Plasma Hsp90 levels in patients with systemic sclerosis and relation to lung and skin involvement: a cross-sectional and longitudinal study

. 2021 Jan 07 ; 11 (1) : 1. [epub] 20210107

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33414495
Odkazy

PubMed 33414495
PubMed Central PMC7791137
DOI 10.1038/s41598-020-79139-8
PII: 10.1038/s41598-020-79139-8
Knihovny.cz E-zdroje

Our previous study demonstrated increased expression of Heat shock protein (Hsp) 90 in the skin of patients with systemic sclerosis (SSc). We aimed to evaluate plasma Hsp90 in SSc and characterize its association with SSc-related features. Ninety-two SSc patients and 92 age-/sex-matched healthy controls were recruited for the cross-sectional analysis. The longitudinal analysis comprised 30 patients with SSc associated interstitial lung disease (ILD) routinely treated with cyclophosphamide. Hsp90 was increased in SSc compared to healthy controls. Hsp90 correlated positively with C-reactive protein and negatively with pulmonary function tests: forced vital capacity and diffusing capacity for carbon monoxide (DLCO). In patients with diffuse cutaneous (dc) SSc, Hsp90 positively correlated with the modified Rodnan skin score. In SSc-ILD patients treated with cyclophosphamide, no differences in Hsp90 were found between baseline and after 1, 6, or 12 months of therapy. However, baseline Hsp90 predicts the 12-month change in DLCO. This study shows that Hsp90 plasma levels are increased in SSc patients compared to age-/sex-matched healthy controls. Elevated Hsp90 in SSc is associated with increased inflammatory activity, worse lung functions, and in dcSSc, with the extent of skin involvement. Baseline plasma Hsp90 predicts the 12-month change in DLCO in SSc-ILD patients treated with cyclophosphamide.

Zobrazit více v PubMed

Denton CP, Khanna D. Systemic sclerosis. Lancet. 2017;390:1685–1699. doi: 10.1016/S0140-6736(17)30933-9. PubMed DOI

Distler JHW, Györfi AH, Ramanujam M, Whitfield ML, Königshoff M, Lafyatis R. Shared and distinct mechanisms of fibrosis. Nat. Rev. Rheumatol. 2019;15:705–730. doi: 10.1038/s41584-019-0322-7. PubMed DOI

Denton CP, Wells AU, Coghlan JG. Major lung complications of systemic sclerosis. Nat. Rev. Rheumatol. 2018;14:511–527. doi: 10.1038/s41584-018-0062-0. PubMed DOI

Khanna D, Tashkin DP, Denton CP, Renzoni EA, Desai SR, Varga J. Etiology, risk factors, and biomarkers in systemic sclerosis with interstitial lung disease. Am. J. Respir. Crit. Care. Med. 2020;201:650–660. doi: 10.1164/rccm.201903-0563CI. PubMed DOI PMC

Perelas A, Silver RM, Arrossi AV, Highland KB. Systemic sclerosis-associated interstitial lung disease. Lancet. Respir. Med. 2020;8:304–320. doi: 10.1016/S2213-2600(19)30480-1. PubMed DOI

Elhai M, Avouac J, Allanore Y. Circulating lung biomarkers in idiopathic lung fibrosis and interstitial lung diseases associated with connective tissue diseases: Where do we stand? Semin. Arthritis. Rheum. 2020 doi: 10.1016/j.semarthrit.2020.01.006. PubMed DOI

Distler JH, Feghali-Bostwick C, Soare A, Asano Y, Distler O, Abraham DJ. Review: Frontiers of antifibrotic therapy in systemic sclerosis. Arthritis. Rheumatol. 2017;69:257–267. doi: 10.1002/art.39865. PubMed DOI

Schlesinger MJ. Heat shock proteins. J. Biol. Chem. 1990;256:12111–12114. PubMed

Santoro MG. Heat shock factors and the control of the stress response. Biochem. Pharmacol. 2000;59:55–63. doi: 10.1016/S0006-2952(99)00299-3. PubMed DOI

Guo J, Chang C, Li W. The role of secreted heat shock protein-90 (Hsp90) in wound healing—How could it shape future therapeutics? Expert Rev. Proteomics. 2017;14:665–675. doi: 10.1080/14789450.2017.1355244. PubMed DOI PMC

Lindquist S, Craig EA. The heat-shock proteins. Annu. Rev. Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215. PubMed DOI

