Saccharide Alterations in Spruce Wood Due to Thermal and Accelerated Aging Processes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-22-0030
Slovak Research and Development Agency
APVV-20-0159
Slovak Research and Development Agency
PubMed
40363049
PubMed Central
PMC12073278
DOI
10.3390/polym17091265
PII: polym17091265
Knihovny.cz E-zdroje
- Klíčová slova
- cellulose, crystallinity index, hemicelluloses, infrared spectroscopy, molecular weight distribution, size exclusion chromatography,
- Publikační typ
- časopisecké články MeSH
This work is devoted to the changes in polysaccharides in thermally treated wood after its accelerated aging with the aim of its optimal utilization after its original use has ended. Spruce wood samples were treated by the Thermowood process at temperatures of 160 °C, 180 °C, and 210 °C and subjected to accelerated aging in wet mode. The influence of treatment temperature and accelerated aging was monitored by wet chemistry, high-performance liquid chromatography (HPLC), X-ray diffraction (XRD), size exclusion chromatography (SEC), and Fourier-transform infrared spectroscopy (FTIR). During thermal treatment, hemicelluloses are mainly degraded. At the temperature of 210 °C, aromatic compounds formed as degradation products of lignin and hemicelluloses bind to cellulose fibers and increase cellulose yield. Preferential decomposition of the amorphous portion of cellulose leads to an increase in its crystallinity, while higher temperatures cause degradation of the crystal lattice. The degree of polymerization in both cellulose and hemicelluloses decreases due to the cleavage of glycosidic bonds. Accelerated aging does not significantly affect the changes in polysaccharides. The results obtained can be used in the processing of cellulose and hemicelluloses from thermally modified wood at the end of its life cycle in various industrial fields.
Zobrazit více v PubMed
Búryová D., Sedlák P. Life Cycle Assessment of Coated and Thermally Modified Wood Façades. Coatings. 2021;11:1487. doi: 10.3390/coatings11121487. DOI
Sandberg D., Kutnar A., Mantanis G. Wood Modification Technologies—A Review. iForest. 2017;10:895. doi: 10.3832/ifor2380-010. DOI
Hill C., Altgen M., Rautkari L. Thermal Modification of Wood—A Review: Chemical Changes and Hygroscopicity. J. Mater. Sci. 2021;56:6581–6614. doi: 10.1007/s10853-020-05722-z. DOI
de Oliveira Araújo S., Rocha Vital B., Oliveira B., Oliveira Carneiro A.d.C., Lourenço A., Pereira H. Physical and Mechanical Properties of Heat Treated Wood from Aspidosperma populifolium, Dipteryx odorata and Mimosa scabrella. Maderas Cienc. Tecnol. 2016;18:143–156. doi: 10.4067/S0718-221X2016005000015. DOI
Javed M.A., Kekkonen P.M., Ahola S., Telkki V.-V. Magnetic Resonance Imaging Study of Water Absorption in Thermally Modified Pine Wood. Holzforschung. 2014;69:899–907. doi: 10.1515/hf-2014-0183. DOI
Thakur R., Dutt B., Kumar R., Sharma Y.P., Pingale A. Optimizing Physical and Mechanical Attributes of Acrocarpus fraxinifolius Wood via Heat Treatment. Int. J. Adv. Biochem. Res. 2024;8:260–267. doi: 10.33545/26174693.2024.v8.i4Sd.958. DOI
