Effect of Natural Aging on Oak Wood Fire Resistance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34201879
PubMed Central
PMC8272155
DOI
10.3390/polym13132059
PII: polym13132059
Knihovny.cz E-zdroje
- Klíčová slova
- activation energy, chemical composition, flame ignition temperature, historical wood, mass burning rate, oak wood, spontaneous ignition temperature,
- Publikační typ
- časopisecké články MeSH
The paper deals with the assessment of the age of oak wood (0, 10, 40, 80 and 120 years) on its fire resistance. Chemical composition of wood (extractives, cellulose, holocellulose, lignin) was determined by wet chemistry methods and elementary analysis was performed according to ISO standards. From the fire-technical properties, the flame ignition and the spontaneous ignition temperature (including calculated activation energy) and mass burning rate were evaluated. The lignin content does not change, the content of extractives and cellulose is higher and the content of holocellulose decreases with the higher age of wood. The elementary analysis shows the lowest proportion content of nitrogen, sulfur, phosphor and the highest content of carbon in the oldest wood. Values of flame ignition and spontaneous ignition temperature for individual samples were very similar. The activation energy ranged from 42.4 kJ·mol-1 (120-year-old) to 50.7 kJ·mol-1 (40-year-old), and the burning rate varied from 0.2992%·s-1 (80-year-old) to 0.4965%·s-1 (10-year-old). The difference among the values of spontaneous ignition activation energy is clear evidence of higher resistance to initiation of older wood (40- and 80-year-old) in comparison with the younger oak wood (0- and 10-year-old). The oldest sample is the least thermally resistant due to the different chemical composition compared to the younger wood.
Zobrazit více v PubMed
EN 1995-1-1 + A1 . Eurocode 5. Design of Wooden Structures. Depending on the Required Fire Resistance of the Building Structure, the Minimum Cross-Sectional Dimensions of Load-Bearing Wooden Elements in Wooden Structures Must Be Designed. European Committee for Standardization; Brussels, Belgium: 2008.
Kačíková D., Majlingová A., Veľková V., Zachar M. Modelling of Internal Fires Using the Results of Progressive Methods of Fire Engineering. 1st ed. Technical University; Zvolen, Slovakia: 2017. p. 147.
Friquin K.L. Material properties and external factors influencing the charring rate of solid wood and glue-laminated timber. Fire Mater. 2010;35:303–327. doi: 10.1002/fam.1055. DOI
Cachim P.B., Franssen J.-M. Assessment of Eurocode 5 Charring Rate Calculation Methods. Fire Technol. 2010;46:169–181. doi: 10.1007/s10694-009-0092-x. DOI
White R., Dietenberger M. Encyclopedia of Materials: Science and Technology. Elsevier BV; Amsterdam, The Netherlands: 2001. Wood Products: Thermal Degradation and Fire; pp. 9712–9716.
Bartlett A.I., Hadden R.M., Bisby L.A. A Review of Factors Affecting the Burning Behaviour of Wood for Application to Tall Timber Construction. Fire Technol. 2019;55:1–49. doi: 10.1007/s10694-018-0787-y. DOI
Lau P.W.C., White R., Van Zeeland I. Modelling the charring behaviour of structural lumber. Fire Mater. 1999;23:209–216. doi: 10.1002/(SICI)1099-1018(199909/10)23:5<209::AID-FAM685>3.0.CO;2-A. DOI
Očkajová A., Kučerka M., Kminiak R., Krišťák Ľ., Igaz R., Réh R. Occupational exposure to dust produced when milling thermally modified wood. Int. J. Environ. Res. Public Health. 2020;17:1478. doi: 10.3390/ijerph17051478. PubMed DOI PMC
Aristri M., Lubis M., Yadav S., Antov P., Papadopoulos A., Pizzi A., Fatriasari W., Ismayati M., Iswanto A. Recent Developments in Lignin- and Tannin-Based Non-Isocyanate Polyurethane Resins for Wood Adhesives—A Review. Appl. Sci. 2021;11:4242. doi: 10.3390/app11094242. DOI
Kačíková D., Kubovský I., Ulbriková N., Kačík F. the impact of thermal treatment on structural changes of teak and iroko wood lignins. Appl. Sci. 2020;10:5021. doi: 10.3390/app10145021. DOI
Frangi A., Fontana M. Charring rates and temperature profiles of wood sections. Fire Mater. 2003;27:91–102. doi: 10.1002/fam.819. DOI
Njankouo J.M., Dotreppe J.-C., Franssen J.-M. Experimental study of the charring rate of tropical hardwoods. Fire Mater. 2004;28:15–24. doi: 10.1002/fam.831. DOI
Schmid J., Just A., Klippel M., Fragiacomo M. The Reduced Cross-Section Method for Evaluation of the Fire Resistance of Timber Members: Discussion and Determination of the Zero-Strength Layer. Fire Technol. 2015;51:1285–1309. doi: 10.1007/s10694-014-0421-6. DOI
Sonderegger W., Kránitz K., Bues C.-T., Niemz P. Aging effects on physical and mechanical properties of spruce, fir and oak wood. J. Cult. Herit. 2015;16:883–889. doi: 10.1016/j.culher.2015.02.002. DOI
Kránitz K., Sonderegger W., Bues C.-T., Niemz P. Effects of aging on wood: A literature review. Wood Sci. Technol. 2016;50:7–22. doi: 10.1007/s00226-015-0766-0. DOI
Topaloglu E., Ustaomer D., Ozturk M., Pesman E. Changes in wood properties of chestnut wood structural elements with natural aging. Maderas Cienc. Tecnol. 2021;23:23. doi: 10.4067/S0718-221X2021000100420. DOI
Reinprecht L. Wood Deterioration, Protection and Maintenance. 1st ed. Wiley & Sons, Ltd.; Chichester, UK: 2016. pp. 145–217.