Burrows F, Zhang H, Kamal A. Hsp90 activation and cell cycle regulation. Cell Cycle. 2004;3:1530–1536. doi: 10.4161/cc.3.12.1277. PubMed DOI

Echeverria PC, Picard D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim. Biophys. Acta. Mol. Cell. Res. 2010;1803:641–649. doi: 10.1016/j.bbamcr.2009.11.012. PubMed DOI

Pearl LH, Prodromou C. Structure and in vivo function of Hsp90. Curr. Opin. Struct. Biol. 2000;10:46–51. doi: 10.1016/S0959-440X(99)00047-0. PubMed DOI

McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell. 2007;131:121–135. doi: 10.1016/j.cell.2007.07.036. PubMed DOI

Zuehlke AD, Moses MA, Neckers L. Heat shock protein 90: Its inhibition and function. Philos. Trans. R. Soc. B. Biol. Sci. 2018;373:20160527. doi: 10.1098/rstb.2016.0527. PubMed DOI PMC

Tsan MF, Gao B. Cytokine function of heat shock proteins. AJP Cell. Physiol. 2004;286:C739–744. doi: 10.1152/ajpcell.00364.2003. PubMed DOI

Bohonowych JE, Hance MW, Nolan KD, Defee M, Parsons CH, Isaacs JS. Extracellular Hsp90 mediates an NF-κB dependent inflammatory stromal program: Implications for the prostate tumor microenvironment. Prostate. 2014;74:395–407. doi: 10.1002/pros.22761. PubMed DOI PMC

Chung SW, et al. Extracellular heat shock protein 90 induces interleukin-8 in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 2009;378:444–449. doi: 10.1016/j.bbrc.2008.11.063. PubMed DOI

Beyer C, Distler JHW. Tyrosine kinase signaling in fibrotic disorders. Biochim. Biophys. Acta. Mol. Basis. Dis. 2013;1832:897–904. doi: 10.1016/j.bbadis.2012.06.008. PubMed DOI

Koga F, Xu W, Karpova TS, McNally JG, Baron R, Neckers L. Hsp90 inhibition transiently activates Src kinase and promotes Src-dependent Akt and Erk activation. Proc. Natl. Acad. Sci. 2006;103:11318–11322. doi: 10.1073/pnas.0604705103. PubMed DOI PMC

Skhirtladze C, et al. Src kinases in systemic sclerosis: Central roles in fibroblast activation and in skin fibrosis. Arthriti. Rheum. 2008;58:1475–1484. doi: 10.1002/art.23436. PubMed DOI

Wrighton KH, Lin X, Feng XH. Critical regulation of TGFbeta signaling by Hsp90. Proc. Natl. Acad. Sci. USA. 2008;105:9244–9249. doi: 10.1073/pnas.0800163105. PubMed DOI PMC

Tomcik M, et al. Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-β signalling to prevent fibrosis. Ann. Rheum. Dis. 2014;73:1215–1222. doi: 10.1136/annrheumdis-2012-203095. PubMed DOI

Gao C, et al. Inhibition of heat shock protein 90 as a novel platform for the treatment of cancer. Curr. Pharm. Des. 2019;25:849–855. doi: 10.2174/1381612825666190503145944. PubMed DOI

Norton PM, Isenberg DA, Latchman DS. Elevated levels of the 90 kd heat shock protein in a proportion of SLE patients with active disease. J. Autoimmun. 1989;2:187–195. doi: 10.1016/0896-8411(89)90154-6. PubMed DOI

Bubova, K. et al. Plasma Hsp90 levels in patients with spondyloarthritis and their relation to structural changes: A cross-sectional study. Biomark. Med.10.2217/bmm-2020-0360. PubMed

Storkanova H, et al. Increased Hsp90 in muscle tissue and plasma associates with disease activity and skeletal muscle involvement in patients with idiopathic inflammatory myopathies. Ann. Rheum. Dis. 2020;79(supplement 1):410.