Calonego F.W., Severo E.T.D., Furtado E.L. Decay Resistance of Thermally-Modified Eucalyptus grandis Wood at 140 °C, 160 °C, 180 °C, 200 °C and 220 °C. Bioresour. Technol. 2010;101:9391–9394. doi: 10.1016/j.biortech.2010.06.119. PubMed DOI
Lekounougou S., Kocaefe D. Comparative Study on the Durability of Heat-Treated White Birch (Betula papyrifera) Subjected to the Attack of Brown and White Rot Fungi. Wood Mater. Sci. Eng. 2012;7:101–106. doi: 10.1080/17480272.2012.663407. DOI
Paes J., Brocco V., Loiola P., Segundinho P., Silva M., Juizo C. Effect of Thermal Modification on Decay Resistance of Corymbia citriodora and Pinus taeda Wood. J. Trop. For. Sci. 2021;33:185–190. doi: 10.26525/jtfs2021.33.2.185. DOI
Borrega M., Kärenlampi P.P. Mechanical Behavior of Heat-Treated Spruce (Picea abies) Wood at Constantmoisture Content and Ambient Humidity. Holz Roh. Werkst. 2008;66:63–69. doi: 10.1007/s00107-007-0207-3. DOI
Herrera-Builes J.F., Sepúlveda-Villarroel V., Osorio J.A., Salvo-Sepúlveda L., Ananías R.A. Effect of Thermal Modification Treatment on Some Physical and Mechanical Properties of Pinus oocarpa Wood. Forests. 2021;12:249. doi: 10.3390/f12020249. DOI
Rowell R.M., Ibach R.E., McSweeny J., Nilsson T. Understanding Decay Resistance, Dimensional Stability and Strength Changes in Heat-Treated and Acetylated Wood. Wood Mater. Sci. Eng. 2009;4:14–22. doi: 10.1080/17480270903261339. DOI
Yang T.-H., Lee C.-H., Lee C.-J., Cheng Y.-W. Effects of Different Thermal Modification Media on Physical and Mechanical Properties of Moso Bamboo. Constr. Build. Mater. 2016;119:251–259. doi: 10.1016/j.conbuildmat.2016.04.156. DOI
Pelaez-Samaniego M.R., Yadama V., Lowell E., Espinoza-Herrera R. A Review of Wood Thermal Pretreatments to Improve Wood Composite Properties. Wood Sci. Technol. 2013;47:1285–1319. doi: 10.1007/s00226-013-0574-3. DOI
Torniainen P., Popescu C.-M., Jones D., Scharf A., Sandberg D. Correlation of Studies between Colour, Structure and Mechanical Properties of Commercially Produced ThermoWood® Treated Norway Spruce and Scots Pine. Forests. 2021;12:1165. doi: 10.3390/f12091165. DOI
Fengel D., Wegener G. Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter; Berlin, Germany: 2011. pp. 66–131.
Sjöström E. Wood Polysaccharides. In: Sjöström E., editor. Wood Chemistry. 2nd ed. Academic Press; San Diego, CA, USA: 1993. pp. 51–70.
Zhang N., Li S., Xiong L., Hong Y., Chen Y. Cellulose-Hemicellulose Interaction in Wood Secondary Cell-Wall. Model. Simul. Mater. Sci. Eng. 2015;23:085010. doi: 10.1088/0965-0393/23/8/085010. DOI
Zachar M., Čabalová I., Kačíková D., Jurczyková T. Effect of Natural Aging on Oak Wood Fire Resistance. Polymers. 2021;13:2059. doi: 10.3390/polym13132059. PubMed DOI PMC
Ou J., Zhao G., Wang F., Li W., Lei S., Fang X., Siddiqui A.R., Xia Y., Amirfazli A. Durable Superhydrophobic Wood via One-Step Immersion in Composite Silane Solution. ACS Omega. 2021;6:7266–7274. doi: 10.1021/acsomega.0c04099. PubMed DOI PMC
