Dynamics of Phloridzin and Related Compounds in Four Cultivars of Apple Trees during the Vegetation Period
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
TJ02000196
Technology Agency of the Czech Republic
SVV 260 548
Grantová Agentura, Univerzita Karlova
1152120
Grantová Agentura, Univerzita Karlova
QJ1210104
NATIONAL AGENCY FOR AGRICULTURAL RESEARCH OF THE CZECH REPUBLIC
Reg. No. CZ.02.1.01/0.0/0.0/15_003/0000465
European Regional Development Fund
PubMed
34206687
PubMed Central
PMC8270342
DOI
10.3390/molecules26133816
PII: molecules26133816
Knihovny.cz E-resources
- Keywords
- apple tree cultivars, bark and twigs, leaves and buds, phenolic compounds, phloridzin, vegetation period,
- MeSH
- Phlorhizin metabolism MeSH
- Plant Bark metabolism MeSH
- Plant Leaves metabolism MeSH
- Malus metabolism MeSH
- Fruit metabolism MeSH
- Rutin metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Phlorhizin MeSH
- Rutin MeSH
Apple trees (Malus domestica Borgh) are a rich source of dihydrochalcones, phenolic acids and flavonoids. Considering the increasing demand for these phytochemicals with health-benefitting properties, the objective of this study was to evaluate the profile of the main bioactive compounds-phloridzin, phloretin, chlorogenic acid and rutin-in apple tree bark, leaves, flower buds and twigs. The variety in the phenolic profiles of four apple tree cultivars was monitored during the vegetation period from March to September using chromatography analysis. Phloridzin, the major glycoside of interest, reached the highest values in the bark of all the tested cultivars in May (up to 91.7 ± 4.4 mg g-1 of the dried weight (DW), cv. 'Opal'). In the leaves, the highest levels of phloridzin were found in cv. 'Opal' in May (82.5 ± 22.0 mg g-1 of DW); in twigs, the highest levels were found in cv. 'Rozela' in September (52.4 ± 12.1 mg g-1 of DW). In the flower buds, the content of phloridzin was similar to that in the twigs. Aglycone phloretin was found only in the leaves in relatively low concentrations (max. value 2.8 ± 1.4 mg g-1 of DW). The highest values of rutin were found in the leaves of all the tested cultivars (10.5 ± 2.9 mg g-1 of DW, cv. 'Opal' in September); the concentrations in the bark and twigs were much lower. The highest content of chlorogenic acid was found in flower buds (3.3 ± 1.0 mg g-1 of DW, cv. 'Rozela'). Whole apple fruits harvested in September were rich in chlorogenic acid and phloridzin. The statistical evaluation by Scheffe's test confirmed the significant difference of cv. 'Rozela' from the other tested cultivars. In conclusion, apple tree bark, twigs, and leaves were found to be important renewable resources of bioactive phenolics, especially phloridzin and rutin. The simple availability of waste plant material can therefore be used as a rich source of phenolic compounds for cosmetics, nutraceuticals, and food supplement preparation.
See more in PubMed
Han L., Fang C., Zhu R., Peng Q., Li D., Wang M. Inhibitory effect of phloretin on α-glucosidase: Kinetics, interaction mechanism and molecular docking. Int. J. Biol. Macromol. 2017;95:520–527. doi: 10.1016/j.ijbiomac.2016.11.089. PubMed DOI
Masumoto S., Akimoto Y., Oike H., Kobori M. Dietary Phloridzin Reduces Blood Glucose Levels and Reverses Sglt1 Expression in the Small Intestine in Streptozotocin-Induced Diabetic Mice. J. Agric. Food Chem. 2009;57:4651–4656. doi: 10.1021/jf9008197. PubMed DOI
Najafian M., Jahromi M.Z., Nowroznejhad M.J., Khajeaian P., Kargar M.M., Sadeghi M., Arasteh A. Phloridzin reduces blood glucose levels and improves lipids metabolism in streptozotocin-induced diabetic rats. Mol. Biol. Rep. 2011;39:5299–5306. doi: 10.1007/s11033-011-1328-7. PubMed DOI
Mudaliar S., Polidori D., Zambrowicz B., Henry R.R. Sodium–Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport. Diabetes Care. 2015;38:2344–2353. doi: 10.2337/dc15-0642. PubMed DOI
