Evaluation of Chemical and Morphological Properties of Spruce Wood Stored in the Natural Environment

. 2023 Dec 18 ; 15 (24) : . [epub] 20231218

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38139985

Grantová podpora
APVV-21-0180 Slovak Research and Development Agency
APVV_22-0034 Slovak Research and Development Agency

This paper focuses on the changes in chemical structure and fiber morphological properties of spruce wood during 15 months of its storage in an open forest woodshed. From the chemical composition, the extractives, cellulose, holocellulose, and lignin content were determined. The pH value was measured on the wood surface using a contact electrode. Acetic and formic acid, saccharides (glucose, xylose, galactose, arabinose and mannose), and polymerization degree (PD) of cellulose were analyzed using the HPLC method. Fiber length and width were determined using a fiber tester analyzer. After 15 months of storage the content of both cellulose (determined by the Seifert method) and lignin did not change; the quantity of hemicelluloses decreased by 13.2%, due to its easier degradation and less stability compared to cellulose; and the pH value dropped by one degree. HPLC analyses showed a total decrease in the cellulose DP of 9.2% and in saccharides of 40.2%, while the largest decreases were recorded in the quantity of arabinose, by 72%, in the quantity of galactose, by 61%, and in the quantity of xylose, by 43%. Organic acids were not detected due to their high volatility during wood storage. The total decrease in average fiber length was 38.2% and in width was 4.8%. An increase in the proportion of shorter fibers, and a decrease in the proportion of longer fibers, was recorded. It can be concluded that fundamental changes occurred in the wood, which could affect the quality of further products (e.g., chips, pulp, paper, particleboards).

Zobrazit více v PubMed

Yang G., Jaakkola P. Wood Chemistry and Isolation of Extractives from Wood. Saimaa University of Applied Sciences; Lappeenranta, Finland: 2011. 47p (Literature Study for BIOTULI Project).

Srinivas K., Pandley K.K. Photodegradation of thermally modified wood. J. Photochem. Photobiol. B. 2012;117:140–145. doi: 10.1016/j.jphotobiol.2012.09.013. PubMed DOI

Reinprecht L. Wood Deterioration, Protection and Maintenance. John Wiley & Sons; Chichester, UK: 2016.

Hill C.A.S. Wood Modification—Chemical, Thermal and Other Processes. John Wiley & Sons Ltd.; Chichester, UK: 2006.

Militz H. Thermal Treatment of Wood: European Processes and Their Background. International Research Group on Wood Preservation; Stockholm, Sweden: 2002. ((IRG/WP 02-40241)).

Sonderegger W., Kránitz K., Bues C.T., Niemz P. Aging effects on physical and mechanical properties of spruce, fir and oak wood. J. Cult. Herit. 2015;16:883–889. doi: 10.1016/j.culher.2015.02.002. DOI

Huckfeldt T., Rehnbein M. Bakterien und Pilze an Wasserbau Holz Institut für Holzqualität und Holzschäden. Dr. Rehbein und Dr. Huckfeldt GbR; Hamburg, Germany: 2017.

Erikson K.L., Blanchette R.A., Ander P. Microbial and Enzymatic Degradation of Wood and Wood Components. Springer; Berlin/Heidelberg, Germany: 1990. (Springer Series in Wood Science).

Kránitz K., Sonderegger W., Bues C.T., Niemz P. Effects of aging on wood: A literature review. Wood Sci. Technol. 2016;50:7–22. doi: 10.1007/s00226-015-0766-0. DOI

Kataoka Y., Kiguchi M., Williams R.S., Evans P.D. Violet light causes photodegradation of wood beyond the zone affected by ultraviolet radiation. Holzforshung. 2007;61:23–27. doi: 10.1515/HF.2007.005. DOI

Papp E.A., Csiha C., Makk A.N., Hofmann T., Csoka L. Wettability of wood surface layer examined from chemical change perspective. Coatings. 2020;10:257. doi: 10.3390/coatings10030257. DOI

Csanády E., Magoss E., Tolvaj L. Quality of Machined Wood Surfaces. Springer International Publishing; New York, NY, USA: 2015.

Eugenio M.E., Ibarra D., Martin-Sanpedro R., Espinosa E., Bascón I., Rodríguez A. Alternative Raw Materials for Pulp and Paper Production in the Concept of a Lignocellulosic Biorefinery. In: Pascual A., Martin M., editors. Cellulose. IntechOpen; London, UK: 2019. DOI

Aremu M.O., Aperolola S.O., Dabonyan O.O. Suitability of Nigerian corn husk and plantain stalk for pulp and paper production. Eur. Sci. J. 2015;11:146–152.

Fahmy Y., Fahmy T.Y.A., Mobarekk F., El-Sakhawy M., Fadl M.H. Agricultural Residues (Wastes) for Manufacture of Paper, Board, and Miscellaneous Products: Background Overview and Future Prospects. Int. J. ChemTech Res. 2017;10:424–448. doi: 10.5281/zenodo.546735. DOI

Brännvall E. Increasing pulp yield in kraft cooking of softwoods by high initial effective alkali concetration (HIEAC) during impregnation leading to decreasing secondary peeling of cellulose. Holzforshung. 2018;72:819–827. doi: 10.1515/hf-2018-0011. DOI

Geffertová J., Geffert A. Dimensional characteristics of the fibres selected clones of willow Salix viminalis—ULV, ORM, RAPP. Acta Fac. Xylologiae. 2012;54:15–22. (In Slovak)

Retulainen E., Niskanen K., Nilsen N. Fibers and Bonds. Paper Physics. Fapet Oy; Helsinki, Finland: 1998. pp. 54–87.

Buksnowitz C.H., Teischunger A., Grabner M., Müller U., Mahn L. Tracheid length in Norway spruce (Picea abies (L.) Karst.) analysis of three databases regarding tree age, cambial age, tree height, inter-annual variation, radial distance to pith and log qualities. Wood Res. 2010;55:1–13.

Burdon R.D., Kibblewhite R., Walker J.C.F., Megraw R.A., Evans R., Cown D.J. Juvenile versus mature wood: A new concept, orthogonal to corewood versus outerwood, with special reference to Pinus radiata and P. taeda. For. Sci. 2004;50:399–415.

Herman M., Dutilleul P., Avella-Shaw T. Growth rate effects on temporal trajectories of ring width, wood density, and mean tracheid length in Norway spruce (Picea abies L. Karst.) Wood Fiber Sci. 1998;30:6–17.

Mäkinen H., Saranpää P., Linder S. Effect of growth rate on fibre characteristics in Norway spruce (Picea abies L. Karst.) Holzforschung. 2002;56:449–460. doi: 10.1515/HF.2002.070. DOI

Mäkinen H., Saranpää P., Linder S. Wood-density variation of Norway spruce in relation to nutrient optimization and fibre dimensions. Can. J. For. Res. 2002;32:185–194. doi: 10.1139/x01-186. DOI

Dutilleul P., Herman M., Avella-Shaw T. Growth rate effects on correlations among ring width, wood density, and mean tracheid lenght in Norway spruce (Picea abies) Can. J. For. Res. 1998;28:56–68. doi: 10.1139/x97-189. DOI

Sirviö J. Variation of cross-sectional properties within single Norway spruce tracheids. Wood Fiber Sci. 2000;32:311–331.

Sirviö J., Kärenlampi P. Two scales of variantion in Norway spruce tracheid properties. Wood Fiber Sci. 2001;33:16–25.