Ocaña GJ, et al. Inflammatory stress of pancreatic beta cells drives release of extracellular heat-shock protein 90α. Immunology. 2017;151:198–210. doi: 10.1111/imm.12723. PubMed DOI PMC

Tas F, Bilgin E, Erturk K, Duranyildiz D. Clinical significance of circulating serum cellular heat shock protein 90 (HSP90) level in patients with cutaneous malignant melanoma. Asian. Pacific. J. Cancer Prev. 2017;18:599–601. PubMed PMC

Fu Y, et al. Plasma heat shock protein 90alpha as a biomarker for the diagnosis of liver cancer: An official, large-scale, and multicenter clinical trial. E. Bio. Medicine. 2017;24:56–63. PubMed PMC

Shi Y, et al. Plasma levels of heat shock protein 90 alpha associated with lung cancer development and treatment responses. Clin. Cancer. Res. 2014;20:6016–6022. doi: 10.1158/1078-0432.CCR-14-0174. PubMed DOI

Muangchan C, Pope JE. The significance of interleukin-6 and C-reactive protein in systemic sclerosis: A systematic literature review. Clin. Exp. Rheumatol. 2013;31:122–134. PubMed

Sontake V, et al. Hsp90 regulation of fibroblast activation in pulmonary fibrosis. JCI Insight. 2017;2:e91454. doi: 10.1172/jci.insight.91454. PubMed DOI PMC

Koh RY, et al. Inhibition of transforming growth factor-β via the activin receptor-like kinase-5 inhibitor attenuates pulmonary fibrosis. Mol. Med. Rep. 2015;11:3808–3813. doi: 10.3892/mmr.2015.3193. PubMed DOI

O’Reilly S, Cant R, Ciechomska M, Van Laar JM. Interleukin-6: A new therapeutic target in systemic sclerosis? Clin. Transl. Immunol. 2013;2:e4. doi: 10.1038/cti.2013.2. PubMed DOI PMC

Khanna D, et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): A phase 2, randomised, controlled trial. Lancet. 2016;387:2630–2640. doi: 10.1016/S0140-6736(16)00232-4. PubMed DOI

Narváez J, Lluch J, Alegre Sancho JJ, Molina-Molina M, Nolla JM, Castellví I. Effectiveness and safety of tocilizumab for the treatment of refractory systemic sclerosis associated interstitial lung disease: A case series. Ann. Rheum. Dis. 2019;78:e123. doi: 10.1136/annrheumdis-2018-214449. PubMed DOI

O’Reilly S, Ciechomska M, Cant R, Van Laar JM. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via gremlin protein. J. Biol. Chem. 2014;289:9952–9960. doi: 10.1074/jbc.M113.545822. PubMed DOI PMC

Sato N, et al. Involvement of heat-shock protein 90 in the interleukin-6-mediated signaling pathway through STAT3. Biochem. Biophys. Res. Commun. 2003;300:847–852. doi: 10.1016/S0006-291X(02)02941-8. PubMed DOI

Nannini C, West CP, Erwin PJ, Matteson EL. Effects of cyclophosphamide on pulmonary function in patients with scleroderma and interstitial lung disease: A systematic review and meta-analysis of randomized controlled trials and observational prospective cohort studies. Arthritis Res. Ther. 2008;10:R124. doi: 10.1186/ar2534. PubMed DOI PMC

Chakraborty A, Boel NM-E, Edkins AL. HSP90 interacts with the fibronectin N-terminal domains and increases matrix formation. Cells. 2020;9:272. doi: 10.3390/cells9020272. PubMed DOI PMC

Van Den Hoogen F, et al. 2013 classification criteria for systemic sclerosis: An American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum. 2013;65:2737–2747. doi: 10.1002/art.38098. PubMed DOI PMC

Silver RM, Miller KS, Kinsella MB, Smith EA, Schabel SI. Evaluation and management of scleroderma lung disease using bronchoalveolar lavage. Am. J. Med. 1990;88:470–476. doi: 10.1016/0002-9343(90)90425-D. PubMed DOI

Bombardieri S, Medsger TA, Jr, Silman AJ, Valentini G. The assessment of the patient with systemic sclerosis. Introduction. Clin. Exp. Rheumatol. 2003;21:S2–S4. PubMed

Clements PJ, et al. Skin thickness score in systemic sclerosis: An assessment of interobserver variability in 3 independent studies. J. Rheumatol. 1993;20:1892–1896. PubMed

Valentini G, Silman AJ, Veale D. Assessment of disease activity. Clin. Exp. Rheumatol. 2003;21:S39–41. PubMed

Crapo O, et al. Standardization of spirometry, 1994 update. American Thoracic Society. Am. J. Respir. Crit. Care. Med. 1995;152:1107–1136. doi: 10.1164/ajrccm.152.3.7663792. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace