Estrogen Receptor Modulators in Viral Infections Such as SARS-CoV-2: Therapeutic Consequences

. 2021 Jun 18 ; 22 (12) : . [epub] 20210618

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34207220

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000785 Ministerstvo Školství, Mládeže a Tělovýchovy
PROGRES Q28 Univerzita Karlova v Praze

COVID-19 is a pandemic respiratory disease caused by the SARS-CoV-2 coronavirus. The worldwide epidemiologic data showed higher mortality in males compared to females, suggesting a hypothesis about the protective effect of estrogens against severe disease progression with the ultimate end being patient's death. This article summarizes the current knowledge regarding the potential effect of estrogens and other modulators of estrogen receptors on COVID-19. While estrogen receptor activation shows complex effects on the patient's organism, such as an influence on the cardiovascular/pulmonary/immune system which includes lower production of cytokines responsible for the cytokine storm, the receptor-independent effects directly inhibits viral replication. Furthermore, it inhibits the interaction of IL-6 with its receptor complex. Interestingly, in addition to natural hormones, phytestrogens and even synthetic molecules are able to interact with the estrogen receptor and exhibit some anti-COVID-19 activity. From this point of view, estrogen receptor modulators have the potential to be included in the anti-COVID-19 therapeutic arsenal.

Zobrazit více v PubMed

Costeira R., Lee K.A., Murray B., Christiansen C., Castillo-Fernandez J., Lochlainn M.N., Pujol J.C., Macfarlane H., Kenny L.C., Buchan I., et al. Estrogen and COVID-19 symptoms: Associations in women from the COVID symptom study. medRxiv. 2020 doi: 10.1101/2020.07.30.20164921. PubMed DOI PMC

Viveiros A., Rasmuson J., Vu J., Mulvagh S.L., Yip C.Y.Y., Norris C.M., Oudit G.Y. Sex differences in COVID-19: Candidate pathways, genetics of ACE2, and sex hormones. Am. J. Physiol. Heart Circ. Physiol. 2021;320:H296–H304. doi: 10.1152/ajpheart.00755.2020. PubMed DOI PMC

Channappanavar R., Fett C., Mack M., ten Eyck P.P., Meyerholz D.K., Perlman S. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J. Immunol. 2017;198:4046–4053. doi: 10.4049/jimmunol.1601896. PubMed DOI PMC

Al-kuraishy H.M., Al-Gareeb A.I., Faidah H., Al-Maiahy T.J., Cruz-Martins N., Batiha G.E.S. The looming effects of estrogen in covid-19: A rocky rollout. Front. Nutr. 2021;8:649128. doi: 10.3389/fnut.2021.649128. PubMed DOI PMC

Sha J., Qie G., Yao Q., Sun W., Wang C., Zhang Z., Wang X., Wang P., Jiang J., Bai X., et al. Sex differences on clinical characteristics, severity, and mortality in adult patients with COVID-19: A multicentre retrospective study. Front. Med. 2021;8:607059. doi: 10.3389/fmed.2021.607059. PubMed DOI PMC

Gooz M. ADAM-17: The enzyme that does it all. Crit. Rev. Biochem. Mol. Biol. 2010;45:146–169. doi: 10.3109/10409231003628015. PubMed DOI PMC

Lacina L., Brábek J., Král V., Kodet O., Smetana K. Interleukin-6: A molecule with complex biological impact in cancer. Histol. Histopathol. 2019;34 doi: 10.14670/HH-18-033. PubMed DOI

Giagulli V.A., Guastamacchia E., Magrone T., Jirillo E., Lisco G., de Pergola G., Triggiani V. Worse progression of COVID-19 in men: Is testosterone a key factor? Andrology. 2021;9:53–64. doi: 10.1111/andr.12836. PubMed DOI PMC

Stelzig K.E., Canepa-Escaro F., Schiliro M., Berdnikovs S., Prakash Y.S., Chiarella S.E. Estrogen regulates the expression of SARS-CoV-2 receptor ACE2 in differentiated airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020;318 doi: 10.1152/ajplung.00153.2020. PubMed DOI PMC

Wang Q., Liu J., Shao R., Han X., Su C., Lu W. Risk and clinical outcomes of COVID-19 in patients with rheumatic diseases compared with the general population: A systematic review and meta-analysis. Rheumatol. Int. 2021;41:851–861. doi: 10.1007/s00296-021-04803-9. PubMed DOI PMC

Moradi F., Enjezab B., Ghadiri-Anari A. The role of androgens in COVID-19. Diabetes Metab. Syndr. Clin. Res. Rev. 2020;14:2003–2006. doi: 10.1016/j.dsx.2020.10.014. PubMed DOI PMC

Vahedian-Azimi A., Pourhoseingholi M.A., Saberi M., Behnam B., Sahebkar A. Advances in Experimental Medicine and Biology. Volume 1321. Springer; Berlin/Heidelberg, Germany: 2021. Gender susceptibility to COVID-19 mortality: Androgens as the usual suspects? pp. 261–264. PubMed

Alopecia and Severity of COVID-19: A Cross-Sectional Study in Peru—PubMed. [(accessed on 10 May 2021)]; Available online: https://pubmed.ncbi.nlm.nih.gov/33664171/ PubMed

Subramanian A., Anand A., Adderley N.J., Okoth K., Toulis K.A., Gokhale K., Sainsbury C., O’Reilly M.W., Arlt W., Nirantharakumar K. Increased COVID-19 infections in women with polycystic ovary syndrome: A population-based study. Eur. J. Endocrinol. 2021;184:637–645. doi: 10.1530/EJE-20-1163. PubMed DOI PMC

Chanana N., Palmo T., Sharma K., Kumar R., Graham B.B., Pasha Q. Sex-derived attributes contributing to SARS-CoV-2 mortality. Am. J. Physiol. Endocrinol. Metab. 2020;319:E562–E567. doi: 10.1152/ajpendo.00295.2020. PubMed DOI PMC

Klein S.L., Flanagan K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016;16:626–638. doi: 10.1038/nri.2016.90. PubMed DOI

Forsyth K.S., Anguera M.C. Time to get ill: The intersection of viral infections, sex, and the X chromosome. Curr. Opin. Physiol. 2021;19:62–72. doi: 10.1016/j.cophys.2020.09.015. PubMed DOI PMC

Yakimchuk K., Jondal M., Okret S. Estrogen receptor α and β in the normal immune system and in lymphoid malignancies. Mol. Cell. Endocrinol. 2013;375:121–129. doi: 10.1016/j.mce.2013.05.016. PubMed DOI

Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell. Immunol. 2015;294:63–69. doi: 10.1016/j.cellimm.2015.01.018. PubMed DOI PMC

Wray S., Arrowsmith S. The physiological mechanisms of the sex-based difference in outcomes of COVID19 infection. Front. Physiol. 2021;12:71. doi: 10.3389/fphys.2021.627260. PubMed DOI PMC

Breithaupt-Faloppa A.C., de Jesus Correia C., Prado C.M., Stilhano R.S., Ureshino R.P., Moreira L.F.P. 17b-Estradiol, a Potential Ally to Alleviate SARS-CoV-2 Infection. Clinics. 2020;75:1–8. doi: 10.6061/clinics/2020/e1980. PubMed DOI PMC

Pinna G. Sex and COVID-19: A protective role for reproductive steroids. Trends Endocrinol. Metab. 2021;32:3–6. doi: 10.1016/j.tem.2020.11.004. PubMed DOI PMC

Zhao G., Xu Y., Li J., Cui X., Tan X., Zhang H., Dang L. Sex differences in immune responses to SARS-CoV-2 in patients with COVID-19. Biosci. Rep. 2021;41 doi: 10.1042/BSR20202074. PubMed DOI PMC

Vatansev H., Kadiyoran C., Cumhur Cure M., Cure E. COVID-19 infection can cause chemotherapy resistance development in patients with breast cancer and tamoxifen may cause susceptibility to COVID-19 infection. Med. Hypotheses. 2020;143:110091. doi: 10.1016/j.mehy.2020.110091. PubMed DOI PMC

Bravaccini S., Fonzi E., Tebaldi M., Angeli D., Martinelli G., Nicolini F., Parrella P., Mazza M. Estrogen and androgen receptor inhibitors: Unexpected allies in the fight against COVID-19. Cell Transplant. 2021;30 doi: 10.1177/0963689721991477. PubMed DOI PMC

Acheampong D.O., Barffour I.K., Boye A., Aninagyei E., Ocansey S., Morna M.T. Male predisposition to severe COVID-19: Review of evidence and potential therapeutic prospects. Biomed. Pharmacother. 2020;131:110748. doi: 10.1016/j.biopha.2020.110748. PubMed DOI PMC

Feng Q., Li L., Wang X. Identifying pathways and networks associated with the SARS-CoV-2 cell receptor ACE2 based on gene expression profiles in normal and SARS-CoV-2-infected human tissues. Front. Mol. