Using structured libraries, selection, and machine learning to rapidly explore the sequence space of a fluorescent deoxyribozyme
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
24-11210S
GAČR
337022
GAUK
CZ.02.01.01/00/22_008/0004575
OP JAK
European Union
IOCB
PubMed
41385320
PubMed Central
PMC12700094
DOI
10.1093/nar/gkaf1348
PII: 8378183
Knihovny.cz E-zdroje
- MeSH
- DNA katalytická * chemie genetika metabolismus MeSH
- genová knihovna MeSH
- konformace nukleové kyseliny MeSH
- strojové učení * MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA katalytická * MeSH
Finding ways to more comprehensively explore the sequence space of complex functional motifs is an important and unresolved question in nucleic acid engineering. Standard approaches use libraries in which a single variant of a motif is randomly mutagenized at a low level. This provides comprehensive coverage of sequence space over short mutational distances, but only limited information about more distant variants. Here we describe a new approach that uses libraries made up of sequences consistent with the multiple constraints of a desired target motif. Functional variants are rapidly identified in a single round of selection followed by high-throughput sequencing, and rules relating sequence to function are elucidated using machine learning. This method was tested using a fluorescent deoxyribozyme recently discovered in our group called Aurora. Single-step selections showed that a secondary structure library based on Aurora contained ~40-fold more unique catalytic sequences than one generated by random mutagenesis. Furthermore, models developed by machine learning could quantitatively predict read numbers and identify the most active variants using small subsets of sequences as training sets. By combining secondary structure libraries, selection, and machine learning in this way, sequence space can be explored far more quickly and efficiently than in standard approaches.
Zobrazit více v PubMed
Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–10. 10.1126/science.2200121. PubMed DOI
Robertson DL, Joyce GF. Selection PubMed DOI
Ellington AD, Szostak JW. PubMed DOI
Silverman SK. Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem Sci. 2016;41:595–609. 10.1016/j.tibs.2016.04.010. PubMed DOI PMC
Micura R, Höbartner C. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem Soc Rev. 2020;49:7331–53. 10.1039/D0CS00617C. PubMed DOI
Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16:181–202. 10.1038/nrd.2016.199. PubMed DOI PMC
Curtis EA. Pushing the limits of nucleic acid function. Chemistry A European J. 2022;28:e202201737. 10.1002/chem.202201737. PubMed DOI PMC
Ekland EH, Bartel DP. The secondary structure and sequence optimization of an RNA ligase ribozyme. Nucleic Acids Res. 1995;23:3231–8. 10.1093/nar/23.16.3231. PubMed DOI PMC
Knight R, Yarus M. Analyzing partially randomized nucleic acid pools: straight dope on doping. Nucleic Acids Res. 2003;31:e30. 10.1093/nar/gng030. PubMed DOI PMC
Bashir A, Yang Q, Wang J et al. Machine learning guided aptamer refinement and discovery. Nat Commun. 2021;12:2366. 10.1038/s41467-021-22555-9. PubMed DOI PMC
Beck JD, Roberts JM, Kitzhaber JM et al. Predicting higher-order mutational effects in an RNA enzyme by machine learning of high-throughput experimental data. Front Mol Biosci. 2022;9:893864. 10.3389/fmolb.2022.893864. PubMed DOI PMC
Rotrattanadumrong R, Yokobayashi Y. Experimental exploration of a ribozyme neutral network using evolutionary algorithm and deep learning. Nat Commun. 2022;13:4847. 10.1038/s41467-022-32538-z. PubMed DOI PMC
Volek M, Kurfürst J, Drexler M et al. Aurora: a fluorescent deoxyribozyme for high-throughput screening. Nucleic Acids Res. 2024;52:9049–61. 10.1093/nar/gkae467. PubMed DOI PMC
Sgallová R, Curtis EA. Secondary structure libraries for artificial evolution experiments. Molecules. 2021;26:1671. 10.3390/molecules26061671. PubMed DOI PMC
Streckerová T, Kurfürst J, Curtis EA. Single-round deoxyribozyme discovery. Nucleic Acids Res. 2021;49:6971–81. 10.1093/nar/gkab504. PubMed DOI PMC
Svehlova K, Lukšan O, Jakubec M et al. Supernova: a deoxyribozyme that catalyzes a chemiluminescent reaction. Angew Chem Int Ed. 2022;61:e202109347. 10.1002/anie.202109347. PubMed DOI PMC
Jakubec M, Pšenáková K, Svehlova K et al. Optimizing the chemiluminescence of a light-producing deoxyribozyme. ChemBioChem. 2022;23:e202200026. 10.1002/cbic.202200026. PubMed DOI
Volek M, Kurfürst J, Kožíšek M et al. Apollon: a deoxyribozyme that generates a yellow product. Nucleic Acids Res. 2024;52:9062–75. 10.1093/nar/gkae490. PubMed DOI PMC
Gutell RR, Power A, Hertz GZ et al. Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Res. 1992;20:5785–95. 10.1093/nar/20.21.5785. PubMed DOI PMC
Gutell RR. Ten lessons with Carl Woese about RNA and comparative analysis. RNA Biol. 2014;11:254–72. 10.4161/rna.28718. PubMed DOI
Curtis EA, Bartel DP. Synthetic shuffling and PubMed DOI PMC
Akoopie A, Müller UF. The NTP binding site of the polymerase ribozyme. Nucleic Acids Res. 2018;46:10589–97. PubMed PMC
Kaufman S. The Origin of Order. Oxford, UK: Oxford University Press; 1993.
Chiu DK, Kolodziejczak T. Inferring consensus structure from nucleic acid sequences. Comput Appl Biosci. 1991;7:347–52. PubMed
Pitt JN, Ferré-D’Amaré AR. Rapid construction of empirical RNA fitness landscapes. Science. 2010;330:376–9. 10.1126/science.1192001. PubMed DOI PMC
Jiménez JI, Xulvi-Brunet R, Campbell GW et al. Comprehensive experimental fitness landscape and evolutionary network for small RNA. Proc Natl Acad Sci USA. 2013;110:14984–9. PubMed PMC
Domingo J, Diss G, Lehner B. Pairwise and higher-order genetic interactions during the evolution of a tRNA. Nature. 2018;558:117–21. 10.1038/s41586-018-0170-7. PubMed DOI PMC
Pressman AD, Liu Z, Janzen E et al. Mapping a systematic ribozyme fitness landscape reveals a frustrated evolutionary network for self-aminoacylating RNA. J Am Chem Soc. 2019;141:6213–23. 10.1021/jacs.8b13298. PubMed DOI PMC
Jumper J, Evans R, Pritzel A et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9. 10.1038/s41586-021-03819-2. PubMed DOI PMC
Angermueller C, Pärnamaa T, Parts L et al. Deep learning for computational biology. Mol Syst Biol. 2016;12:878. 10.15252/msb.20156651 . PubMed DOI PMC
Auslander N, Gussow AB, Koonin EV. Incorporating machine learning into established bioinformatics frameworks. Int J Mol Sci. 2021;22:2903. 10.3390/ijms22062903. PubMed DOI PMC