Wimmer R., Grabner M.A. Comparison of tree-ring features in Picea abies as correlated with climate. IAWA J. 2000;21:403–416. doi: 10.1163/22941932-90000256. DOI

Freitas T.P., Oliveira J.T.S., Vidaurre G.B., Rodrigues B.P. Environmental effect on chemical composition of eucalyptus clones wood for pulp production. CERNE. 2018;24:219–224. doi: 10.1590/01047760201824032558. DOI

Malkov S., Tikka P., Gullichsen J. Towards complete impregnation of wood chips with aqueous solutions. Pap. Ja Puu. 2001;83:468–473.

Geffert A., Geffertová J. Consequences of the degradative action of fungi on wood and pulp. Papír Celulóza. 2007;62:282–285. (In Slovak)

Allen L.H., Sithole B.B., Macleod J.M., Lapointe C.L., Mcphee F.J. Importance of seasoning and barking in the kraft pulping of aspen. J. Pulp Pap. Sci. 1991;17:J85–J91.

Silverio F.O., Barbosa L.C., Maltha C.R., Fidencio P.H., Cruz M.P., Veloso D.P., Milanez A.F. Effect of storage time on the composition and content of wood extractives in Eucalyptus cultivated in Brazil. Biores. Technol. 2008;99:4878. doi: 10.1016/j.biortech.2007.09.066. PubMed DOI

Tripathi S., Mishara O.P., Ganwar A., Chakrabarti S.K., Varadhan R. Impact of wood storage on pulp and paper making properties. IPPTA Q. J. Indian Pulp Pap. Tech. Assoc. 2011;23:161–164.

Pereira M., Sousa G., Anjos O. Influence of Wood Storage Time in the Paper Properties of Eucalyptus globulus; Proceedings of the Progress in Paper Physics Seminar; Espoo, Finland. 2–5 June 2008; pp. 247–250.

Ramnath L., Sithole B., Govinden R. The effects of wood storage on the chemical composition and indigenous microflora of Eucalyptus species used in the pulping industry. Bioresources. 2017;13:86–103. doi: 10.15376/biores.13.1.86-103. DOI

Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 1: Determination of Moisture Content for Physical and Mechanical Tests. International Organization for Standardization; Geneva, Switzerland: 2014.

Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 2: Determination of Density for Physical and Mechanical Tests. International Organization for Standardization; Geneva, Switzerland: 2017.

Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM International; West Conshohocken, PA, USA: 2021.

Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., Crocker D. Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory; Golden, CO, USA: 2012. ((NREL/TP-510-42618)).

Seifert V.K. About a new method for rapid determination of pure cellulose. Papier. 1956;10:301–306. (In German)

Wise L.E., Murphy M., D’Addieco A.A. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap. Trade J. 1946;122:35–44.

Paper, Board and Pulps—Determination of pH of Aqueous Extracts—Part 1: Cold Extraction. International Organization for Standardization; Geneva, Switzerland: 2021.

Geffert A., Geffertová J., Dudiak M. Direct method of measuring the pH value of wood. Forests. 2019;10:852. doi: 10.3390/f10100852. DOI

Kačík F., Podzimek Š., Vizárová K., Kačíková D., Čabalová I. Characterization of cellulose degradation during accelerated ageing by SECMALS, SEC-DAD, and A4F-MALS methods. Cellulose. 2016;23:357–366. doi: 10.1007/s10570-015-0842-5. DOI

Kačík F., Kačíková D., Jablonský M., Katuščák S. Cellulose degradation in the process of newsprint paper ageing. Polym. Degrad. Stab. 2009;94:1509–1514. doi: 10.1016/j.polymdegradstab.2009.04.033. DOI

Kačík F., Kačíková D. Characteristics and Analysis of Cellulose and Its Derivatives. Technical University in Zvolen; Zvolen, Slovakia: 2007. 92p. (In Slovak)

Bergström D., Matison M. Efficient Forest Biomass Supply Chain Management for Biorefineries. Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences; Uppsala, Sweden: 2014. 116p (Synthesis Report—Forest Refine 2012–2014).

