Inhibition of Hsp90 Counteracts the Established Experimental Dermal Fibrosis Induced by Bleomycin

. 2021 Jun 07 ; 9 (6) : . [epub] 20210607

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34200311

Grantová podpora
00023728 Ministerstvo Zdravotnictví Ceské Republiky
16-33542A Ministerstvo Zdravotnictví Ceské Republiky
SVV 260523 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 34200311
PubMed Central PMC8226767
DOI 10.3390/biomedicines9060650
PII: biomedicines9060650
Knihovny.cz E-zdroje

Our previous study demonstrated that heat shock protein 90 (Hsp90) is overexpressed in the involved skin of patients with systemic sclerosis (SSc) and in experimental dermal fibrosis. Pharmacological inhibition of Hsp90 prevented the stimulatory effects of transforming growth factor-beta on collagen synthesis and the development of dermal fibrosis in three preclinical models of SSc. In the next step of the preclinical analysis, herein, we aimed to evaluate the efficacy of an Hsp90 inhibitor, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), in the treatment of established experimental dermal fibrosis induced by bleomycin. Treatment with 17-DMAG demonstrated potent antifibrotic and anti-inflammatory properties: it decreased dermal thickening, collagen content, myofibroblast count, expression of transforming growth factor beta receptors, and pSmad3-positive cell counts, as well as leukocyte infiltration and systemic levels of crucial cytokines/chemokines involved in the pathogenesis of SSc, compared to vehicle-treated mice. 17-DMAG effectively prevented further progression and may induce regression of established bleomycin-induced dermal fibrosis to an extent comparable to nintedanib. These findings provide further evidence of the vital role of Hsp90 in the pathophysiology of SSc and characterize it as a potential target for the treatment of fibrosis with translational implications due to the availability of several Hsp90 inhibitors in clinical trials for other indications.

Erratum v

PubMed

Zobrazit více v PubMed

Denton C.P., Khanna D. Systemic sclerosis. Lancet. 2017;390:1685–1699. doi: 10.1016/S0140-6736(17)30933-9. PubMed DOI

Stern E.P., Denton C.P. The pathogenesis of systemic sclerosis. Rheum. Dis. Clin. N. Am. 2015;41:367–382. doi: 10.1016/j.rdc.2015.04.002. PubMed DOI

Distler J.H.W., Gyorfi A.H., Ramanujam M., Whitfield M.L., Konigshoff M., Lafyatis R. Shared and distinct mechanisms of fibrosis. Nat. Rev. Rheumatol. 2019;15:705–730. doi: 10.1038/s41584-019-0322-7. PubMed DOI

Bond J.E., Ho T.Q., Selim M.A., Hunter C.L., Bowers E.V., Levinson H. Temporal spatial expression and function of non-muscle myosin ii isoforms iia and iib in scar remodeling. Lab. Investig. 2011;91:499–508. doi: 10.1038/labinvest.2010.181. PubMed DOI PMC

Van Caam A., Vonk M., van den Hoogen F., van Lent P., van der Kraan P. Unraveling ssc pathophysiology; the myofibroblast. Front. Immunol. 2018;9:2452. doi: 10.3389/fimmu.2018.02452. PubMed DOI PMC

Kendall R.T., Feghali-Bostwick C.A. Fibroblasts in fibrosis: Novel roles and mediators. Front. Pharmacol. 2014;5:123. doi: 10.3389/fphar.2014.00123. PubMed DOI PMC

Raja J., Denton C.P. Cytokines in the immunopathology of systemic sclerosis. Semin. Immunopathol. 2015;37:543–557. doi: 10.1007/s00281-015-0511-7. PubMed DOI

Distler J.H., Feghali-Bostwick C., Soare A., Asano Y., Distler O., Abraham D.J. Review: Frontiers of antifibrotic therapy in systemic sclerosis. Arthritis Rheumatol. 2017;69:257–267. doi: 10.1002/art.39865. PubMed DOI

Poudel D.R., Derk C.T. Mortality and survival in systemic sclerosis: A review of recent literature. Curr. Opin. Rheumatol. 2018;30:588–593. doi: 10.1097/BOR.0000000000000551. PubMed DOI

