Hsp90 Levels in Idiopathic Inflammatory Myopathies and Their Association With Muscle Involvement and Disease Activity: A Cross-Sectional and Longitudinal Study

. 2022 ; 13 () : 811045. [epub] 20220128

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35154129

BACKGROUND: Heat shock proteins (Hsp) are chaperones playing essential roles in skeletal muscle physiology, adaptation to exercise or stress, and activation of inflammatory cells. We aimed to assess Hsp90 in patients with idiopathic inflammatory myopathies (IIM) and its association with IIM-related features. METHODS: Hsp90 plasma levels were analyzed in a cross-sectional cohort (277 IIM patients and 157 healthy controls [HC]) and two longitudinal cohorts to assess the effect of standard-of-care pharmacotherapy (n=39 in early disease and n=23 in established disease). Hsp90 and selected cytokines/chemokines were measured by commercially available ELISA and human Cytokine 27-plex Assay. RESULTS: Hsp90 plasma levels were increased in IIM patients compared to HC (median [IQR]: 20.2 [14.3-40.1] vs 9.8 [7.5-13.8] ng/mL, p<0.0001). Elevated Hsp90 was found in IIM patients with pulmonary, cardiac, esophageal, and skeletal muscle involvement, with higher disease activity or damage, and with elevated muscle enzymes and crucial cytokines/chemokines involved in the pathogenesis of myositis (p<0.05 for all). Plasma Hsp90 decreased upon pharmacological treatment in both patients with early and established disease. Notably, Hsp90 plasma levels were slightly superior to traditional biomarkers, such as C-reactive protein and creatine kinase, in differentiating IIM from HC, and IIM patients with cardiac involvement and interstitial lung disease from those without these manifestations. CONCLUSIONS: Hsp90 is increased systemically in patients with IIM. Plasma Hsp90 could become an attractive soluble biomarker of disease activity and damage and a potential predictor of treatment response in IIM.

Zobrazit více v PubMed

Vencovsky J, Alexanderson H, Lundberg IE. Idiopathic Inflammatory Myopathies. Rheum Dis Clin North Am (2019) 45:569–81. doi: 10.1016/j.rdc.2019.07.006 PubMed DOI

Lundberg IE, Miller FW, Tjarnlund A, Bottai M. Diagnosis and Classification of Idiopathic Inflammatory Myopathies. J Intern Med (2016) 280:39–51. doi: 10.1111/joim.12524 PubMed DOI PMC

Miller FW, Lamb JA, Schmidt J, Nagaraju K. Risk Factors and Disease Mechanisms in Myositis. Nat Rev Rheumatol (2018) 14:255–68. doi: 10.1038/nrrheum.2018.48 PubMed DOI PMC

Rayavarapu S, Coley W, Nagaraju K. Endoplasmic Reticulum Stress in Skeletal Muscle Homeostasis and Disease. Curr Rheumatol Rep (2012) 14:238–43. doi: 10.1007/s11926-012-0247-5 PubMed DOI PMC

Ahmed M, Machado PM, Miller A, Spicer C, Herbelin L, He J, et al. . Targeting Protein Homeostasis in Sporadic Inclusion Body Myositis. Sci Transl Med (2016) 8:331ra41. doi: 10.1126/scitranslmed.aad4583 PubMed DOI PMC

Li J, Buchner J. Structure, Function and Regulation of the Hsp90 Machinery. BioMed J (2013) 36:106–17. doi: 10.4103/2319-4170.113230 PubMed DOI

Jackson SE. Hsp90: Structure and Function. Top Curr Chem (2013) 328:155–240. doi: 10.1007/128_2012_356 PubMed DOI

Mahalingam D, Swords R, Carew JS, Nawrocki ST, Bhalla K, Giles FJ. Targeting HSP90 for Cancer Therapy. Br J Cancer (2009) 100:1523–9. doi: 10.1038/sj.bjc.6605066 PubMed DOI PMC

Geller R, Taguwa S, Frydman J. Broad Action of Hsp90 as a Host Chaperone Required for Viral Replication. Biochim Biophys Acta (2012) 1823:698–706. doi: 10.1016/j.bbamcr.2011.11.007 PubMed DOI PMC

Kalia SK, Kalia LV, McLean PJ. Molecular Chaperones as Rational Drug Targets for Parkinson's Disease Therapeutics. CNS Neurol Disord Drug Targets (2010) 9:741–53. doi: 10.2174/187152710793237386 PubMed DOI PMC

Procházková L, Hulejová H, Němec P, Šenolt L. Circulating Heat Shock Protein 90 (HSP90) in Patients With Rheumatoid Arthritis and Axial Spondylarthritis. Ces Revmatol (2013) 21:164–9.

