Degradation of Chemical Components of Thermally Modified Robinia pseudoacacia L. Wood and Its Effect on the Change in Mechanical Properties

. 2022 Dec 09 ; 23 (24) : . [epub] 20221209

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36555291

Currently, emphasis is placed on using environmentally friendly materials both from a structural point of view and the application of protective means. For this reason, it is advisable to deal with the thermal modification of wood, which does not require the application of protective substances, to increase its service life. The main reason for the thermal modification of black locust is that although black locust grows abundantly in our country, it has no industrial use. It is mainly used outdoors, where thermal modification could increase its resistance. This article deals with the thermal modification of black locust wood (Robinia pseudoacacia L.) and the impact of this modification on the chemical components of the wood with an overlap in the change in mechanical properties compared to untreated wood. Static (LOP, MOR, and MOE) and dynamic (IBS) bending properties were evaluated as representative mechanical properties. At the same time, the impact of thermal modification on the representation of chemical components of wood (cellulose, lignin, hemicellulose) was also tested. As a result of the heat treatment, the mechanical properties gradually decreased as the temperature increased. The highest decrease in mechanical values found at 210 °C was 43.7% for LOP and 45.1% for MOR. Thermal modification caused a decrease in the content of wood polysaccharides (the decrease in hemicelluloses content was 33.2% and the drop in cellulose was about 29.9% in samples treated at 210 °C), but the relative amount of lignin in the wood subjected to increased temperature was higher due to autocondensation, and mainly because of polysaccharide loss. Based on the correlations between chemical and mechanical changes caused by thermal modification, it is possible to observe the effects of reducing the proportions of chemical components and changes in their characteristic properties (DP, TCI) on the reduction in mechanical properties. The results of this research serve to better understand the behavior of black locust wood during thermal modification, which can primarily be used to increase its application use.

Zobrazit více v PubMed

Tuong V.M., Li J. Effect of Heat Treatment on the Change in Color and Dimensional Stability of Acacia Hybrid Wood. BioResources. 2010;5:1257–1267.

Esteves B., Pereira H. Wood modification by heat treatment: A review. BioResources. 2009;4:370–404. doi: 10.15376/biores.4.1.Esteves. DOI

Hill C.A.S. Wood Modification: Chemical, Thermal, and Other Processes. John Eiley and Sons; Hoboken, NJ, USA: 2006. p. 260.

Jones D., Sandberg D., Goli G., Todaro L. Wood Modifiaction in Euope a State-of-the-Art about Processes Products and Applications. Firenze University Press; Florence, Italy: 2019. p. 113.

Tran V.C. Improvement of Dimensional Stability of Acacia mangium Wood by Heat Treatment: A case Study of Vietnam. J. For. Sci. 2013;29:109–115. doi: 10.7747/JFS.2013.29.2.109. DOI

Wahab R., Edin T., Nasilah M., Sulaiman M.S., Mohd Ghani R.S., Ghani M., Razak M. Recent Research Advances in Biology 4. University of Istanbul; Istanbul, Turkey: 2021. Monitoring Changes in the Colour, Strength and Chemical Properties of Oil Heat Treated 18-Years Old Cultivated Acacia mangium; pp. 48–69.

Desch H.E., Dinwoodie J.M. Timber: Structure, Properties, Conversion and Use. CRC Press; Boca Raton, FL, USA: 1996. p. 306.

Hon D.N.S., Siraishi N. Wood and Cellulosic Chemistry. Taylor & Francis Group; Abingdon, UK: 2000. p. 928.

Kosikova B., Hricovini M., Cosentino C. Interfaction of lignin and polyssacharides in beach wood (Fagus sylvatica) during drying processes. Wood Sci. Technol. 1999;33:373–380.

Wikberg H., Maunu S.L. Characterisation of thermally modied hard- and softwoods by 13C CPMAS NMR. Carbohydr. Polym. 2004;58:461–466. doi: 10.1016/j.carbpol.2004.08.008. DOI

Hill C., Altgen M., Rautkari L. Thermal modification of wood—A review: Chemical changes and hygroscopicity. J. Mater. Sci. 2021;56:6581–6614. doi: 10.1007/s10853-020-05722-z. DOI

Rautkari L., Hill C.A., Curling S., Jalaludin Z., Ormondroyd G. What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? J. Mater. Sci. 2013;48:6352–6356. doi: 10.1007/s10853-013-7434-2. DOI

Rowell R.M. Handbook of Wood Chemistry and Wood Composites. CRC Press; Boca Raton, FL, USA: 2005. p. 487.