Schlesinger M.J. Heat shock proteins. J. Biol. Chem. 1990;265:12111–12114. doi: 10.1016/S0021-9258(19)38314-0. PubMed DOI

Santoro M.G. Heat shock factors and the control of the stress response. Biochem. Pharmacol. 2000;59:55–63. doi: 10.1016/S0006-2952(99)00299-3. PubMed DOI

Lindquist S., Craig E.A. The heat-shock proteins. Annu. Rev. Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215. PubMed DOI

Biebl M.M., Buchner J. Structure, function, and regulation of the hsp90 machinery. Cold Spring Harb. Perspect. Biol. 2019;11:a034017. doi: 10.1101/cshperspect.a034017. PubMed DOI PMC

Burrows F., Zhang H., Kamal A. Hsp90 activation and cell cycle regulation. Cell Cycle. 2004;3:1530–1536. doi: 10.4161/cc.3.12.1277. PubMed DOI

Echeverria P.C., Picard D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim. Biophys. Acta. 2010;1803:641–649. doi: 10.1016/j.bbamcr.2009.11.012. PubMed DOI

Jackson S.E. Hsp90: Structure and function. Top. Curr. Chem. 2013;328:155–240. PubMed

Li J., Buchner J. Structure, function and regulation of the hsp90 machinery. Biomed. J. 2013;36:106–117. PubMed

Mahalingam D., Swords R., Carew J.S., Nawrocki S.T., Bhalla K., Giles F.J. Targeting hsp90 for cancer therapy. Br. J. Cancer. 2009;100:1523–1529. doi: 10.1038/sj.bjc.6605066. PubMed DOI PMC

Wong D.S., Jay D.G. Emerging roles of extracellular hsp90 in cancer. Adv. Cancer Res. 2016;129:141–163. PubMed

Geller R., Taguwa S., Frydman J. Broad action of hsp90 as a host chaperone required for viral replication. Biochim. Biophys. Acta. 2012;1823:698–706. doi: 10.1016/j.bbamcr.2011.11.007. PubMed DOI PMC

Kalia S.K., Kalia L.V., McLean P.J. Molecular chaperones as rational drug targets for parkinson’s disease therapeutics. CNS Neurol. Disord. Drug Targets. 2010;9:741–753. doi: 10.2174/187152710793237386. PubMed DOI PMC

Zuehlke A.D., Moses M.A., Neckers L. Heat shock protein 90: Its inhibition and function. Philos. Trans. R Soc. Lond. B Biol. Sci. 2018;373:20160527. doi: 10.1098/rstb.2016.0527. PubMed DOI PMC

Koga F., Xu W., Karpova T.S., McNally J.G., Baron R., Neckers L. Hsp90 inhibition transiently activates src kinase and promotes src-dependent akt and erk activation. Proc. Natl. Acad. Sci. USA. 2006;103:11318–11322. doi: 10.1073/pnas.0604705103. PubMed DOI PMC

Skhirtladze C., Distler O., Dees C., Akhmetshina A., Busch N., Venalis P., Zwerina J., Spriewald B., Pileckyte M., Schett G., et al. Src kinases in systemic sclerosis: Central roles in fibroblast activation and in skin fibrosis. Arthritis Rheum. 2008;58:1475–1484. doi: 10.1002/art.23436. PubMed DOI

Wrighton K.H., Lin X., Feng X.H. Critical regulation of tgfbeta signaling by hsp90. Proc. Natl. Acad. Sci. USA. 2008;105:9244–9249. doi: 10.1073/pnas.0800163105. PubMed DOI PMC

Tomcik M., Zerr P., Pitkowski J., Palumbo-Zerr K., Avouac J., Distler O., Becvar R., Senolt L., Schett G., Distler J.H. Heat shock protein 90 (hsp90) inhibition targets canonical tgf-beta signalling to prevent fibrosis. Ann. Rheum. Dis. 2014;73:1215–1222. doi: 10.1136/annrheumdis-2012-203095. PubMed DOI

Akhmetshina A., Venalis P., Dees C., Busch N., Zwerina J., Schett G., Distler O., Distler J.H. Treatment with imatinib prevents fibrosis in different preclinical models of systemic sclerosis and induces regression of established fibrosis. Arthritis Rheum. 2009;60:219–224. doi: 10.1002/art.24186. PubMed DOI