Yang L., Liu H.-H. Effect of a Combination of Moderate-Temperature Heat Treatment and Subsequent Wax Impregnation on Wood Hygroscopicity, Dimensional Stability, and Mechanical Properties. Forests. 2020;11:920. doi: 10.3390/f11090920. DOI
Wang Z., Yang X., Sun B., Chai Y., Liu J., Cao J. Effect of Vacuum Heat Treatment on the Chemical Composition of Larch Wood. BioResources. 2016;11:5743–5750. doi: 10.15376/biores.11.3.5743-5750. DOI
Kačíková D., Kačík F., Čabalová I., Ďurkovič J. Effects of Thermal Treatment on Chemical, Mechanical and Colour Traits in Norway Spruce Wood. Bioresour. Technol. 2013;144:669–674. doi: 10.1016/j.biortech.2013.06.110. PubMed DOI
Wikberg H., Liisa Maunu S. Characterisation of Thermally Modified Hard- and Softwoods by 13C CPMAS NMR. Carbohydr. Polym. 2004;58:461–466. doi: 10.1016/j.carbpol.2004.08.008. DOI
Sikora A., Hájková K., Jurczyková T. Degradation of Chemical Components of Thermally Modified Robinia pseudoacacia L. Wood and Its Effect on the Change in Mechanical Properties. Int. J. Mol. Sci. 2022;23:15652. doi: 10.3390/ijms232415652. PubMed DOI PMC
Fengel D., Fengel D. Über die Veränderungen des Holzes und seiner Komponenten im Temperaturbereich bis 200°C— Vierte Mitteilung: Das Verhalten der Cellulose im Fichtenholz bei thermischer Behandlung. (On the Changes in the Chemical Composition of Wood within the Temperature Range up to 200 °C—Part IV: The Behaviour of Cellulose in Sprucewood under Thermal Treatment) Holz Roh. Werkst. 1967;25:102–111. doi: 10.1007/BF02608251. DOI
Sweet M.S., Winandy J.E. Influence of Degree of Polymerization of Cellulose and Hemicellulose on Strength Loss in Fire-Retardant-Treated Southern Pine. Holzforschung. 1999;53:311–317. doi: 10.1515/HF.1999.051. DOI
Yildiz S., Gezer E.D., Yildiz U.C. Mechanical and Chemical Behavior of Spruce Wood Modified by Heat. Build. Environ. 2006;41:1762–1766. doi: 10.1016/j.buildenv.2005.07.017. DOI
Antons A., Cīrule D., Andersone I., Verovkins A., Kuka E. Influence of Different Modifications on Bending Strength of Wood. Key Eng. Mater. 2019;800:240–245. doi: 10.4028/www.scientific.net/KEM.800.240. DOI
Kim P., Taylor A., Lloyd J., Kim J.-W., Abdoulmoumine N., Labbé N. Two-Step Thermochemical Process for Adding Value to Used Railroad Wood Ties and Reducing Environmental Impacts. ACS Sustain. Chem. Eng. 2017;5:9485–9493. doi: 10.1021/acssuschemeng.7b02666. DOI
Zhao X., Xiong L., Zhang M., Bai F. Towards Efficient Bioethanol Production from Agricultural and Forestry Residues: Exploration of Unique Natural Microorganisms in Combination with Advanced Strain Engineering. Bioresour. Technol. 2016;215:84–91. doi: 10.1016/j.biortech.2016.03.158. PubMed DOI
Luo S., Cao J., Peng Y. Properties of Glycerin-Thermally Modified Wood Flour/Polypropylene Composites. Polym. Compos. 2013;35:201–207. doi: 10.1002/pc.22651. DOI
Miao J., Yu Y., Jiang Z., Tang L., Zhang L. Partial Delignification of Wood and Membrane Preparation Using a Quaternary Ammonium Ionic Liquid. Sci. Rep. 2017;7:42472. doi: 10.1038/srep42472. PubMed DOI PMC