Majlingová A., Zachar M., Lieskovský M., Mitterová I. The analysis of mass loss and activation energy of selected fast-growing tree species and energy crops using the Arrhenius equation. Acta Fac. Xylologiae Zvolen. 2018;60:175–186.
Martinka J., Mózer V., Hroncová E., Ladomerský J. Influence of spruce wood form on ignition activation energy. Wood Res. 2015;60:815–822.
Rantuch P., Wachter I., Hrušovský I., Balog K. Ignition Activation Energy of Materials based on Polyamide 6. Trans. VSB Tech. Univ. Ostrav. Saf. Eng. Ser. 2016;11:27–31. doi: 10.1515/tvsbses-2016-0004. DOI
Martinka J., Hroncová E., Kačíková D., Rantuch P., Balog K., Ladomerský J. Ignition parameters of poplar wood. Acta Fac. Xylologiae. 2017;59:85–95.
Luptáková J., Kačík F., Eštoková A., Kačíková D., Šmíra P., Nasswettrová A., Bubeníková T. Comparison of activation energy of thermal degradation of heat sterilised silver fir wood to larval frass regarding fire safety. Acta Fac. Xylologiae Zvolen. 2018;60:19–29.
Zachar M., Majlingová A., Šišulák S., Baksa J. Comparison of the activation energy required for spontaneous ignition and flash point of the Norway spruce wood and thermowood specimens. Acta Fac. Xylologiae Zvolen. 2017;59:79–90.
Karlsson B., Quintiere J. Enclosure Fire Dynamics. Informa UK Limited; London, UK: 1999. p. 336.
Shi L., Chew M.Y.L. Experimental study of woods under external heat flux by autoignition. J. Therm. Anal. Calorim. 2012;111:1399–1407. doi: 10.1007/s10973-012-2489-x. DOI
STN ISO 871 . Plastics. Determination of Ignition Temperature Using a Hot-Air Oven. International Organization for Standardization; Geneva, Switzerland: 2010.
STN EN ISO 291 . Plastics. Standard Atmospheres for Conditioning and Testing. International Organization for Standardization; Geneva, Switzerland: 2008.
ASTM D1107-21 . Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM International; West Conshohocken, PA, USA: 2021.
Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., Crocker D. Determination of Structural Carbohydrates and Lignin in Biomass (NREL/TP-510-42618) National Renewable Energy Laboratory; Golden, CO, USA: 2012.
Seifert V.K. About a new method for rapid determination of pure cellulose. Das Pap. 1956;10:301–306. (In German)
Wise L.E., Murphy M., D’addieco A.A. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap. Trade J. 1946;122:35–44.
ISO 10694 . Soil Quality. Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis) International Organization for Standardization; Geneva, Switzerland: 1995.
ISO 13878 . Soil Quality. Determination of Total Nitrogen Content by Dry Combustion (Elemental Analysis) International Organization for Standardization; Geneva, Switzerland: 1998.
ISO 15178 . Soil Quality. Determination of Total Sulfur by Dry Combustion. International Organization for Standardization; Geneva, Switzerland: 2000.
ISO 11885 . Water Quality. Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) International Organization for Standardization; Geneva, Switzerland: 2007.
ISO 11925-2 . Reaction to Fire Tests—Ignitability of Products Subjected to Direct Impingement of Flame—Part 2: Single-Flame Source Test. International Organization for Standardization; Geneva, Switzerland: 2020.
Santos R.B., Capanema E.A., Balakshin M.Y., Chang H., Jameel H. Lignin structural variation in hardwood species. J. Agric. Food Chem. 2012;60:4923–4930. doi: 10.1021/jf301276a. PubMed DOI
Kolář T., Rybníček M. The changes in chemical composition and properties of subfossil oak deposited in holocene sediments. Wood Res. 2014;59:149–166.