Holmbom B. Extraction and utilisation of non-structural wood and bark components. In: Allén R., editor. Biorefining of Forest Resources. Puunjalostusinsinöörit ry—Forest Products Engineers; Espoo, Finland: 2011. pp. 178–224.

Sikora A., Kačík F., Gaff M., Vondrová V., Bubeníková T., Kubovský I. Impact of thermal modification on color and chemical changes of spruce and oak wood. J. Wood Sci. 2018;64:406–416. doi: 10.1007/s10086-018-1721-0. DOI

Čabalová I., Kačík F., Zachar M., Dúbravský R. Chemical changes of hardwoods at thermal loading by radiant heating. Acta Fac. Xylologiae. 2016;58:43–50.

Ahajji A., Diouf P.N., Aloui F., Elbakali I., Perrin D., Merlin A., George B. Influence of heat treatment on antioxidant properties and colour stability of beech and spruce wood and their extractives. Wood Sci. Technol. 2009;43:69–83. doi: 10.1007/s00226-008-0208-3. DOI

Wu Y., Wu X., Yang F., Zhang H., Feng X., Zhang J. Effect of thermal modification on the nano-mechanical properties of the wood cell wall and waterborne polyacrylic coating. Forests. 2020;11:1247. doi: 10.3390/f11121247. DOI

Zhao C., Zhang X., Liu L., Yu Y., Zheng W., Song P. Probing Chemical Changes in Holocellulose and Lignin of Timbers in Ancient Buildings. Polymers. 2019;11:809. doi: 10.3390/polym11050809. PubMed DOI PMC

Popescu C.M., Hill C.A.S. The water vapour adsorption–desorption behaviour of naturally aged Tilia cordata Mill. wood. Polym. Degrad. Stab. 2013;98:1804–1813. doi: 10.1016/j.polymdegradstab.2013.05.021. DOI

Boonstra M., Acker J., Kegel E., Stevens M. Optimisation of a two-stage heat treatment process: Durability aspects. Wood Sci. Technol. 2007;41:31–57. doi: 10.1007/s00226-006-0087-4. DOI

Čabalová I., Bélik M., Kučerová V., Jurczyková T. Chemical and morphological composition of Norway spruce wood (Picea abies, L.) in the dependence of its storage. Polymers. 2021;13:1619. doi: 10.3390/polym13101619. PubMed DOI PMC

Davim J.P. Wood and Wood Products—Materials and Manufacturing Technology. Nova Novinka; Brighton, UK: 2013. 130p

Sundqvist B., Karlsson O., Westermark U. Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Sci. Technol. 2006;40:549–556. doi: 10.1007/s00226-006-0071-z. DOI

Nurmi A., Vuorinen T., Lappi J. Chemical composition of Norway spruce heartwood, sapwood and transition zone wood. Wood Sci. Technol. 2013;47:319–335.

Tsuchiya K., Tokiwa Y. Influence of pH on the polymerization of Cellulose I studied by Molecular Dynamics Simulations. Langmuir. 2018;34:9395–9403. doi: 10.1021/acs.langmuir.8b01668. DOI

Gibson L.T., Watt C. Acetic and formic acids emitted from wood samples and their effect on selected materials in museum environments. Chemistry. Corros. Sci. 2010;52:172–178. doi: 10.1016/j.corsci.2009.08.054. DOI

Dupont A.L., Egasse C., Morin A., Vasseur F. Comprehensive characterisation of cellulose-and lignocellulose-degradation products in aged papers: Capillary zone electrophoresis of low-molar mass organic acids, carbohydrates, and aromatic lignin derivatives. Carbohydr. Polym. 2007;68:1–16. doi: 10.1016/j.carbpol.2006.07.005. DOI

Risholm-Sundman M., Lundgren M., Vestin E., Herder P. Emissions of acetic acid and other volatile organic compounds from different species of solid wood. Holz Roh Werkstoff. 1998;56:125–129. doi: 10.1007/s001070050282. DOI

Ramalho O., Dupont A.L., Egasse C., Lattuati-Derieux A. Emission rates of volatile organic compounds from paper. E-Preserv. Sci. 2009;6:53–59.