Huang J., Beyer C., Palumbo-Zerr K., Zhang Y., Ramming A., Distler A., Gelse K., Distler O., Schett G., Wollin L., et al. Nintedanib inhibits fibroblast activation and ameliorates fibrosis in preclinical models of systemic sclerosis. Ann. Rheum. Dis. 2016;75:883–890. doi: 10.1136/annrheumdis-2014-207109. PubMed DOI

King J., Abraham D., Stratton R. Chemokines in systemic sclerosis. Immunol. Lett. 2018;195:68–75. doi: 10.1016/j.imlet.2017.12.001. PubMed DOI

Gao C., Peng Y.N., Wang H.Z., Fang S.L., Zhang M., Zhao Q., Liu J. Inhibition of heat shock protein 90 as a novel platform for the treatment of cancer. Curr. Pharm. Des. 2019;25:849–855. doi: 10.2174/1381612825666190503145944. PubMed DOI

Li L., Wang L., You Q.D., Xu X.L. Heat shock protein 90 inhibitors: An update on achievements, challenges, and future directions. J. Med. Chem. 2020;63:1798–1822. doi: 10.1021/acs.jmedchem.9b00940. PubMed DOI

Mellatyar H., Talaei S., Pilehvar-Soltanahmadi Y., Barzegar A., Akbarzadeh A., Shahabi A., Barekati-Mowahed M., Zarghami N. Targeted cancer therapy through 17-dmag as an hsp90 inhibitor: Overview and current state of the art. Biomed. Pharmacother. 2018;102:608–617. doi: 10.1016/j.biopha.2018.03.102. PubMed DOI

Sanchez J., Carter T.R., Cohen M.S., Blagg B.S.J. Old and new approaches to target the hsp90 chaperone. Curr. Cancer Drug Targets. 2020;20:253–270. doi: 10.2174/1568009619666191202101330. PubMed DOI PMC

Beyer C., Schett G., Distler O., Distler J.H. Animal models of systemic sclerosis: Prospects and limitations. Arthritis Rheum. 2010;62:2831–2844. doi: 10.1002/art.27647. PubMed DOI

Beyer C., Reich N., Schindler S.C., Akhmetshina A., Dees C., Tomcik M., Hirth-Dietrich C., von Degenfeld G., Sandner P., Distler O., et al. Stimulation of soluble guanylate cyclase reduces experimental dermal fibrosis. Ann. Rheum. Dis. 2012;71:1019–1026. doi: 10.1136/annrheumdis-2011-200862. PubMed DOI

Dees C., Zerr P., Tomcik M., Beyer C., Horn A., Akhmetshina A., Palumbo K., Reich N., Zwerina J., Sticherling M., et al. Inhibition of notch signaling prevents experimental fibrosis and induces regression of established fibrosis. Arthritis Rheum. 2011;63:1396–1404. doi: 10.1002/art.30254. PubMed DOI PMC

Dees C., Akhmetshina A., Zerr P., Reich N., Palumbo K., Horn A., Jungel A., Beyer C., Kronke G., Zwerina J., et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J. Exp. Med. 2011;208:961–972. doi: 10.1084/jem.20101629. PubMed DOI PMC

Distler J.H., Jungel A., Huber L.C., Schulze-Horsel U., Zwerina J., Gay R.E., Michel B.A., Hauser T., Schett G., Gay S., et al. Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum. 2007;56:311–322. doi: 10.1002/art.22314. PubMed DOI

Yamamoto T., Takagawa S., Katayama I., Yamazaki K., Hamazaki Y., Shinkai H., Nishioka K. Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma. J. Investig. Dermatol. 1999;112:456–462. doi: 10.1046/j.1523-1747.1999.00528.x. PubMed DOI

Lang S.A., Klein D., Moser C., Gaumann A., Glockzin G., Dahlke M.H., Dietmaier W., Bolder U., Schlitt H.J., Geissler E.K., et al. Inhibition of heat shock protein 90 impairs epidermal growth factor-mediated signaling in gastric cancer cells and reduces tumor growth and vascularization in vivo. Mol. Cancer Ther. 2007;6:1123–1132. doi: 10.1158/1535-7163.MCT-06-0628. PubMed DOI