Dimos K., Paschos T., Louloudi A., Kalogiannis K.G., Lappas A.A., Papayannakos N., Kekos D., Mamma D. Effect of Various Pretreatment Methods on Bioethanol Production from Cotton Stalks. Fermentation. 2019;5:5. doi: 10.3390/fermentation5010005. DOI
Vilcekova S., Monokova A., Meciarova L., Selecka I. Methodological Evaluation of Family House with Different Thermo-Physical Parameters of Building Materials. Proceedings. 2018;2:1277. doi: 10.3390/proceedings2201277. DOI
Pourhashem G., Adler P.R., McAloon A.J., Spatari S. Cost and Greenhouse Gas Emission Tradeoffs of Alternative Uses of Lignin for Second Generation Ethanol. Environ. Res. Lett. 2013;8:025021. doi: 10.1088/1748-9326/8/2/025021. DOI
Vasco-Correa J., Shah A. Techno-Economic Bottlenecks of the Fungal Pretreatment of Lignocellulosic Biomass. Fermentation. 2019;5:30. doi: 10.3390/fermentation5020030. DOI
Chundawat S.P.S., Donohoe B.S., Sousa L.d.C., Elder T., Agarwal U.P., Lu F., Ralph J., Himmel M.E., Balan V., Dale B.E. Multi-Scale Visualization and Characterization of Lignocellulosic Plant Cell Wall Deconstruction during Thermochemical Pretreatment. Energy Environ. Sci. 2011;4:973–984. doi: 10.1039/c0ee00574f. DOI
Yip K., Xu M., Li C.-Z., Jiang S.P., Wu H. Biochar as a Fuel: 3. Mechanistic Understanding on Biochar Thermal Annealing at Mild Temperatures and Its Effect on Biochar Reactivity. Energy Fuels. 2010;25:406–414. doi: 10.1021/ef101472f. DOI
Janiszewska D., Olchowski R., Nowicka A., Zborowska M., Marszałkiewicz K., Shams M., Giannakoudakis D.A., Anastopoulos I., Barczak M. Activated Biochars Derived from Wood Biomass Liquefaction Residues for Effective Removal of Hazardous Hexavalent Chromium from Aquatic Environments. GCB Bioenergy. 2021;13:1247–1259. doi: 10.1111/gcbb.12839. DOI
Gao J., Jebrane M., Terziev N., Daniel G. Evaluation of Wood Quality Traits in Salix viminalis Useful for Biofuels: Characterization and Method Development. Forests. 2021;12:1048. doi: 10.3390/f12081048. DOI
Loziuk P.L., Parker J., Li W., Lin C.-Y., Wang J.P., Li Q., Sederoff R.R., Chiang V.L., Muddiman D.C. Elucidation of Xylem-Specific Transcription Factors and Absolute Quantification of Enzymes Regulating Cellulose Biosynthesis in Populus trichocarpa. J. Proteome Res. 2015;14:4158–4168. doi: 10.1021/acs.jproteome.5b00233. PubMed DOI
Practice for Operating Xenon Arc Light Apparatus for Exposure of Non-Metallic Materials. ASTM International; West Conshohocken, PA, USA: 2005.
Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM International; West Conshohocken, PA, USA: 2021.
Seifert V. Über Ein Neues Verfahren Zur Schnellbestimmung Der Rein-Cellulose. (About a New Method for Rapid Determination of Pure Cellulose) Papier. 1956;10:301–306.
Wise L.E., Murphy M., d’Addieco A.A. A Chlorite Holocellulose, Its Fractionation and Bearing on Summative Wood Analysis and Studies on the Hemicelluloses. Pap. Trade J. 1946;122:35–43.
Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., Crocker D. Laboratory Analytical Procedure (LAP) National Renewable Energy Laboratory; Golden, CO, USA: 2012. Determination of Structural Carbohydrates and Lignin in Biomass.
