Saccharide Alterations in Spruce Wood Due to Thermal and Accelerated Aging Processes

. 2025 May 06 ; 17 (9) : . [epub] 20250506

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40363049

Grantová podpora
APVV-22-0030 Slovak Research and Development Agency
APVV-20-0159 Slovak Research and Development Agency

This work is devoted to the changes in polysaccharides in thermally treated wood after its accelerated aging with the aim of its optimal utilization after its original use has ended. Spruce wood samples were treated by the Thermowood process at temperatures of 160 °C, 180 °C, and 210 °C and subjected to accelerated aging in wet mode. The influence of treatment temperature and accelerated aging was monitored by wet chemistry, high-performance liquid chromatography (HPLC), X-ray diffraction (XRD), size exclusion chromatography (SEC), and Fourier-transform infrared spectroscopy (FTIR). During thermal treatment, hemicelluloses are mainly degraded. At the temperature of 210 °C, aromatic compounds formed as degradation products of lignin and hemicelluloses bind to cellulose fibers and increase cellulose yield. Preferential decomposition of the amorphous portion of cellulose leads to an increase in its crystallinity, while higher temperatures cause degradation of the crystal lattice. The degree of polymerization in both cellulose and hemicelluloses decreases due to the cleavage of glycosidic bonds. Accelerated aging does not significantly affect the changes in polysaccharides. The results obtained can be used in the processing of cellulose and hemicelluloses from thermally modified wood at the end of its life cycle in various industrial fields.

Zobrazit více v PubMed

Búryová D., Sedlák P. Life Cycle Assessment of Coated and Thermally Modified Wood Façades. Coatings. 2021;11:1487. doi: 10.3390/coatings11121487. DOI

Sandberg D., Kutnar A., Mantanis G. Wood Modification Technologies—A Review. iForest. 2017;10:895. doi: 10.3832/ifor2380-010. DOI

Hill C., Altgen M., Rautkari L. Thermal Modification of Wood—A Review: Chemical Changes and Hygroscopicity. J. Mater. Sci. 2021;56:6581–6614. doi: 10.1007/s10853-020-05722-z. DOI

de Oliveira Araújo S., Rocha Vital B., Oliveira B., Oliveira Carneiro A.d.C., Lourenço A., Pereira H. Physical and Mechanical Properties of Heat Treated Wood from Aspidosperma populifolium, Dipteryx odorata and Mimosa scabrella. Maderas Cienc. Tecnol. 2016;18:143–156. doi: 10.4067/S0718-221X2016005000015. DOI

Javed M.A., Kekkonen P.M., Ahola S., Telkki V.-V. Magnetic Resonance Imaging Study of Water Absorption in Thermally Modified Pine Wood. Holzforschung. 2014;69:899–907. doi: 10.1515/hf-2014-0183. DOI

Thakur R., Dutt B., Kumar R., Sharma Y.P., Pingale A. Optimizing Physical and Mechanical Attributes of Acrocarpus fraxinifolius Wood via Heat Treatment. Int. J. Adv. Biochem. Res. 2024;8:260–267. doi: 10.33545/26174693.2024.v8.i4Sd.958. DOI

Calonego F.W., Severo E.T.D., Furtado E.L. Decay Resistance of Thermally-Modified Eucalyptus grandis Wood at 140 °C, 160 °C, 180 °C, 200 °C and 220 °C. Bioresour. Technol. 2010;101:9391–9394. doi: 10.1016/j.biortech.2010.06.119. PubMed DOI

Lekounougou S., Kocaefe D. Comparative Study on the Durability of Heat-Treated White Birch (Betula papyrifera) Subjected to the Attack of Brown and White Rot Fungi. Wood Mater. Sci. Eng. 2012;7:101–106. doi: 10.1080/17480272.2012.663407. DOI

Paes J., Brocco V., Loiola P., Segundinho P., Silva M., Juizo C. Effect of Thermal Modification on Decay Resistance of Corymbia citriodora and Pinus taeda Wood. J. Trop. For. Sci. 2021;33:185–190. doi: 10.26525/jtfs2021.33.2.185. DOI

Borrega M., Kärenlampi P.P. Mechanical Behavior of Heat-Treated Spruce (Picea abies) Wood at Constantmoisture Content and Ambient Humidity. Holz Roh. Werkst. 2008;66:63–69. doi: 10.1007/s00107-007-0207-3. DOI

Herrera-Builes J.F., Sepúlveda-Villarroel V., Osorio J.A., Salvo-Sepúlveda L., Ananías R.A. Effect of Thermal Modification Treatment on Some Physical and Mechanical Properties of Pinus oocarpa Wood. Forests. 2021;12:249. doi: 10.3390/f12020249. DOI

Rowell R.M., Ibach R.E., McSweeny J., Nilsson T. Understanding Decay Resistance, Dimensional Stability and Strength Changes in Heat-Treated and Acetylated Wood. Wood Mater. Sci. Eng. 2009;4:14–22. doi: 10.1080/17480270903261339. DOI

Yang T.-H., Lee C.-H., Lee C.-J., Cheng Y.-W. Effects of Different Thermal Modification Media on Physical and Mechanical Properties of Moso Bamboo. Constr. Build. Mater. 2016;119:251–259. doi: 10.1016/j.conbuildmat.2016.04.156. DOI

Pelaez-Samaniego M.R., Yadama V., Lowell E., Espinoza-Herrera R. A Review of Wood Thermal Pretreatments to Improve Wood Composite Properties. Wood Sci. Technol. 2013;47:1285–1319. doi: 10.1007/s00226-013-0574-3. DOI

Torniainen P., Popescu C.-M., Jones D., Scharf A., Sandberg D. Correlation of Studies between Colour, Structure and Mechanical Properties of Commercially Produced ThermoWood® Treated Norway Spruce and Scots Pine. Forests. 2021;12:1165. doi: 10.3390/f12091165. DOI

Fengel D., Wegener G. Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter; Berlin, Germany: 2011. pp. 66–131.

Sjöström E. Wood Polysaccharides. In: Sjöström E., editor. Wood Chemistry. 2nd ed. Academic Press; San Diego, CA, USA: 1993. pp. 51–70.

Zhang N., Li S., Xiong L., Hong Y., Chen Y. Cellulose-Hemicellulose Interaction in Wood Secondary Cell-Wall. Model. Simul. Mater. Sci. Eng. 2015;23:085010. doi: 10.1088/0965-0393/23/8/085010. DOI

Zachar M., Čabalová I., Kačíková D., Jurczyková T. Effect of Natural Aging on Oak Wood Fire Resistance. Polymers. 2021;13:2059. doi: 10.3390/polym13132059. PubMed DOI PMC

Ou J., Zhao G., Wang F., Li W., Lei S., Fang X., Siddiqui A.R., Xia Y., Amirfazli A. Durable Superhydrophobic Wood via One-Step Immersion in Composite Silane Solution. ACS Omega. 2021;6:7266–7274. doi: 10.1021/acsomega.0c04099. PubMed DOI PMC

Yang L., Liu H.-H. Effect of a Combination of Moderate-Temperature Heat Treatment and Subsequent Wax Impregnation on Wood Hygroscopicity, Dimensional Stability, and Mechanical Properties. Forests. 2020;11:920. doi: 10.3390/f11090920. DOI

Wang Z., Yang X., Sun B., Chai Y., Liu J., Cao J. Effect of Vacuum Heat Treatment on the Chemical Composition of Larch Wood. BioResources. 2016;11:5743–5750. doi: 10.15376/biores.11.3.5743-5750. DOI

Kačíková D., Kačík F., Čabalová I., Ďurkovič J. Effects of Thermal Treatment on Chemical, Mechanical and Colour Traits in Norway Spruce Wood. Bioresour. Technol. 2013;144:669–674. doi: 10.1016/j.biortech.2013.06.110. PubMed DOI

Wikberg H., Liisa Maunu S. Characterisation of Thermally Modified Hard- and Softwoods by 13C CPMAS NMR. Carbohydr. Polym. 2004;58:461–466. doi: 10.1016/j.carbpol.2004.08.008. DOI

Sikora A., Hájková K., Jurczyková T. Degradation of Chemical Components of Thermally Modified Robinia pseudoacacia L. Wood and Its Effect on the Change in Mechanical Properties. Int. J. Mol. Sci. 2022;23:15652. doi: 10.3390/ijms232415652. PubMed DOI PMC

Fengel D., Fengel D. Über die Veränderungen des Holzes und seiner Komponenten im Temperaturbereich bis 200°C— Vierte Mitteilung: Das Verhalten der Cellulose im Fichtenholz bei thermischer Behandlung. (On the Changes in the Chemical Composition of Wood within the Temperature Range up to 200 °C—Part IV: The Behaviour of Cellulose in Sprucewood under Thermal Treatment) Holz Roh. Werkst. 1967;25:102–111. doi: 10.1007/BF02608251. DOI

Sweet M.S., Winandy J.E. Influence of Degree of Polymerization of Cellulose and Hemicellulose on Strength Loss in Fire-Retardant-Treated Southern Pine. Holzforschung. 1999;53:311–317. doi: 10.1515/HF.1999.051. DOI

Yildiz S., Gezer E.D., Yildiz U.C. Mechanical and Chemical Behavior of Spruce Wood Modified by Heat. Build. Environ. 2006;41:1762–1766. doi: 10.1016/j.buildenv.2005.07.017. DOI

Antons A., Cīrule D., Andersone I., Verovkins A., Kuka E. Influence of Different Modifications on Bending Strength of Wood. Key Eng. Mater. 2019;800:240–245. doi: 10.4028/www.scientific.net/KEM.800.240. DOI

Kim P., Taylor A., Lloyd J., Kim J.-W., Abdoulmoumine N., Labbé N. Two-Step Thermochemical Process for Adding Value to Used Railroad Wood Ties and Reducing Environmental Impacts. ACS Sustain. Chem. Eng. 2017;5:9485–9493. doi: 10.1021/acssuschemeng.7b02666. DOI

Zhao X., Xiong L., Zhang M., Bai F. Towards Efficient Bioethanol Production from Agricultural and Forestry Residues: Exploration of Unique Natural Microorganisms in Combination with Advanced Strain Engineering. Bioresour. Technol. 2016;215:84–91. doi: 10.1016/j.biortech.2016.03.158. PubMed DOI

Luo S., Cao J., Peng Y. Properties of Glycerin-Thermally Modified Wood Flour/Polypropylene Composites. Polym. Compos. 2013;35:201–207. doi: 10.1002/pc.22651. DOI

Miao J., Yu Y., Jiang Z., Tang L., Zhang L. Partial Delignification of Wood and Membrane Preparation Using a Quaternary Ammonium Ionic Liquid. Sci. Rep. 2017;7:42472. doi: 10.1038/srep42472. PubMed DOI PMC

Dimos K., Paschos T., Louloudi A., Kalogiannis K.G., Lappas A.A., Papayannakos N., Kekos D., Mamma D. Effect of Various Pretreatment Methods on Bioethanol Production from Cotton Stalks. Fermentation. 2019;5:5. doi: 10.3390/fermentation5010005. DOI

Vilcekova S., Monokova A., Meciarova L., Selecka I. Methodological Evaluation of Family House with Different Thermo-Physical Parameters of Building Materials. Proceedings. 2018;2:1277. doi: 10.3390/proceedings2201277. DOI

Pourhashem G., Adler P.R., McAloon A.J., Spatari S. Cost and Greenhouse Gas Emission Tradeoffs of Alternative Uses of Lignin for Second Generation Ethanol. Environ. Res. Lett. 2013;8:025021. doi: 10.1088/1748-9326/8/2/025021. DOI

Vasco-Correa J., Shah A. Techno-Economic Bottlenecks of the Fungal Pretreatment of Lignocellulosic Biomass. Fermentation. 2019;5:30. doi: 10.3390/fermentation5020030. DOI

Chundawat S.P.S., Donohoe B.S., Sousa L.d.C., Elder T., Agarwal U.P., Lu F., Ralph J., Himmel M.E., Balan V., Dale B.E. Multi-Scale Visualization and Characterization of Lignocellulosic Plant Cell Wall Deconstruction during Thermochemical Pretreatment. Energy Environ. Sci. 2011;4:973–984. doi: 10.1039/c0ee00574f. DOI

Yip K., Xu M., Li C.-Z., Jiang S.P., Wu H. Biochar as a Fuel: 3. Mechanistic Understanding on Biochar Thermal Annealing at Mild Temperatures and Its Effect on Biochar Reactivity. Energy Fuels. 2010;25:406–414. doi: 10.1021/ef101472f. DOI

Janiszewska D., Olchowski R., Nowicka A., Zborowska M., Marszałkiewicz K., Shams M., Giannakoudakis D.A., Anastopoulos I., Barczak M. Activated Biochars Derived from Wood Biomass Liquefaction Residues for Effective Removal of Hazardous Hexavalent Chromium from Aquatic Environments. GCB Bioenergy. 2021;13:1247–1259. doi: 10.1111/gcbb.12839. DOI

Gao J., Jebrane M., Terziev N., Daniel G. Evaluation of Wood Quality Traits in Salix viminalis Useful for Biofuels: Characterization and Method Development. Forests. 2021;12:1048. doi: 10.3390/f12081048. DOI

Loziuk P.L., Parker J., Li W., Lin C.-Y., Wang J.P., Li Q., Sederoff R.R., Chiang V.L., Muddiman D.C. Elucidation of Xylem-Specific Transcription Factors and Absolute Quantification of Enzymes Regulating Cellulose Biosynthesis in Populus trichocarpa. J. Proteome Res. 2015;14:4158–4168. doi: 10.1021/acs.jproteome.5b00233. PubMed DOI

Practice for Operating Xenon Arc Light Apparatus for Exposure of Non-Metallic Materials. ASTM International; West Conshohocken, PA, USA: 2005.

Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM International; West Conshohocken, PA, USA: 2021.

Seifert V. Über Ein Neues Verfahren Zur Schnellbestimmung Der Rein-Cellulose. (About a New Method for Rapid Determination of Pure Cellulose) Papier. 1956;10:301–306.

Wise L.E., Murphy M., d’Addieco A.A. A Chlorite Holocellulose, Its Fractionation and Bearing on Summative Wood Analysis and Studies on the Hemicelluloses. Pap. Trade J. 1946;122:35–43.

Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., Crocker D. Laboratory Analytical Procedure (LAP) National Renewable Energy Laboratory; Golden, CO, USA: 2012. Determination of Structural Carbohydrates and Lignin in Biomass.

Gašparík M., Zeidler A., Výbohová E., Kačíková D., Kačík F. Chemical Changes of Polysaccharides in Heat-Treated European Beech Wood. J. Wood Sci. 2024;70:38. doi: 10.1186/s10086-024-02151-3. DOI

Kačík F., Podzimek Š., Vizárová K., Kačíková D., Čabalová I. Characterization of Cellulose Degradation during Accelerated Ageing by SEC-MALS, SEC-DAD, and A4F-MALS Methods. Cellulose. 2016;23:357–366. doi: 10.1007/s10570-015-0842-5. DOI

Potthast A., Radosta S., Saake B., Lebioda S., Heinze T., Henniges U., Isogai A., Koschella A., Kosma P., Rosenau T., et al. Comparison Testing of Methods for Gel Permeation Chromatography of Cellulose: Coming Closer to a Standard Protocol. Cellulose. 2015;22:1591–1613. doi: 10.1007/s10570-015-0586-2. DOI

Vera-Loor A., Walger E., Marlin N., Mortha G. Evaluation of the Dissolving Ability of Cellulosic Pulps: Investigation of a Novel Method Using Light Scattering Follow-up during Classical Cellulose Carbanilation. Holzforschung. 2023;77:139–148. doi: 10.1515/hf-2022-0154. DOI

Dahlman O., Jacobs A., Sjöberg J. Molecular Properties of Hemicelluloses Located in the Surface and Inner Layers of Hardwood and Softwood Pulps. Cellulose. 2003;10:325–334. doi: 10.1023/A:1027316926308. DOI

Kačík F., Kúdela J., Výbohová E., Jurczyková T., Čabalová I., Adamčík L., Kmeťová E., Kačíková D. Impact of Thermal Treatment and Accelerated Aging on the Chemical Composition, Morphology, and Properties of Spruce Wood. Forests. 2025;16:180. doi: 10.3390/f16010180. DOI

Shinde S.D., Meng X., Kumar R., Ragauskas A.J. Recent Advances in Understanding the Pseudo-Lignin Formation in a Lignocellulosic Biorefinery. Green Chem. 2018;20:2192–2205. doi: 10.1039/C8GC00353J. DOI

Jiang J., Peng Y., Ran Y., Cao J. Pseudo Lignin Formed from Hygrothermally Treated Holocellulose and Its Effect on Fungal Degradation. Ind. Crops Prod. 2022;184:115004. doi: 10.1016/j.indcrop.2022.115004. DOI

Leppänen K., Spetz P., Pranovich A., Hartonen K., Kitunen V., Ilvesniemi H. Pressurized Hot Water Extraction of Norway Spruce Hemicelluloses Using a Flow-through System. Wood Sci. Technol. 2011;45:223–236. doi: 10.1007/s00226-010-0320-z. DOI

Bhuiyan M.T.R., Hirai N., Sobue N. Effect of Intermittent Heat Treatment on Crystallinity in Wood Cellulose. J. Wood Sci. 2001;47:336–341. doi: 10.1007/BF00766782. DOI

Lourenço A., Araújo S., Gominho J., Evtuguin D. Cellulose Structural Changes during Mild Torrefaction of Eucalyptus Wood. Polymers. 2020;12:2831. doi: 10.3390/polym12122831. PubMed DOI PMC

Bhuiyan M.T.R., Hirai N., Sobue N. Changes of Crystallinity in Wood Cellulose by Heat Treatment under Dried and Moist Conditions. J. Wood Sci. 2000;46:431–436. doi: 10.1007/BF00765800. DOI

Mastouri A., Azadfallah M., Kamboj G., Rezaei F., Tarmian A., Efhamisisi D., Mahmoudkia M., Corcione C.E. Kinetic Studies on Photo-Degradation of Thermally-Treated Spruce Wood during Natural Weathering: Surface Performance, Lignin and Cellulose Crystallinity. Constr. Build. Mater. 2023;392:131923. doi: 10.1016/j.conbuildmat.2023.131923. DOI

Poletto M., Zattera A.J., Santana R.M.C. Thermal Decomposition of Wood: Kinetics and Degradation Mechanisms. Bioresour. Technol. 2012;126:7–12. doi: 10.1016/j.biortech.2012.08.133. PubMed DOI

Jusner P., Bausch F., Schiehser S., Schwaiger E., Potthast A., Rosenau T. Protocol for Characterizing the Molar Mass Distribution and Oxidized Functionality Profiles of Aged Transformer Papers by Gel Permeation Chromatography (GPC) Cellulose. 2022;29:2241–2256. doi: 10.1007/s10570-022-04464-2. DOI

