Determination of Phloridzin and Other Phenolic Compounds in Apple Tree Leaves, Bark, and Buds Using Liquid Chromatography with Multilayered Column Technology and Evaluation of the Total Antioxidant Activity
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
TJ02000196
Technology Agency of the Czech Republic
SVV 260 548
Charles University
GA UK No. 1152120
Charles University
CZ.02.1.01/0.0/0.0/16_019/0000841
ERDF
PubMed
35215355
PubMed Central
PMC8880626
DOI
10.3390/ph15020244
PII: ph15020244
Knihovny.cz E-resources
- Keywords
- HPLC, antioxidant activity, apple tree material, phenolic compounds, phloridzin, stationary phases,
- Publication type
- Journal Article MeSH
Apples are known to be a rich source of phenolic compounds, however detailed studies about their content in the individual parts of apple trees are reported rarely. For this purpose, we tested various stationary phases for the determination of phenolic compounds in leaves, bark, and buds. Phloridzin, phloretin, chlorogenic acid, rutin, and quercitrin were analyzed with high performance liquid chromatography coupled with diode array detection. A YMC Triart C18-ExRS 150 × 4.6 mm, 5 µm particle size analytical column with multilayered particle technology was used. The separation was performed with a mobile phase that consisted of acetonitrile and 0.1% phosphoric acid, according to the gradient program, at a flow rate of 1 mL/min for 12.50 min. The concentration of phenolic compounds from 13 cultivars was in the range of 64.89-106.01 mg/g of dry weight (DW) in leaves, 70.81-113.18 mg/g DW in bark, and 100.68-139.61 mg/g DW in buds. Phloridzin was a major compound. The total antioxidant activity was measured using flow analysis and the correlation with the total amount of phenolic compounds was found. This finding can lead to the re-use of apple tree material to isolate substances that can be utilized in the food, pharmaceutical, or cosmetics industries.
See more in PubMed
De Koninck L. Ueber das Phloridzin (Phlorrhizin) In: Geiger L.P., Liebig J., Trommsdorff J.B., editors. Annalen der Pharmacie, Band XV. Universitäts-Buchhandlung von C. F. Winter; Heidelberg, Germany: 1835. pp. 75–77.
Tsao R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients. 2010;2:1231–1246. doi: 10.3390/nu2121231. PubMed DOI PMC
Ibdah M., Martens S., Gang D. Biosynthetic Pathway and Metabolic Engineering of Plant Dihydrochalcones. J. Agric. Food Chem. 2018;66:2273–2280. doi: 10.1021/acs.jafc.7b04445. PubMed DOI
Lata B., Trampczynska A., Paczesna J. Cultivar variation in apple peel and whole fruit phenolic composition. Sci. Hortic. 2009;121:176–181. doi: 10.1016/j.scienta.2009.01.038. DOI
Feng S., Yi J., Li X., Wu X., Zhao Y., Ma Y., Bi J. Systematic Review of Phenolic Compounds in Apple Fruits: Compositions, Distribution, Absorption, Metabolism, and Processing Stability. J. Agric. Food Chem. 2021;69:7–27. doi: 10.1021/acs.jafc.0c05481. PubMed DOI
Liaudanskas M., Viškelis P., Kviklys D., Raudonis R., Janulis V. A comparative study of phenolic content in apple fruits. Int. J. Food Prop. 2015;18:945–953. doi: 10.1080/10942912.2014.911311. DOI
Bílková A., Baďurová K., Svobodová P., Vávra R., Jakubec P., Chocholouš P., Švec F., Sklenářová H. Content of major phenolic compounds in apples: Benefits of ultra-low oxygen conditions in long-term storage. J. Food Compos. Anal. 2020;92:103587. doi: 10.1016/j.jfca.2020.103587. DOI
Sowa A., Zgórka G., Szykuła A., Franiczek R., Żbikowska B., Gamian A., Sroka Z. Analysis of Polyphenolic Compounds in Extracts from Leaves of Some Malus domestica Cultivars: Antiradical and Antimicrobial Analysis of These Extracts. Biomed. Res. Int. 2016;2016:6705431. doi: 10.1155/2016/6705431. PubMed DOI PMC
Rana S., Kumar S., Rana A., Sharma V., Katoch P., Padwad Y., Bhushan S. Phenolic constituents from apple tree leaves and their in vitro biological activity. Ind. Crops Prod. 2016;90:118–125. doi: 10.1016/j.indcrop.2016.06.027. DOI