Jablonský M., Botková M., Hroboňová K. Accelerated ageing of wood-containing papers: Formation of weak acids and deterioration of tensile strength. Wood Res. 2012;57:419–434.

Hunt S., Grau-Bove J., Schofield E., Gaisford S. Effect of polyethylene glycol treatment on acetic acid emissions from wood. Forests. 2021;12:1629. doi: 10.3390/f12121629. DOI

Kraševec I., Menart E., Strlič M., Kralj Cigić I. Validation of passive samplers for monitoring of acetic and formic acid in museum environments. Herit. Sci. 2021;9:19. doi: 10.1186/s40494-021-00495-3. DOI

Smedemark S.H., Ryhl-Svendsen M., Schieweck A. Quantification of formic acid and acetic acid emissions from heritage collections under indoor room conditions. Part I: Laboratory and field measurements. Herit. Sci. 2020;8:58. doi: 10.1186/s40494-020-00404-0. DOI

Barbero-López A., Hossain M., Haapala A. Antifungal activity of organic acids and their impact on wood decay resistance. Wood Fiber Sci. 2020;52:410–418. doi: 10.22382/wfs-2020-039. DOI

Hamed S.A.K.M., Salem M.Z.M., Ali H.M., Ahmed K.M.E.S. Investigating the impact of weathering and indoor aging on wood acidity using spectroscopic analyses. Bioresources. 2020;15:6506–6525. doi: 10.15376/biores.15.3.6506-6525. DOI

Straže A., Torkar S., Tišler V., Gorišek Ž. Changes of ash wood pH-value during conventional drying. Zbornik Gozdarstva in Lesarstva. 2003;71:107–124.

Vojta A., Pažitný A., Ihnát V., Medo P. Lower Quality Wood Processing Processes—Part II: Chemical Technologies. Pulp and Paper Research Institute; Bratislava, Slovakia: 2018. 55p. (Research report VÚPC). (In Slovak)

Xu X., Chen S., Lin L., Huang L. The effects of temperature and pH on the degradation of cellulose. Polymers. 2020;12:1635.

Schubert M., Militz H., Mai C. Influence of decay by white-rot fungi on the cellulose crystallinity of wood. Holzforschung. 2017;71:21–27.

Zakzeski J., Kremer D., Clouston P., Wolcott M. Changes in the chemical composition of Norway spruce during storage. Wood Sci. Technol. 2019;53:467–481.

Kärki T., Vaino E., Viitanen H. Chemical changes in spruce and pine wood during storage in covered and uncovered piles. Wood Sci. Technol. 2004;38:363–374.

Liu H., Lu J., Jiang J., Li K., Fang G. Effect of storage time and temperature on the properties of radiata pine (Pinus radiata D. Don) Wood: Changes in chemical composition. Bioresources. 2019;14:3188–3198.

Vidholdová Z., Kačík F., Reinprecht L., Kučerová V., Luptáková J. Changes in chemical structure of thermally modified spruce wood due to decaying fungi. J. Fungi. 2022;8:739. doi: 10.3390/jof8070739. PubMed DOI PMC

Sweet M.S., Winandy J.E. Influence of degree of polymerization of cellulose and hemicellulose on strength loss in fire-retardant treated southern pine. Holzforschung. 1999;53:311–317. doi: 10.1515/HF.1999.051. DOI

Čabalová I., Kačík F., Kačíková D., Oravec M. The influence of radiant heating on chemical changes of spruce wood. Acta Fac. Xylologiae. 2013;55:59–66. (In Slovak)

Zachar M., Čabalová I., Kačíková D., Jurczyková T. Effect of natural aging on oak wood fire resistance. Polymers. 2021;13:2059. doi: 10.3390/polym13132059. PubMed DOI PMC

Kačík F., Šmíra P., Kačíková D., Reinprecht L., Nasswettova A. Chemical changes in fir wood from old buildings due to ageing. Cellul. Chem. Technol. 2014;48:79–88.

