H.K., Lee K.M., Lee K.J., Kim J.H., Cho S.W., Hahm K.B. Blockage of hsp 90 modulates helicobacter pylori-induced il-8 productions through the inactivation of transcriptional factors of ap-1 and nf-kappab. Biochem. Biophys. Res. Commun. 2004;320:816–824. doi: 10.1016/j.bbrc.2004.05.214. PubMed DOI
Di Martino S., Amoreo C.A., Nuvoli B., Galati R., Strano S., Facciolo F., Alessandrini G., Pass H.I., Ciliberto G., Blandino G., et al. Hsp90 inhibition alters the chemotherapy-driven rearrangement of the oncogenic secretome. Oncogene. 2018;37:1369–1385. doi: 10.1038/s41388-017-0044-8. PubMed DOI
Hartman M.L., Rogut M., Mielczarek-Lewandowska A., Wozniak M., Czyz M. 17-aminogeldanamycin inhibits constitutive nuclear factor-kappa b (nf-kappab) activity in patient-derived melanoma cell lines. Int. J. Mol. Sci. 2020;21:3749. doi: 10.3390/ijms21113749. PubMed DOI PMC
Frontiers of Targeted Therapy and Predictors of Treatment Response in Systemic Sclerosis