Lu Y.-Y., Liang J., Chen S.-X., Wang B.-X., Yuan H., Li C.-T., Wu Y.-Y., Wu Y.-F., Shi X.-G., Gao J., et al. Phloridzin alleviate colitis in mice by protecting the intestinal brush border and improving the expression of sodium glycogen transporter 1. J. Funct. Foods. 2018;45:348–354. doi: 10.1016/j.jff.2018.02.006. DOI
Choi C.-I. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors from Natural Products: Discovery of Next-Generation Antihyperglycemic Agents. Molecules. 2016;21:1136. doi: 10.3390/molecules21091136. PubMed DOI PMC
Blaschek W. Natural Products as Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors. Planta Medica. 2017;83:985–993. doi: 10.1055/s-0043-106050. PubMed DOI
Ehrenkranz J.R.L., Lewis N.G., Kahn C.R., Roth J. Phloridzin: A review. Diabetes Metabol. Res. Rev. 2005;21:31–38. doi: 10.1002/dmrr.532. PubMed DOI
Behzad S., Sureda A., Barreca D., Nabavi S.F., Rastrelli L. Health effects of phloretin: From chemistry to medicine. Phytochem. Rev. 2017;16:527–533. doi: 10.1007/s11101-017-9500-x. DOI
Francini A., Sebastiani L. Phenolic Compounds in Apple (Malus × domestica Borkh.): Compounds Characterization and Stability during Postharvest and after Processing. Antioxidants. 2013;2:181–193. doi: 10.3390/antiox2030181. PubMed DOI PMC
Walia M., Kumar S., Agnihotri V.K. UPLC-PDA quantification of chemical constituents of two different varieties (golden and royal) of apple leaves and their antioxidant activity. J. Sci. Food Agric. 2016;96:1440–1450. doi: 10.1002/jsfa.7239. PubMed DOI
Xü K., Lü H., Qü B., Shan H., Song J. High-speed counter-current chromatography preparative separation and purification of phloretin from apple tree bark. Sep. Purif. Technol. 2010;72:406–409. doi: 10.1016/j.seppur.2010.02.020. DOI
Ma Y., Ban Q., Shi J., Dong T., Jiang C.-Z., Wang Q. 1-Methylcyclopropene (1-MCP), storage time, and shelf life and temperature affect phenolic compounds and antioxidant activity of ‘Jonagold’ apple. Postharvest Biol. Technol. 2019;150:71–79. doi: 10.1016/j.postharvbio.2018.12.015. DOI
Barreca D., Bellocco E.S., Laganà G., Ginestra G., Bisignano C. Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat. Food Chem. 2014;160:292–297. doi: 10.1016/j.foodchem.2014.03.118. PubMed DOI
Aliomrani M., Sepand M.R., Mirzaei H.R., Kazemi A.R., Nekoonam S., Sabzevari O. Effects of phloretin on oxidative and inflammatory reaction in rat model of cecal ligation and puncture induced sepsis. DARU J. Pharm. Sci. 2016;24:1–8. doi: 10.1186/s40199-016-0154-9. PubMed DOI PMC
Rana S., Kumar S., Rana A., Sharma V., Katoch P., Padwad Y., Bhushan S. Phenolic constituents from apple tree leaves and their in vitro biological activity. Ind. Crop. Prod. 2016;90:118–125. doi: 10.1016/j.indcrop.2016.06.027. DOI
Kim J., Durai P., Jeon D., Jung I.D., Lee S.J., Park Y.-M., Kim Y. Phloretin as a Potent Natural TLR2/1 Inhibitor Suppresses TLR2-Induced Inflammation. Nutrients. 2018;10:868. doi: 10.3390/nu10070868. PubMed DOI PMC
Bondonno N., Bondonno C.P., Ward N., Hodgson J.M., Croft K.D. The cardiovascular health benefits of apples: Whole fruit vs. isolated compounds. Trends Food Sci. Technol. 2017;69:243–256. doi: 10.1016/j.tifs.2017.04.012. DOI
Khalifa M.M., Bakr A.G., Osman A.T. Protective effects of phloridzin against methotrexate-induced liver toxicity in rats. Biomed. Pharmacother. 2017;95:529–535. doi: 10.1016/j.biopha.2017.08.121. PubMed DOI
De Oliveira M.R. Phloretin-induced cytoprotective effects on mammalian cells: A mechanistic view and future directions. BioFactors. 2016;42:13–40. doi: 10.1002/biof.1256. PubMed DOI
Li X., Chen B., Xie H., He Y., Zhong D., Chen D. Antioxidant Structure–Activity Relationship Analysis of Five Dihydrochalcones. Molecules. 2018;23:1162. doi: 10.3390/molecules23051162. PubMed DOI PMC
Yin Z., Zhang Y., Zhang J., Wang J., Kang W. Coagulatory active constituents of Malus pumila Mill. flowers. Chem. Cent. J. 2018;12:1–7. doi: 10.1186/s13065-018-0490-6. PubMed DOI PMC