Salmén L., Burgert I. Cell wall features with regard to mechanical performance. A Review COST Action E35 2004–2008: Wood Machining—Micromechanics and Fracture. Wood Res. Technol. Holzforsch. 2009;63:121–129. doi: 10.1515/HF.2009.011. DOI

Winandy J.E., Lebow P.K. Modeling strength loss in wood by chemical composition. Part I. An individual component model for southern pine. Wood Fiber Sci. 2001;33:239–254.

Rowell R.M., Ibach R.E., McSweeny J., Nilsson T. Understanding decay resistance, dimensional stability and strength changes in heat treated and acetylated wood; Proceedings of the 4th European Conference on Wood Modification; Stockholm, Sweden. 27–29 April 2009; pp. 489–502.

Boonstra M.J., Acker J.V., Tjeerdsma B.F., Kegel E.V. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann. For. Sci. 2007;64:679–690. doi: 10.1051/forest:2007048. DOI

Spink C.H. Methods in Cell Biology. Academic Press; Cambridge, MA, USA: 2009. Differential Scanning Calorimetry; pp. 115–141. PubMed

Lee C.H., Yang T.H., Cheng Y.W., Lee C.J. Effects of thermal modification on the surface and chemical properties of moso bamboo. Constr. Build. Mater. 2018;178:59–71. doi: 10.1016/j.conbuildmat.2018.05.099. DOI

Gaff M., Kačík F., Gašparík M. Impact of thermal modification on the chemical changes and impact bending strength of European oak and Norway spruce. Compos. Struct. 2019;216:80–88. doi: 10.1016/j.compstruct.2019.02.091. DOI

Wahab R., Ghani R.S.M., Samsi H.W., Rasat M.S.M. Colour, strength and chemical alteration of Acacia Mangium wood treated in oil heat treatment. Can. J. Pure Appl. Sci. 2017;11:4169–4181.

Jebrane M., Pockrandt M., Cuccui I., Allegretti O., Uetimane E., Terziev N. Comparative Study of Two Softwood Species Industrially Modified by Thermowood® and Therm-Vacuum Process. BioResources. 2018;13:715–728. doi: 10.15376/biores.13.1.715-728. DOI

Gaff M., Kačík F., Gašparík M., Todaro L., Jones D., Corleto R., Makovická Osvaldová L., Čekovská H. The effect of synthetic and natural fire-retardants on burning and chemical characteristics of thermally modified teak (Tectona grandis L. f.) wood. Constr. Build. Mater. 2019;200:551–558. doi: 10.1016/j.conbuildmat.2018.12.106. DOI

Razak W., Izyan K., Tamer A.T., Aminuddin M., Othman S., Rafidah S., Farah W.A. The effectiveness of hot oil treatment on cultivated 15 yer-old Acacia hybrid against Coriolus versicolours, Gloephyllum trabeum and Pycnoporus sanguineus. J. Sci. Malays. 2012;41:163–169.

Gawron J., Grzeskiewicz M., Zawadzki J., Zielenkiewicz T., Radomski A. The influence of time and temperature of beech wood (Fagus sylvatica L.) heat treatment in superheated steam on the carbohydrates content. Wood Res. 2011;56:213–220.

Candelier K., Dumarcay S., Petrissans A., Desharnais L., Gerardin P., Petrissans M. Comparisons of chemical composition and decay durability of heat treated wood cured under different inert atmosphere: Nitrogen and vacuum. Polym. Degrad. Stab. 2013;98:677–681. doi: 10.1016/j.polymdegradstab.2012.10.022. DOI

Čabalová I., Zachar M., Kačík F., Tribulová T. Impact of Thermal Loading on Selected Chemical and Morphological Properties of Spruce ThermoWood. BioResources. 2019;14:387–400. doi: 10.15376/biores.14.1.387-400. DOI

Poletto M., Ornaghi H., Zattera A. Native Cellulose Structure, Characterization and Thermal Properties. Materials. 2014;7:6105–6119. doi: 10.3390/ma7096105. PubMed DOI PMC

Tjeerdsma B., Boonstra M., Pizzi A., Tekely P., Militz H. Characterisation of thermally modified wood: Molecular reasons for wood performance improvement. Holz Als Roh Werkst. 1998;56:149–153. doi: 10.1007/s001070050287. DOI

Windeisen E., Wegener G. Chemical characterization and comparison of thermally treated beech and ash wood. Mater. Sci. Forum. 2009;599:143–158. doi: 10.4028/www.scientific.net/MSF.599.143. DOI

Čabalová I., Kačík F., Lagaňa R., Výbohová E., Bubeníková T., Čaňová I., Ďurkovič J. Effect of thermal treatment on the chemical, physical, and mechanical properties of pedunculate oak (Quercus robur L.) wood. BioResources. 2018;13:157–170. doi: 10.15376/biores.13.1.157-170. DOI