Cárdenas-Gutiérrez M.A., Pedraza-Bucio F.E., López-Albarrán P., Rutiaga-Quiñones J.G. Chemical components of the branches of six hardwood species. Wood Res. 2018;63:795–808.
Hrčka R., Kučerová V., Hýrošová T. Correlations between oak wood properties. BioResources. 2018;4:8885–8898. doi: 10.15376/biores.13.4.8885-8898. DOI
Kačík F., Šmíra P., Kačíková D., Reinprecht L., Nasswettrova A. Chemical changes in fir wood from old buildings due to ageing. Cellul. Chem. Technol. 2014;48:79–88.
Kučerová V., Lagaňa R., Výbohová E., Hýrošová T. The effect of chemical changes during heat treatment on the color and mechanical properties of fir wood. BioResources. 2016;11:9079–9094. doi: 10.15376/biores.11.4.9079-9094. DOI
Kubovský I., Kačíková D., Kačík F. Structural Changes of Oak Wood Main Components Caused by Thermal Modification. Polymers. 2020;12:485. doi: 10.3390/polym12020485. PubMed DOI PMC
Čabalová I., Zachar M., Kačík F., Tribulová T. Impact of thermal loading on selected chemsical and morphological properties of spruce ThermoWood. BioResources. 2019;1:387–400.
Popescu C.-M., Hill C.A.S. The water vapour adsorption–desorption behaviour of naturally aged Tilia cordata Mill. wood. Polym. Degrad. Stab. 2013;98:1804–1813. doi: 10.1016/j.polymdegradstab.2013.05.021. DOI
Zhao C., Zhang X., Liu L., Yu Y., Zheng W., Song P. Probing Chemical Changes in Holocellulose and Lignin of Timbers in Ancient Buildings. Polymers. 2019;11:809. doi: 10.3390/polym11050809. PubMed DOI PMC
Fengel D., Wegener G. Wood—Chemistry, Ultrastructure, Reactions. 2nd ed. Walter de Gruyter; Berlin, Germany: 1989. p. 613.
Jebrane M., Pockrandt M., Cuccui I., Allegretti O., Uetimane E., Terziev N. Comparative Study of two softwood species industrially modified by Thermowood (R) and thermo-vacuum process. BioResources. 2018;13:715–728. doi: 10.15376/biores.13.1.715-728. DOI
Passialis C.N. Physico-chemical characteristics of waterlogged archaeological wood. Holzforschung. 1977;51:111–113. doi: 10.1515/hfsg.1997.51.2.111. DOI
Florian M.L.E. Scope and history of archaeological wood. In: Rowell R.M., Barbour R.J., editors. Archaeological Wood: Properties, Chemistry, and Preservation. Oxford University Press; Pxford, UK: 1990. pp. 3–32.
Krutul D., Kocoń J. Inorganic constituents and scanning electron microscopic study of fossil oak wood (Quercus sp.) Holzforsch. Holzverwendung. 1982;34:69–77.
Teaca C.A., Roşu D., Mustaţă F., Rusu T., Roşu L., Roşca I., Varganici C.D. Natural bio-based products for wood coating and protection against degradation: A Review. BioResources. 2019;14:4873–4901. doi: 10.15376/biores.14.2.Teaca. DOI
Carrión J.S. In: Plant Evolution (Evolución Vegetal) Marin D., editor. University of Murcia; Madrid, Spain: 2003. p. 497.
Krutul D., Radomski A., Zawadzki J., Zielenkiewicz T., Antczak A. Comparison of the chemical composition of the fossil and recent oak wood. Wood Res. 2010;55:113–120.
Wikberg H., Maunu S.L. Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydr. Polym. 2004;58:461–466. doi: 10.1016/j.carbpol.2004.08.008. DOI
Čabalová I., Kačík F., Lagaňa R., Výbohová E., Bubeníková T., Čaňová I., Ďurkovič J. Effect of thermal treatment on the chemical, physical, and mechanical properties of pedunculate oak (Quercus robur L.) wood. BioResources. 2018;13:157–170. doi: 10.15376/biores.13.1.157-170. DOI
Čabalová I., Bélik M., Kučerová V., Jurczyková T. Chemical and Morphological Composition of Norway Spruce Wood (Picea abies, L.) in the Dependence of its Storage. Polymers. 2021;13:1619. doi: 10.3390/polym13101619. PubMed DOI PMC
Tureková I., Balog K. Flame ignition parameters of polyethylene and activation energy of initiation of combustion process. Res. Pap. 2001;11:181–186.
Kačíková D., Makovická-Osvaldová L. Wood burning rate of various tree parts from selected softwoods. Acta Fac. Xylologiae Zvolen. 2009;51:27–32.