Liu B., Liu J., Zhang C., Liu J., Jiao Z. Enzymatic preparation and antioxidant activity of the phloridzin oxidation product. J. Food Biochem. 2017;42:e12475. doi: 10.1111/jfbc.12475. DOI
Gosch C., Halbwirth H., Kuhn J., Miosic S., Stich K. Biosynthesis of phloridzin in apple (Malus domestica Borkh.) Plant Sci. 2009;176:223–231. doi: 10.1016/j.plantsci.2008.10.011. DOI
Zhou K., Hu L., Li P., Gong X., Ma F. Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in Malus species. Plant Sci. 2017;265:131–145. doi: 10.1016/j.plantsci.2017.10.003. PubMed DOI
Ibdah M., Martens S., Gang D.R. Biosynthetic Pathway and Metabolic Engineering of Plant Dihydrochalcones. J. Agric. Food Chem. 2018;66:2273–2280. doi: 10.1021/acs.jafc.7b04445. PubMed DOI
Gosch C., Halbwirth H., Stich K. Phloridzin: Biosynthesis, distribution and physiological relevance in plants. Phytochemistry. 2010;71:838–843. doi: 10.1016/j.phytochem.2010.03.003. PubMed DOI
Niederberger K.E., Tennant D.R., Bellion P. Dietary intake of phloridzin from natural occurrence in foods. Br. J. Nutr. 2020;123:942–950. doi: 10.1017/S0007114520000033. PubMed DOI
Boerjan W., Ralph J., Baucher M. Lignin Biosynthesis. Annu. Rev. Plant Biol. 2003;54:519–546. doi: 10.1146/annurev.arplant.54.031902.134938. PubMed DOI
Tajik N., Tajik M., Mack I., Enck P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017;56:2215–2244. doi: 10.1007/s00394-017-1379-1. PubMed DOI
Cai R., Miao M., Yue T., Zhang Y., Cui L., Wang Z., Yuan Y. Antibacterial activity and mechanism of cinnamic acid and chlorogenic acid against Alicyclobacillus acidoterrestris vegetative cells in apple juice. Int. J. Food Sci. Technol. 2019;54:1697–1705. doi: 10.1111/ijfs.14051. DOI
Zhao Y., Wang J., Ballevre O., Luo H., Zhang W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens. Res. 2012;35:370–374. doi: 10.1038/hr.2011.195. PubMed DOI
Kumar R., Sharma A., Iqbal M.S., Srivastava J.K. Therapeutic Promises of Chlorogenic Acid with Special Emphasis on its Anti-Obesity Property. Curr. Mol. Pharmacol. 2020;13:7–16. doi: 10.2174/1874467212666190716145210. PubMed DOI
Kalinowska M. Kwasy chlorogenowe w produktach naturalnych oraz ich właściwości antyutleniające i przeciwdrobnoustrojowe. Przemysl Chem. 2017;1:77–82. doi: 10.15199/62.2017.11.9. DOI
Awad M.A., de Jager A., van Westing L.M. Flavonoid and chlorogenic acid levels in apple fruit: Characterisation of variation. Sci. Hortic. 2000;83:249–263. doi: 10.1016/S0304-4238(99)00124-7. DOI
Awad M.A., de Jager A., van der Plas L.H., van der Krol A.R. Flavonoid and chlorogenic acid changes in skin of ‘Elstar’ and ‘Jonagold’ apples during development and ripening. Sci. Hortic. 2001;90:69–83. doi: 10.1016/S0304-4238(00)00255-7. DOI
Vondráková Z., Trávníčková A., Malbeck J., Haisel D., Černý R., Cvikrová M. The effect of storage conditions on the carotenoid and phenolic acid contents of selected apple cultivars. Eur. Food Res. Technol. 2020;246:1783–1794. doi: 10.1007/s00217-020-03532-w. DOI
Parvaneh T., Abedi B., Davarynejad G.H., Moghadam E.G. Enzyme activity, phenolic and flavonoid compounds in leaves of Iranian red flesh apple cultivars grown on different rootstocks. Sci. Hortic. 2019;246:862–870. doi: 10.1016/j.scienta.2018.11.034. DOI
Kreft S., Knapp M., Kreft I. Extraction of Rutin from Buckwheat (Fagopyrum esculentum Moench) Seeds and Determination by Capillary Electrophoresis. J. Agric. Food Chem. 1999;47:4649–4652. doi: 10.1021/jf990186p. PubMed DOI
Shafi W., Mansoor S., Jan S., Singh D.B., Kazi M., Raish M., AlWadei M., Mir J.I., Ahmad P. Variability in Catechin and Rutin Contents and Their Antioxidant Potential in Diverse Apple Genotypes. Molecules. 2019;24:943. doi: 10.3390/molecules24050943. PubMed DOI PMC
Gómez-Mejía E., Rosales-Conrado N., León-González M.E., Madrid Y. Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chem. 2019;295:289–299. doi: 10.1016/j.foodchem.2019.05.136. PubMed DOI