Erkeller-Yuksel FM, Isenberg DA, Dhillon VB, Latchman DS, Lydyard PM. Surface Expression of Heat Shock Protein 90 by Blood Mononuclear Cells From Patients With Systemic Lupus Erythematosus. J Autoimmun (1992) 5:803–14. doi: 10.1016/0896-8411(92)90194-u PubMed DOI

Tomcik M, Zerr P, Pitkowski J, Palumbo-Zerr K, Avouac J, Distler O, et al. . Heat Shock Protein 90 (Hsp90) Inhibition Targets Canonical TGF-Beta Signalling to Prevent Fibrosis. Ann Rheum Dis (2014) 73:1215–22. doi: 10.1136/annrheumdis-2012-203095 PubMed DOI

Storkanova H, Storkanova L, Navratilova A, Becvar V, Hulejova H, Oreska S, et al. . Inhibition of Hsp90 Counteracts the Established Experimental Dermal Fibrosis Induced by Bleomycin. Biomedicines (2021) 9:650. doi: 10.3390/biomedicines9060650 PubMed DOI PMC

Storkanova H, Oreska S, Spiritovic M, Hermankova B, Bubova K, Komarc M, et al. . Plasma Hsp90 Levels in Patients With Systemic Sclerosis and Relation to Lung and Skin Involvement: A Cross-Sectional and Longitudinal Study. Sci Rep (2021) 11:1. doi: 10.1038/s41598-020-79139-8 PubMed DOI PMC

Bubova K, Storkanova H, Oreska S, Spiritovic M, Hermankova B, Mintalova K, et al. . Plasma Heat Shock Protein 90 Levels in Patients With Spondyloarthritis and Their Relation to Structural Changes: A Cross-Sectional Study. biomark Med (2021) 15:5–13. doi: 10.2217/bmm-2020-0360 PubMed DOI

De Paepe B, Creus KK, Martin JJ, Weis J, De Bleecker JL. A Dual Role for HSP90 and HSP70 in the Inflammatory Myopathies: From Muscle Fiber Protection to Active Invasion by Macrophages. Ann N Y Acad Sci (2009) 1173:463–9. doi: 10.1111/j.1749-6632.2009.04812.x PubMed DOI

Paepe BD, Creus KK, Weis J, Bleecker JL. Heat Shock Protein Families 70 and 90 in Duchenne Muscular Dystrophy and Inflammatory Myopathy: Balancing Muscle Protection and Destruction. Neuromuscul Disord (2012) 22:26–33. doi: 10.1016/j.nmd.2011.07.007 PubMed DOI

De Paepe B, De Bleecker JL. The Nonnecrotic Invaded Muscle Fibers of Polymyositis and Sporadic Inclusion Body Myositis: On the Interplay of Chemokines and Stress Proteins. Neurosci Lett (2013) 535:18–23. doi: 10.1016/j.neulet.2012.11.064 PubMed DOI

Spiritovic M, Hermankova B, Oreska S, Storkanova H, Ruzickova O, Vernerova L, et al. . The Effect of a 24-Week Training Focused on Activities of Daily Living, Muscle Strengthening, and Stability in Idiopathic Inflammatory Myopathies: A Monocentric Controlled Study With Follow-Up. Arthritis Res Ther (2021) 23:173. doi: 10.1186/s13075-021-02544-5 PubMed DOI PMC

Bohan A, Peter JB. Polymyositis and Dermatomyositis (First of Two Parts). N Engl J Med (1975) 292:344–7. doi: 10.1056/NEJM197502132920706 PubMed DOI

Hoogendijk JE, Amato AA, Lecky BR, Choy EH, Lundberg IE, Rose MR, et al. . 119th ENMC International Workshop: Trial Design in Adult Idiopathic Inflammatory Myopathies, With the Exception of Inclusion Body Myositis, 10-12 October 2003, Naarden, The Netherlands. Neuromuscul Disord (2004) 14:337–45. doi: 10.1016/j.nmd.2004.02.006 PubMed DOI