Kubovský D., Kačíková D., Kačík F. Structural Changes of Oak Wood Main Components Caused by Thermal Modification. Polymers. 2020;12:485. doi: 10.3390/polym12020485. PubMed DOI PMC

Park S., Baker J.O., Himmel M.E., Parilla P.A., Johnson D.K. Cellulose crystallinity index: Measurement techniques and their impact in interpreting cellulase performance. Biotechnol. Biofuels. 2010;3:1–10. doi: 10.1186/1754-6834-3-10. PubMed DOI PMC

Tribulová T., Kačík F., Evtuguin D.V., Čabalová I., Ďurkovič J. The effects of transition metal sulfates on cellulose crystallinity during accelerated ageing of silver fir wood. Cellulose. 2019;26:2625–2638. doi: 10.1007/s10570-018-2210-8. DOI

Yuan J.M., Feng Y.R., He L.P. Effect of thermal treatment on properties of ramie fibers. Polym. Degrad. Stab. 2016;133:303–311. doi: 10.1016/j.polymdegradstab.2016.09.012. DOI

Hong T., Yin J.Y., Nie S.P., Xie M.Y. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chem. 2021;12:100–168. doi: 10.1016/j.fochx.2021.100168. PubMed DOI PMC

Wiercigroch E., Szafraniec E., Czamara K., Pacia M.Z., Majzner K., Kochan K., Kaczor A., Baranska M., Malek K. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022;185:317–335. doi: 10.1016/j.saa.2017.05.045. PubMed DOI

Åkerholm M., Hinterstoisser B., Salmén L. Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydr. Res. 2004;3:569–578. doi: 10.1016/j.carres.2003.11.012. PubMed DOI

Nakao T., Tanaka C., Takahashi A. Long-Term Changes in Degree of Crystallinity of Wood Cellulose. Holzforschung. 1989;43:419–420.

Kubojima Y., Okano T., Ohta M. Vibrational properties of heat-treated green wood. J. Wood Sci. 2000;46:63–67. doi: 10.1007/BF00779555. DOI

Li M.Y., Cheng S.C., Li D., Wang S.N., Huang A.M., Sun S.Q. Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy. Chin. Chem. Lett. 2015;26:221–225. doi: 10.1016/j.cclet.2014.11.024. DOI

Lopes J.Q., Garcia R.A., Dias S.N. Infrared spectroscopy of the surface of thermally-modified teak juvenile wood. Cienc. Y Technol. 2018;20:737–746. doi: 10.4067/S0718-221X2018005041901. DOI

Kačíková D., Kačík F., Čabalová I., Ďurkovič J. Effects on thermal treatment on chemical, mechanical and colour traits in Norway spruce wood. Bioresour. Technol. 2013;144:669–674. doi: 10.1016/j.biortech.2013.06.110. PubMed DOI

Nakano T., Miyazaki J. Surface Fractal dimensionality and hygroscopicity for heated wood. Holzforschung. 2003;57:289–294. doi: 10.1515/HF.2003.043. DOI

Seifert K. Uber ein neues Verfahren zur Schnellbestimmung Der Rein-Cellulose. Das Pap. 1956;10:301–306.

Wise L.E., Murphy M., D’Addieco A.A. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap. Trade J. 1946;122:35–43.

Kačík F., Solár R. Analytical Chemistry of Wood. Technical University in Zvolen; Zvolen, Slovakia: 1999. p. 369. (In Slovak)

Yildiz S., Gümüşkaya E. The effects of thermal modification on crystalline structure of cellulose in soft and hardwood. Build. Environ. 2007;42:62–67. doi: 10.1016/j.buildenv.2005.07.009. DOI

Bhuiyan M.T.R., Hirai N., Sobue N. Effect of intermittent heat treatment on crystallinity in wood cellulose. J. Wood Sci. 2001;47:336–341. doi: 10.1007/BF00766782. DOI

Creely J.J., Conrad C.M. X-ray diffractometer thermal technique for study of structural changes in cellulosic compounds. Text. Res. J. 1962;32:184–189. doi: 10.1177/004051756203200303. DOI

Oh S.Y., Yoo D.I., Shin Y., Kim H.C., Kim H.Y., Chung Y.S., Park W.H., Youk J.H. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr. Res. 2005;340:2376–2391. doi: 10.1016/j.carres.2005.08.007. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Saccharide Alterations in Spruce Wood Due to Thermal and Accelerated Aging Processes

. 2025 May 06 ; 17 (9) : . [epub] 20250506

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...