Malagutti A.R., Zuin V.G., Cavalheiro É.T.G., Mazo L.H. Determination of Rutin in Green Tea Infusions Using Square-Wave Voltammetry with a Rigid Carbon-Polyurethane Composite Electrode. Electroanalysis. 2006;18:1028–1034. doi: 10.1002/elan.200603496. DOI
Morling J.R., Yeoh S.E., Kolbach D.N. Rutosides for treatment of post-thrombotic syndrome. Cochrane Database Syst. Rev. 2015;9:CD005625. doi: 10.1002/14651858.CD005625.pub3. PubMed DOI
Ganeshpurkar A., Saluja A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017;25:149–164. doi: 10.1016/j.jsps.2016.04.025. PubMed DOI PMC
Gutierrez B.L., Arro J., Zhong G.-Y., Brown S.K. Linkage and association analysis of dihydrochalcones phloridzin, sieboldin, and trilobatin in Malus. Tree Genet. Genomes. 2018;14:91. doi: 10.1007/s11295-018-1304-7. DOI
Wang F., Li J., Li L., Gao Y., Wang F., Zhang Y., Fan Y., Wu C. Protective effect of apple polyphenols on chronic ethanol exposure-induced neural injury in rats. Chem. Interact. 2020;326:109113. doi: 10.1016/j.cbi.2020.109113. PubMed DOI
Wandjou J.G.N., Lancioni L., Barbalace M.C., Hrelia S., Papa F., Sagratini G., Vittori S., Dall’Acqua S., Caprioli G., Beghelli D., et al. Comprehensive characterization of phytochemicals and biological activities of the Italian ancient apple ‘Mela Rosa dei Monti Sibillini’. Food Res. Int. 2020;137:109422. doi: 10.1016/j.foodres.2020.109422. PubMed DOI
Tschida A., Stadlbauer V., Schwarzinger B., Maier M., Pitsch J., Stübl F., Müller U., Lanzerstorfer P., Himmelsbach M., Wruss J., et al. Nutrients, bioactive compounds, and minerals in the juices of 16 varieties of apple (Malus domestica) harvested in Austria: A four-year study investigating putative correlations with weather conditions during ripening. Food Chem. 2021;338:128065. doi: 10.1016/j.foodchem.2020.128065. PubMed DOI
Liaudanskas M., Viskelis P., Raudonis R., Kviklys D., Uselis N., Janulis V. Phenolic Composition and Antioxidant Activity of Malus domestica Leaves. Sci. World J. 2014;2014:306217. doi: 10.1155/2014/306217. PubMed DOI PMC
Radenkovs V., Püssa T., Juhnevica-Radenkova K., Kviesis J., Salar F.J., Moreno D.A., Drudze I. Wild apple (Malus spp.) by-products as a source of phenolic compounds and vitamin C for food applications. Food Biosci. 2020;38:100744. doi: 10.1016/j.fbio.2020.100744. DOI
Sowa A., Zgórka G., Szykuła A., Franiczek R., Żbikowska B., Gamian A., Sroka Z. Analysis of Polyphenolic Compounds in Extracts from Leaves of Some Malus domestica Cultivars: Antiradical and Antimicrobial Analysis of These Extracts. BioMed Res. Int. 2016;2016:6705431. doi: 10.1155/2016/6705431. PubMed DOI PMC
Neveu V., Perez-Jimenez J., Vos F., Crespy V., Du Chaffaut L., Mennen L., Knox C., Eisner R., Cruz J., Wishart D., et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database. 2010;2010:bap024. doi: 10.1093/database/bap024. PubMed DOI PMC
Zhang Z., Liu F., He C., Yu Y., Wang M. Optimization of Ultrasonic-Assisted Aqueous Two-Phase Extraction of Phloridzin from Malus Micromalus Makino with Ethanol/Ammonia Sulfate System. J. Food Sci. 2017;82:2944–2953. doi: 10.1111/1750-3841.13958. PubMed DOI
Łata B., Trampczynska A., Paczesna J. Cultivar variation in apple peel and whole fruit phenolic composition. Sci. Hortic. 2009;121:176–181. doi: 10.1016/j.scienta.2009.01.038. DOI
Chen C.-S., Zhang D., Wang Y.-Q., Li P., Ma F.-W. Effects of fruit bagging on the contents of phenolic compounds in the peel and flesh of ‘Golden Delicious’, ‘Red Delicious’, and ‘Royal Gala’ apples. Sci. Hortic. 2012;142:68–73. doi: 10.1016/j.scienta.2012.05.001. DOI
Bílková A., Baďurová K., Svobodová P., Vávra R., Jakubec P., Chocholouš P., Švec F., Sklenářová H. Content of major phenolic compounds in apples: Benefits of ultra-low oxygen conditions in long-term storage. J. Food Compos. Anal. 2020;92:103587. doi: 10.1016/j.jfca.2020.103587. DOI