Hertlein E., Wagner A.J., Jones J., Lin T.S., Maddocks K.J., Towns W.H., 3rd, Goettl V.M., Zhang X., Jarjoura D., Raymond C.A., et al. 17-dmag targets the nuclear factor-kappab family of proteins to induce apoptosis in chronic lymphocytic leukemia: Clinical implications of hsp90 inhibition. Blood. 2010;116:45–53. doi: 10.1182/blood-2010-01-263756. PubMed DOI PMC

Huang J., Maier C., Zhang Y., Soare A., Dees C., Beyer C., Harre U., Chen C.W., Distler O., Schett G., et al. Nintedanib inhibits macrophage activation and ameliorates vascular and fibrotic manifestations in the fra2 mouse model of systemic sclerosis. Ann. Rheum. Dis. 2017;76:1941–1948. doi: 10.1136/annrheumdis-2016-210823. PubMed DOI

Avouac J., Furnrohr B.G., Tomcik M., Palumbo K., Zerr P., Horn A., Dees C., Akhmetshina A., Beyer C., Distler O., et al. Inactivation of the transcription factor stat-4 prevents inflammation-driven fibrosis in animal models of systemic sclerosis. Arthritis Rheum. 2011;63:800–809. doi: 10.1002/art.30171. PubMed DOI

Woessner J.F., Jr. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 1961;93:440–447. doi: 10.1016/0003-9861(61)90291-0. PubMed DOI

Tomcik M., Palumbo-Zerr K., Zerr P., Sumova B., Avouac J., Dees C., Distler A., Becvar R., Distler O., Schett G., et al. Tribbles homologue 3 stimulates canonical tgf-beta signalling to regulate fibroblast activation and tissue fibrosis. Ann. Rheum. Dis. 2016;75:609–616. doi: 10.1136/annrheumdis-2014-206234. PubMed DOI

Zheng Z., Nguyen C., Zhang X., Khorasani H., Wang J.Z., Zara J.N., Chu F., Yin W., Pang S., Le A., et al. Delayed wound closure in fibromodulin-deficient mice is associated with increased tgf-beta3 signaling. J. Investig. Dermatol. 2011;131:769–778. doi: 10.1038/jid.2010.381. PubMed DOI PMC

Kropackova T., Vernerova L., Storkanova H., Horvathova V., Vokurkova M., Klein M., Oreska S., Spiritovic M., Hermankova B., Kubinova K., et al. Clusterin is upregulated in serum and muscle tissue in idiopathic inflammatory myopathies and associates with clinical disease activity and cytokine profile. Clin. Exp. Rheumatol. 2020 Epub ahead of print. PubMed

Noh H., Kim H.J., Yu M.R., Kim W.Y., Kim J., Ryu J.H., Kwon S.H., Jeon J.S., Han D.C., Ziyadeh F. Heat shock protein 90 inhibitor attenuates renal fibrosis through degradation of transforming growth factor-beta type ii receptor. Lab. Investig. 2012;92:1583–1596. doi: 10.1038/labinvest.2012.127. PubMed DOI

Prescott R.J., Freemont A.J., Jones C.J., Hoyland J., Fielding P. Sequential dermal microvascular and perivascular changes in the development of scleroderma. J. Pathol. 1992;166:255–263. doi: 10.1002/path.1711660307. PubMed DOI

Yoshizaki A., Iwata Y., Komura K., Ogawa F., Hara T., Muroi E., Takenaka M., Shimizu K., Hasegawa M., Fujimoto M., et al. Cd19 regulates skin and lung fibrosis via toll-like receptor signaling in a model of bleomycin-induced scleroderma. Am. J. Pathol. 2008;172:1650–1663. doi: 10.2353/ajpath.2008.071049. PubMed DOI PMC

Sontake V., Wang Y., Kasam R.K., Sinner D., Reddy G.B., Naren A.P., McCormack F.X., White E.S., Jegga A.G., Madala S.K. Hsp90 regulation of fibroblast activation in pulmonary fibrosis. JCI Insight. 2017;2:e91454. doi: 10.1172/jci.insight.91454. PubMed DOI PMC

Dong H., Luo L., Zou M., Huang C., Wan X., Hu Y., Le Y., Zhao H., Li W., Zou F., et al. Blockade of extracellular heat shock protein 90alpha by 1g6-d7 attenuates pulmonary fibrosis through inhibiting erk signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 2017;313:L1006–L1015. doi: 10.1152/ajplung.00489.2016. PubMed DOI

Li X., Yu H., Liang L., Bi Z., Wang Y., Gao S., Wang M., Li H., Miao Y., Deng R., et al. Myricetin ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting tgf-beta signaling via targeting hsp90beta. Biochem. Pharmacol. 2020;178:114097. doi: 10.1016/j.bcp.2020.114097. PubMed DOI

Marinova M., Solopov P., Dimitropoulou C., Colunga Biancatelli R.M.L., Catravas J.D. Post-treatment with a heat shock protein 90 inhibitor prevents chronic lung injury and pulmonary fibrosis, following acute exposure of mice to hcl. Exp. Lung Res. 2020;46:203–216. doi: 10.1080/01902148.2020.1764148. PubMed DOI

Sibinska Z., Tian X., Korfei M., Kojonazarov B., Kolb J.S., Klepetko W., Kosanovic D., Wygrecka M., Ghofrani H.A., Weissmann N., et al. Amplified canonical transforming growth factor-beta signalling via heat shock protein 90 in pulmonary fibrosis. Eur. Respir J. 2017;49:1501941. doi: 10.1183/13993003.01941-2015. PubMed DOI

Solopov P., Biancatelli R., Marinova M., Dimitropoulou C., Catravas J.D. The hsp90 inhibitor, auy-922, ameliorates the development of nitrogen mustard-induced pulmonary fibrosis and lung dysfunction in mice. Int. J. Mol. Sci. 2020;21:4740. doi: 10.3390/ijms21134740. PubMed DOI PMC

Caceres R.A., Chavez T., Maestro D., Palanca A.R., Bolado P., Madrazo F., Aires A., Cortajarena A.L., Villar A.V. Reduction of cardiac tgfbeta-mediated profibrotic events by inhibition of hsp90 with engineered protein. J. Mol. Cell Cardiol. 2018;123:75–87. doi: 10.1016/j.yjmcc.2018.08.016. PubMed DOI

Wollin L., Wex E., Pautsch A., Schnapp G., Hostettler K.E., Stowasser S., Kolb M. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur. Respir J. 2015;45:1434–1445. doi: 10.1183/09031936.00174914. PubMed DOI PMC

Distler O., Highland K.B., Gahlemann M., Azuma A., Fischer A., Mayes M.D., Raghu G., Sauter W., Girard M., Alves M., et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. N. Engl. J. Med. 2019;380:2518–2528. doi: 10.1056/NEJMoa1903076. PubMed DOI

Yamamoto T. The bleomycin-induced scleroderma model: What have we learned for scleroderma pathogenesis? Arch. Dermatol. Res. 2006;297:333–344. doi: 10.1007/s00403-005-0635-z. PubMed DOI

Dello Russo C., Polak P.E., Mercado P.R., Spagnolo A., Sharp A., Murphy P., Kamal A., Burrows F.J., Fritz L.C., Feinstein D.L. The heat-shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. J. Neurochem. 2006;99:1351–1362. doi: 10.1111/j.1471-4159.2006.04221.x. PubMed DOI

Rice J.W., Veal J.M., Fadden R.P., Barabasz A.F., Partridge J.M., Barta T.E., Dubois L.G., Huang K.H., Mabbett S.R., Silinski M.A., et al. Small molecule inhibitors of hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthritis Rheum. 2008;58:3765–3775. doi: 10.1002/art.24047. PubMed DOI

Han J.M., Kwon N.H., Lee J.Y., Jeong S.J., Jung H.J., Kim H.R., Li Z., Kim S. Identification of gp96 as a novel target for treatment of autoimmune disease in mice. PLoS ONE. 2010;5:e9792. doi: 10.1371/journal.pone.0009792. PubMed DOI PMC

Kasperkiewicz M., Muller R., Manz R., Magens M., Hammers C.M., Somlai C., Westermann J., Schmidt E., Zillikens D., Ludwig R.J., et al. Heat-shock protein 90 inhibition in autoimmunity to type vii collagen: Evidence that nonmalignant plasma cells are not therapeutic targets. Blood. 2011;117:6135–6142. doi: 10.1182/blood-2010-10-314609. PubMed DOI