Hilt P., Schieber A., Yildirim C., Arnold G., Klaiber I., Conrad J., Beifuss U., Carle R. Detection of phloridzin in strawberries (Fragaria x ananassa Duch.) by HPLC-PDA-MS/MS and NMR spectroscopy. J. Agric. Food Chem. 2003;51:2896–2899. doi: 10.1021/jf021115k. PubMed DOI
Gosch C., Stich K., Halbwirth H. Cloning and heterologous expression of glycosyltransferases from Malus x domestica and Pyrus communis, which convert phloretin to phloretin 20-O-glucoside (phloridzin) Plant Sci. 2010;178:299–306. doi: 10.1016/j.plantsci.2009.12.009. DOI
Hvattum E. Determination of phenolic compounds in rose hip (Rosa canina) using liquid chromatography coupled to electrospray ionisation tandem mass spectrometry and diode-array detection. Rapid Commun. Mass Spectrom. 2002;16:655–662. doi: 10.1002/rcm.622. PubMed DOI
Hertog M.G., Kromhout D., Aravanis C., Blackburn H., Buzina R., Fidanza F., Giampaoli S., Jansen A., Menotti A., Nedeljkovic S. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch. Intern. Med. 1995;155:381–386. doi: 10.1001/archinte.1995.00430040053006. PubMed DOI
Garcia-Mazcorro J.F., Pedreschi R., Yuan J., Kawas J.R., Chew B., Dowd S.E., Noratto G. Apple consumption is associated with a distinctive microbiota, proteomics and metabolomics profile in the gut of Dawley Sprague rats fed a high-fat diet. PLoS ONE. 2019;14:e0212586. doi: 10.1371/journal.pone.0212586. PubMed DOI PMC
Ginwala R., Bhavsar R., Chigbu D.G.I., Jain P., Khan Z.K. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants. 2019;8:35. doi: 10.3390/antiox8020035. PubMed DOI PMC
Shirosaki M., Koyama T., Yazawa K. Apple leaf extract as a potential candidate for suppressing postprandial elevation of the blood glucose level. J. Nutr. Sci. Vitaminol. 2012;58:63–67. doi: 10.3177/jnsv.58.63. PubMed DOI
Makarova E., Gornas P., Konrade I., Tirzite D., Cirule H., Gulbe A., Pugajeva I., Seglina D., Dambrova M. Acute antihyperglycaemic effects of an unripe apple preparation containing phlorizin in healthy volunteers: A preliminary study. J. Sci. Food Agric. 2015;95:560–568. doi: 10.1002/jsfa.6779. PubMed DOI
Tian L., Cao J., Zhao T., Liu Y., Khan A., Cheng G. The Bioavailability, Extraction, Biosynthesis and Distribution of Natural Dihydrochalcone: Phloridzin. Int. J. Mol. Sci. 2021;22:962. doi: 10.3390/ijms22020962. PubMed DOI PMC
Ziaullah, Bhullar K.S., Warnakulasuriya S.N., Rupasinghe H.P. Biocatalytic synthesis, structural elucidation, antioxidant capacity and tyrosinase inhibition activity of long chain fatty acid acylated derivatives of phloridzin and isoquercitrin. Bioorg. Med. Chem. 2013;21:684–692. doi: 10.1016/j.bmc.2012.11.034. PubMed DOI
Jandera P., Škeříková V., Řehová L., Hájek T., Baldriánová L., Škopová G., Kellner V., Horna A. RP-HPLC analysis of phenolic compounds and flavonoids in beverages and plant extracts using a CoulArray detector. J. Sep. Sci. 2005;28:1005–1022. doi: 10.1002/jssc.200500003. PubMed DOI
YMC [(accessed on 15 January 2022)]. Available online: https://www.ymc.co.jp/en/columns/ymc_triart_series/
Wilson D.W., Nash P., Buttar H.S., Griffiths K., Singh R., De Meester F., Horiuchi R., Takahashi T. The Role of Food Antioxidants, Benefits of Functional Foods, and Influence of Feeding Habits on the Health of the Older Person: An Overview. Antioxidants. 2017;6:81. doi: 10.3390/antiox6040081. PubMed DOI PMC
Escarpa A., González M.C. Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Anal. Chim. Acta. 2001;427:119–127. doi: 10.1016/S0003-2670(00)01188-0. DOI
Blasco A.J., Rogerio M.C., Gonzalez M.C., Escarpa A. “Electrochemical Index” as a screening method to determine “total polyphenolics” in foods: A proposal. Anal. Chim. Acta. 2005;539:237–244. doi: 10.1016/j.aca.2005.02.056. DOI
Táborský J., Sus J., Lachman J., Šebková B., Adamcová A., Šatínský D. Dynamics of Phloridzin and Related Compounds in Four Cultivars of Apple Trees during the Vegetation Period. Molecules. 2021;26:3816. doi: 10.3390/molecules26133816. PubMed DOI PMC
ICH. [(accessed on 14 January 2022)]. Available online: https://www.ich.org/page/quality-guidelines.