Kačíková D., Kačík F., Čabalová I., Ďurkovič J. Effects of thermal treatment on chemical, mechanical and colour traits in Norway spruce wood. Biores. Technol. 2013;14:669–674. doi: 10.1016/j.biortech.2013.06.110. PubMed DOI

Esteves B.M., Pereira H.M. Wood modification by heat treatment a Review. Bioresources. 2009;4:370–404. doi: 10.15376/biores.4.1.Esteves. DOI

Müller J., Varnai A., Johansson E., Olsson E. Changes in chemical composition and saccharification during storage of willow and poplar chips. Biomass Bioenergy. 2015;81:271–280. doi: 10.1016/j.biombioe.2015.07.015. DOI

Rasmussen H., Sørensen H.R., Meyer A.S., Pedersen L.T. Effects of storage on the composition and structure of woody biomass for bioenergy. Biomass Bioenergy. 2014;63:218–231. doi: 10.1016/j.biombioe.2014.01.016. DOI

Mader P.P., Cann G., Palmer L. Effects of polluted atmospheres on organic acid composition in plant tissues. Plant Physiol. 1955;30:318–323. doi: 10.1104/pp.30.4.318. PubMed DOI PMC

Malhotra S.S., Khan A.A. Biochemical and Physiological Impact of Major Pollutants. In: Treshow M., editor. Air Pollution and Plant Life. John Wiley & Sons Ltd.; Chichester, UK: 1984. pp. 113–157.

Sroka-Bizoń K., Szymańska-Chargot M., Zdunek A. Comparative study of Seifert method and HPLC for the determination of cellulose in plant samples. Pol. J. Environ. Stud. 2017;26:415–421.

Antczak A., Michałuszko A., Kłosińska T., Droždžek M. Determination of the structural substances content in the field maple wood (Acer campestre L.)—Comparison of the classical methods with instrumental. Ann. Wars. Univ. Life Sci. SGGW For. Wood Technol. 2013;82:11–17.

Čabalová I., Zachar M., Kačík F., Tribulová T. Impact of thermal loading on selected chemical and morphological properties of spruce ThermoWood. Bioresources. 2019;14:387–400. doi: 10.15376/biores.14.1.387-400. DOI

Sawoszczuk T., Wandelt P., Barański A., Łagan J.M., Łojewski T., Perlińska-Sipa K. Degradation of Paper as Studied by Fiber Length Measurements After Hydrodynamical Treatment; Proceedings of the International Conference Durability of Paper and Writing; Ljubljana, Slovenia. 16–22 November 2004; pp. 78–80.

Harris G. Comparison of northern softwood and southern pine fiber characteristics for groudwood publication paper. TAPPI. 1993;76:55–61.

Löönberg B., Bruun H., Lindquist J. UV-microspectrophotometric study of wood and fibers. Paperi ja Puu. 1991;73:848–851.

Gerendiain A.Z., Peltola H., Pulkkinen P., Jaatinen R., Pappinen A. Differences in fibre properties in cloned Norway spruce (Picea abies) Can. J. For. Res. 2008;39:1071–1082. doi: 10.1139/X07-220. DOI

Baharoğlu M., Nemli G., Sarı B., Birtürk T., Bardak S. Effects of anatomical and chemical properties of wood on the quality of particleboard, Compos. B Eng. 2013;52:282–285. doi: 10.1016/j.compositesb.2013.04.009. DOI

Ressel J.B. Wood Yard Operations. In: Sixta H., editor. Handbook of Pulp. Wiley-VCH Verlag GmbH & Co.; Weinheim, Germany: 2006. 1352p

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...