Storkanova H., Oreska S., Spiritovic M., Hermankova B., Bubova K., Komarc M., Pavelka K., Vencovsky J., Dislter J., Senolt L., et al. Plasma hsp90 levels in patients with systemic sclerosis and relation to lung and skin involvement: A cross-sectional and longitudinal study. Sci. Rep. 2020;11:1. doi: 10.1038/s41598-020-79139-8. PubMed DOI PMC

Degryse A.L., Lawson W.E. Progress toward improving animal models for idiopathic pulmonary fibrosis. Am. J. Med. Sci. 2011;341:444–449. doi: 10.1097/MAJ.0b013e31821aa000. PubMed DOI PMC

Kawaguchi Y., Hara M., Wright T.M. Endogenous il-1alpha from systemic sclerosis fibroblasts induces il-6 and pdgf-a. J. Clin. Investig. 1999;103:1253–1260. doi: 10.1172/JCI4304. PubMed DOI PMC

Kawaguchi Y., McCarthy S.A., Watkins S.C., Wright T.M. Autocrine activation by interleukin 1alpha induces the fibrogenic phenotype of systemic sclerosis fibroblasts. J. Rheumatol. 2004;31:1946–1954. PubMed

Khanna D., Denton C.P., Jahreis A., van Laar J.M., Frech T.M., Anderson M.E., Baron M., Chung L., Fierlbeck G., Lakshminarayanan S., et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (fasscinate): A phase 2, randomised, controlled trial. Lancet. 2016;387:2630–2640. doi: 10.1016/S0140-6736(16)00232-4. PubMed DOI

Khanna D., Denton C.P., Lin C.J.F., van Laar J.M., Frech T.M., Anderson M.E., Baron M., Chung L., Fierlbeck G., Lakshminarayanan S., et al. Safety and efficacy of subcutaneous tocilizumab in systemic sclerosis: Results from the open-label period of a phase ii randomised controlled trial (fasscinate) Ann. Rheum. Dis. 2018;77:212–220. doi: 10.1136/annrheumdis-2017-211682. PubMed DOI PMC

Furuse S., Fujii H., Kaburagi Y., Fujimoto M., Hasegawa M., Takehara K., Sato S. Serum concentrations of the cxc chemokines interleukin 8 and growth-regulated oncogene-alpha are elevated in patients with systemic sclerosis. J. Rheumatol. 2003;30:1524–1528. PubMed

Tukaj S., Gruner D., Zillikens D., Kasperkiewicz M. Hsp90 blockade modulates bullous pemphigoid igg-induced il-8 production by keratinocytes. Cell Stress Chaperones. 2014;19:887–894. doi: 10.1007/s12192-014-0513-8. PubMed DOI PMC

Chung S.W., Lee J.H., Choi K.H., Park Y.C., Eo S.K., Rhim B.Y., Kim K. Extracellular heat shock protein 90 induces interleukin-8 in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 2009;378:444–449. doi: 10.1016/j.bbrc.2008.11.063. PubMed DOI

Yeo M., Park H.K., Lee K.M., Lee K.J., Kim J.H., Cho S.W., Hahm K.B. Blockage of hsp 90 modulates helicobacter pylori-induced il-8 productions through the inactivation of transcriptional factors of ap-1 and nf-kappab. Biochem. Biophys. Res. Commun. 2004;320:816–824. doi: 10.1016/j.bbrc.2004.05.214. PubMed DOI

Di Martino S., Amoreo C.A., Nuvoli B., Galati R., Strano S., Facciolo F., Alessandrini G., Pass H.I., Ciliberto G., Blandino G., et al. Hsp90 inhibition alters the chemotherapy-driven rearrangement of the oncogenic secretome. Oncogene. 2018;37:1369–1385. doi: 10.1038/s41388-017-0044-8. PubMed DOI

Hartman M.L., Rogut M., Mielczarek-Lewandowska A., Wozniak M., Czyz M. 17-aminogeldanamycin inhibits constitutive nuclear factor-kappa b (nf-kappab) activity in patient-derived melanoma cell lines. Int. J. Mol. Sci. 2020;21:3749. doi: 10.3390/ijms21113749. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...