Hult E.-L., Larsson P.T., Iversen T. Cellulose Fibril Aggregation—An Inherent Property of Kraft Pulps. Polymer. 2001;42:3309–3314. doi: 10.1016/S0032-3861(00)00774-6. DOI

Silveira R.L., Stoyanov S.R., Kovalenko A., Skaf M.S. Cellulose Aggregation under Hydrothermal Pretreatment Conditions. Biomacromolecules. 2016;17:2582–2590. doi: 10.1021/acs.biomac.6b00603. PubMed DOI

Abik F., Palasingh C., Bhattarai M., Leivers S., Ström A., Westereng B., Mikkonen K.S., Nypelö T. Potential of Wood Hemicelluloses and Their Derivates as Food Ingredients. J. Agric. Food Chem. 2023;71:2667–2683. doi: 10.1021/acs.jafc.2c06449. PubMed DOI PMC

Qaseem M.F., Shaheen H., Wu A.-M. Cell Wall Hemicellulose for Sustainable Industrial Utilization. Renew. Sustain. Energy Rev. 2021;144:110996. doi: 10.1016/j.rser.2021.110996. DOI

Rao J.Y., Ziwen L., Gegu C., Feng P. Hemicellulose: Structure, Chemical Modification, and Application. Prog. Polym. Sci. 2023;140:101675. doi: 10.1016/j.progpolymsci.2023.101675. DOI

Song T., Pranovich A., Holmbom B. Hot-Water Extraction of Ground Spruce Wood of Different Particle Size. BioResources. 2012;7:4214–4225. doi: 10.15376/biores.7.3.4214-4225. DOI

Markstedt K., Xu W., Liu J., Xu C., Gatenholm P. Synthesis of Tunable Hydrogels Based on O-Acetyl-Galactoglucomannans from Spruce. Carbohydr. Polym. 2017;157:1349–1357. doi: 10.1016/j.carbpol.2016.11.009. PubMed DOI

Xu C., Willför S., Holmbom B. Rheological Properties of Mixtures of Spruce Galactoglucomannans and Konjac Glucomannan or Some Other Polysaccharides. BioResources. 2008;3:713–730. doi: 10.15376/biores.3.3.713-730. DOI

Rissanen J.V., Grénman H., Xu C., Willför S., Murzin D.Y., Salmi T. Obtaining Spruce Hemicelluloses of Desired Molar Mass by Using Pressurized Hot Water Extraction. ChemSusChem. 2014;7:2947–2953. doi: 10.1002/cssc.201402282. PubMed DOI

Li J., Kasal B. Effects of Thermal Aging on the Adhesion Forces of Biopolymers of Wood Cell Walls. Biomacromolecules. 2022;23:1601–1609. doi: 10.1021/acs.biomac.1c01397. PubMed DOI PMC

Oberle A., Výbohová E., Baar J., Paschová Z., Beránek Š., Drobyshev I., Čabalová I., Čermák P. Chemical Changes in Thermally Modified, Acetylated and Melamine Formaldehyde Resin Impregnated Beech Wood. Holzforschung. 2024;78:459–469. doi: 10.1515/hf-2024-0013. DOI

Tjeerdsma B.F., Militz H. Chemical Changes in Hydrothermal Treated Wood: FTIR Analysis of Combined Hydrothermal and Dry Heat-Treated Wood. Holz Roh. Werkst. 2005;63:102–111. doi: 10.1007/s00107-004-0532-8. DOI

Robles E., Herrera R., De Hoyos Martínez P.L., Fernández Rodríguez J., Labidi J. Valorization of Heat-Treated Wood after Service Life through a Cascading Process for the Production of Lignocellulosic Derivatives. Resour. Conserv. Recycl. 2021;170:105602. doi: 10.1016/j.resconrec.2021.105602. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...