Troyanov Y, Targoff IN, Tremblay JL, Goulet JR, Raymond Y, Senecal JL. Novel Classification of Idiopathic Inflammatory Myopathies Based on Overlap Syndrome Features and Autoantibodies: Analysis of 100 French Canadian Patients. Med (Baltimore) (2005) 84:231–49. doi: 10.1097/01.md.0000173991.74008.b0 PubMed DOI

Miller FW. New Approaches to the Assessment and Treatment of the Idiopathic Inflammatory Myopathies. Ann Rheum Dis (2012) 71:i82–5. doi: 10.1136/annrheumdis-2011-200587 PubMed DOI

Isenberg DA, Allen E, Farewell V, Ehrenstein MR, Hanna MG, Lundberg IE, et al. . International Consensus Outcome Measures for Patients With Idiopathic Inflammatory Myopathies. Development and Initial Validation of Myositis Activity and Damage Indices in Patients With Adult Onset Disease. Rheumatol (Oxford) (2004) 43:49–54. doi: 10.1093/rheumatology/keg427 PubMed DOI

Bornman L, Polla BS, Gericke GS. Heat-Shock Protein 90 and Ubiquitin: Developmental Regulation During Myogenesis. Muscle Nerve (1996) 19:574–80. doi: 10.1002/(SICI)1097-4598(199605)19:5<574::AID-MUS4>3.0.CO;2-8 PubMed DOI

Song X, Luo Y. The Regulatory Mechanism of Hsp90alpha Secretion From Endothelial Cells and its Role in Angiogenesis During Wound Healing. Biochem Biophys Res Commun (2010) 398:111–7. doi: 10.1016/j.bbrc.2010.06.046 PubMed DOI

Srivastava P. Roles of Heat-Shock Proteins in Innate and Adaptive Immunity. Nat Rev Immunol (2002) 2:185–94. doi: 10.1038/nri749 PubMed DOI

Tsan MF, Gao B. Heat Shock Protein and Innate Immunity. Cell Mol Immunol (2004) 1:274–9. PubMed

Wong DS, Jay DG. Emerging Roles of Extracellular Hsp90 in Cancer. Adv Cancer Res (2016) 129:141–63. doi: 10.1016/bs.acr.2016.01.001 PubMed DOI

Ferreira JP, Almeida I, Marinho A, Cerveira C, Vasconcelos C. Anti-Ro52 Antibodies and Interstitial Lung Disease in Connective Tissue Diseases Excluding Scleroderma. ISRN Rheumatol (2012) 2012:415272. doi: 10.5402/2012/415272 PubMed DOI PMC

Sontake V, Wang Y, Kasam RK, Sinner D, Reddy GB, Naren AP, et al. . Hsp90 Regulation of Fibroblast Activation in Pulmonary Fibrosis. JCI Insight (2017) 2:e91454. doi: 10.1172/jci.insight.91454 PubMed DOI PMC

Ranek MJ, Stachowski MJ, Kirk JA, Willis MS. The Role of Heat Shock Proteins and Co-Chaperones in Heart Failure. Philos Trans R Soc Lond B Biol Sci (2018) 373:20160530. doi: 10.1098/rstb.2016.0530 PubMed DOI PMC

Garcia R, Merino D, Gomez JM, Nistal JF, Hurle MA, Cortajarena AL, et al. . Extracellular Heat Shock Protein 90 Binding to TGFbeta Receptor I Participates in TGFbeta-Mediated Collagen Production in Myocardial Fibroblasts. Cell Signal (2016) 28:1563–79. doi: 10.1016/j.cellsig.2016.07.003 PubMed DOI

De Paepe B, Creus KK, De Bleecker JL. Role of Cytokines and Chemokines in Idiopathic Inflammatory Myopathies. Curr Opin Rheumatol (2009) 21:610–6. doi: 10.1097/BOR.0b013e3283317b31 PubMed DOI

Moran EM, Mastaglia FL. Cytokines in Immune-Mediated Inflammatory Myopathies: Cellular Sources, Multiple Actions and Therapeutic Implications. Clin Exp Immunol (2014) 178:405–15. doi: 10.1111/cei.12445 PubMed DOI PMC

Cerezo LA, Vencovsky J, Senolt L. Cytokines and Inflammatory Mediators as Promising Markers of Polymyositis/Dermatomyositis. Curr Opin Rheumatol (2020) 32:534–41. doi: 10.1097/BOR.0000000000000744 PubMed DOI