Gašparík M., Zeidler A., Výbohová E., Kačíková D., Kačík F. Chemical Changes of Polysaccharides in Heat-Treated European Beech Wood. J. Wood Sci. 2024;70:38. doi: 10.1186/s10086-024-02151-3. DOI
Kačík F., Podzimek Š., Vizárová K., Kačíková D., Čabalová I. Characterization of Cellulose Degradation during Accelerated Ageing by SEC-MALS, SEC-DAD, and A4F-MALS Methods. Cellulose. 2016;23:357–366. doi: 10.1007/s10570-015-0842-5. DOI
Potthast A., Radosta S., Saake B., Lebioda S., Heinze T., Henniges U., Isogai A., Koschella A., Kosma P., Rosenau T., et al. Comparison Testing of Methods for Gel Permeation Chromatography of Cellulose: Coming Closer to a Standard Protocol. Cellulose. 2015;22:1591–1613. doi: 10.1007/s10570-015-0586-2. DOI
Vera-Loor A., Walger E., Marlin N., Mortha G. Evaluation of the Dissolving Ability of Cellulosic Pulps: Investigation of a Novel Method Using Light Scattering Follow-up during Classical Cellulose Carbanilation. Holzforschung. 2023;77:139–148. doi: 10.1515/hf-2022-0154. DOI
Dahlman O., Jacobs A., Sjöberg J. Molecular Properties of Hemicelluloses Located in the Surface and Inner Layers of Hardwood and Softwood Pulps. Cellulose. 2003;10:325–334. doi: 10.1023/A:1027316926308. DOI
Kačík F., Kúdela J., Výbohová E., Jurczyková T., Čabalová I., Adamčík L., Kmeťová E., Kačíková D. Impact of Thermal Treatment and Accelerated Aging on the Chemical Composition, Morphology, and Properties of Spruce Wood. Forests. 2025;16:180. doi: 10.3390/f16010180. DOI
Shinde S.D., Meng X., Kumar R., Ragauskas A.J. Recent Advances in Understanding the Pseudo-Lignin Formation in a Lignocellulosic Biorefinery. Green Chem. 2018;20:2192–2205. doi: 10.1039/C8GC00353J. DOI
Jiang J., Peng Y., Ran Y., Cao J. Pseudo Lignin Formed from Hygrothermally Treated Holocellulose and Its Effect on Fungal Degradation. Ind. Crops Prod. 2022;184:115004. doi: 10.1016/j.indcrop.2022.115004. DOI
Leppänen K., Spetz P., Pranovich A., Hartonen K., Kitunen V., Ilvesniemi H. Pressurized Hot Water Extraction of Norway Spruce Hemicelluloses Using a Flow-through System. Wood Sci. Technol. 2011;45:223–236. doi: 10.1007/s00226-010-0320-z. DOI
Bhuiyan M.T.R., Hirai N., Sobue N. Effect of Intermittent Heat Treatment on Crystallinity in Wood Cellulose. J. Wood Sci. 2001;47:336–341. doi: 10.1007/BF00766782. DOI
Lourenço A., Araújo S., Gominho J., Evtuguin D. Cellulose Structural Changes during Mild Torrefaction of Eucalyptus Wood. Polymers. 2020;12:2831. doi: 10.3390/polym12122831. PubMed DOI PMC
Bhuiyan M.T.R., Hirai N., Sobue N. Changes of Crystallinity in Wood Cellulose by Heat Treatment under Dried and Moist Conditions. J. Wood Sci. 2000;46:431–436. doi: 10.1007/BF00765800. DOI
Mastouri A., Azadfallah M., Kamboj G., Rezaei F., Tarmian A., Efhamisisi D., Mahmoudkia M., Corcione C.E. Kinetic Studies on Photo-Degradation of Thermally-Treated Spruce Wood during Natural Weathering: Surface Performance, Lignin and Cellulose Crystallinity. Constr. Build. Mater. 2023;392:131923. doi: 10.1016/j.conbuildmat.2023.131923. DOI
Poletto M., Zattera A.J., Santana R.M.C. Thermal Decomposition of Wood: Kinetics and Degradation Mechanisms. Bioresour. Technol. 2012;126:7–12. doi: 10.1016/j.biortech.2012.08.133. PubMed DOI
Jusner P., Bausch F., Schiehser S., Schwaiger E., Potthast A., Rosenau T. Protocol for Characterizing the Molar Mass Distribution and Oxidized Functionality Profiles of Aged Transformer Papers by Gel Permeation Chromatography (GPC) Cellulose. 2022;29:2241–2256. doi: 10.1007/s10570-022-04464-2. DOI
Hult E.-L., Larsson P.T., Iversen T. Cellulose Fibril Aggregation—An Inherent Property of Kraft Pulps. Polymer. 2001;42:3309–3314. doi: 10.1016/S0032-3861(00)00774-6. DOI
Silveira R.L., Stoyanov S.R., Kovalenko A., Skaf M.S. Cellulose Aggregation under Hydrothermal Pretreatment Conditions. Biomacromolecules. 2016;17:2582–2590. doi: 10.1021/acs.biomac.6b00603. PubMed DOI
Abik F., Palasingh C., Bhattarai M., Leivers S., Ström A., Westereng B., Mikkonen K.S., Nypelö T. Potential of Wood Hemicelluloses and Their Derivates as Food Ingredients. J. Agric. Food Chem. 2023;71:2667–2683. doi: 10.1021/acs.jafc.2c06449. PubMed DOI PMC
Qaseem M.F., Shaheen H., Wu A.-M. Cell Wall Hemicellulose for Sustainable Industrial Utilization. Renew. Sustain. Energy Rev. 2021;144:110996. doi: 10.1016/j.rser.2021.110996. DOI
Rao J.Y., Ziwen L., Gegu C., Feng P. Hemicellulose: Structure, Chemical Modification, and Application. Prog. Polym. Sci. 2023;140:101675. doi: 10.1016/j.progpolymsci.2023.101675. DOI
Song T., Pranovich A., Holmbom B. Hot-Water Extraction of Ground Spruce Wood of Different Particle Size. BioResources. 2012;7:4214–4225. doi: 10.15376/biores.7.3.4214-4225. DOI
Markstedt K., Xu W., Liu J., Xu C., Gatenholm P. Synthesis of Tunable Hydrogels Based on O-Acetyl-Galactoglucomannans from Spruce. Carbohydr. Polym. 2017;157:1349–1357. doi: 10.1016/j.carbpol.2016.11.009. PubMed DOI
Xu C., Willför S., Holmbom B. Rheological Properties of Mixtures of Spruce Galactoglucomannans and Konjac Glucomannan or Some Other Polysaccharides. BioResources. 2008;3:713–730. doi: 10.15376/biores.3.3.713-730. DOI
Rissanen J.V., Grénman H., Xu C., Willför S., Murzin D.Y., Salmi T. Obtaining Spruce Hemicelluloses of Desired Molar Mass by Using Pressurized Hot Water Extraction. ChemSusChem. 2014;7:2947–2953. doi: 10.1002/cssc.201402282. PubMed DOI
Li J., Kasal B. Effects of Thermal Aging on the Adhesion Forces of Biopolymers of Wood Cell Walls. Biomacromolecules. 2022;23:1601–1609. doi: 10.1021/acs.biomac.1c01397. PubMed DOI PMC
Oberle A., Výbohová E., Baar J., Paschová Z., Beránek Š., Drobyshev I., Čabalová I., Čermák P. Chemical Changes in Thermally Modified, Acetylated and Melamine Formaldehyde Resin Impregnated Beech Wood. Holzforschung. 2024;78:459–469. doi: 10.1515/hf-2024-0013. DOI
Tjeerdsma B.F., Militz H. Chemical Changes in Hydrothermal Treated Wood: FTIR Analysis of Combined Hydrothermal and Dry Heat-Treated Wood. Holz Roh. Werkst. 2005;63:102–111. doi: 10.1007/s00107-004-0532-8. DOI
Robles E., Herrera R., De Hoyos Martínez P.L., Fernández Rodríguez J., Labidi J. Valorization of Heat-Treated Wood after Service Life through a Cascading Process for the Production of Lignocellulosic Derivatives. Resour. Conserv. Recycl. 2021;170:105602. doi: 10.1016/j.resconrec.2021.105602. DOI