Martinez CO, McHale MJ, Wells JT, Ochoa O, Michalek JE, McManus LM, et al. . Regulation of Skeletal Muscle Regeneration by CCR2-Activating Chemokines is Directly Related to Macrophage Recruitment. Am J Physiol Regul Integr Comp Physiol (2010) 299:R832–42. doi: 10.1152/ajpregu.00797.2009 PubMed DOI PMC

Shireman PK, Contreras-Shannon V, Reyes-Reyna SM, Robinson SC, McManus LM. MCP-1 Parallels Inflammatory and Regenerative Responses in Ischemic Muscle. J Surg Res (2006) 134:145–57. doi: 10.1016/j.jss.2005.12.003 PubMed DOI

Grundtman C, Tham E, Ulfgren AK, Lundberg IE. Vascular Endothelial Growth Factor Is Highly Expressed in Muscle Tissue of Patients With Polymyositis and Patients With Dermatomyositis. Arthritis Rheum (2008) 58:3224–38. doi: 10.1002/art.23884 PubMed DOI

Yoshida K, Ito H, Furuya K, Ukichi T, Noda K, Kurosaka D. Angiogenesis and VEGF-Expressing Cells Are Identified Predominantly in the Fascia Rather Than in the Muscle During the Early Phase of Dermatomyositis. Arthritis Res Ther (2017) 19:272. doi: 10.1186/s13075-017-1481-z PubMed DOI PMC

da Silva TCP, Silva MG, Shinjo SK. Relevance of Serum Angiogenic Cytokines in Adult Patients With Dermatomyositis. Adv Rheumatol (2018) 58:17. doi: 10.1186/s42358-018-0018-8 PubMed DOI

Catelli MG, Binart N, Jung-Testas I, Renoir JM, Baulieu EE, Feramisco JR, et al. . The Common 90-Kd Protein Component of Non-Transformed '8S' Steroid Receptors is a Heat-Shock Protein. EMBO J (1985) 4:3131–5. doi: 10.1002/j.1460-2075.1985.tb04055.x PubMed DOI PMC

Dalman FC, Scherrer LC, Taylor LP, Akil H, Pratt WB. Localization of the 90-kDa Heat Shock Protein-Binding Site Within the Hormone-Binding Domain of the Glucocorticoid Receptor by Peptide Competition. J Biol Chem (1991) 266:3482–90. doi: 10.1016/S0021-9258(19)67821-X PubMed DOI

Volochayev R, Csako G, Wesley R, Rider LG, Miller FW. Laboratory Test Abnormalities are Common in Polymyositis and Dermatomyositis and Differ Among Clinical and Demographic Groups. Open Rheumatol J (2012) 6:54–63. doi: 10.2174/1874312901206010054 PubMed DOI PMC

Xiao Y, Luo H, Zhou B, Dai X, Huang J, Duan L, et al. . Comparison of Soluble Urokinase Plasminogen Activator Receptor, Soluble Triggering Receptor Expressed on Myeloid Cells 1, Procalcitonin and C-Reactive Protein in Distinguishing Concurrent Bacterial Infection From Idiopathic Inflammatory Myopathy. Rheumatol Int (2017) 37:585–92. doi: 10.1007/s00296-016-3609-x PubMed DOI

Zhang L, Wu G, Gao D, Liu G, Pan L, Ni L, et al. . Factors Associated With Interstitial Lung Disease in Patients With Polymyositis and Dermatomyositis: A Systematic Review and Meta-Analysis. PloS One (2016) 11:e0155381. doi: 10.1371/journal.pone.0155381 PubMed DOI PMC

Lu X, Yang H, Shu X, Chen F, Zhang Y, Zhang S, et al. . Factors Predicting Malignancy in Patients With Polymyositis and Dermatomyostis: A Systematic Review and Meta-Analysis. PloS One (2014) 9:e94128. doi: 10.1371/journal.pone.0094128 PubMed DOI PMC

Aggarwal R, Lebiedz-Odrobina D, Sinha A, Manadan A, Case JP. Serum Cardiac Troponin T, But Not Troponin I, is Elevated in Idiopathic Inflammatory Myopathies. J Rheumatol (2009) 36:2711–4. doi: 10.3899/jrheum.090562 PubMed DOI

Kiely PD, Bruckner FE, Nisbet JA, Daghir A. Serum Skeletal Troponin I in Inflammatory Muscle Disease: Relation to Creatine Kinase, CKMB and Cardiac Troponin I. Ann Rheum Dis (2000) 59:750–1. doi: 10.1136/ard.59.9.750 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...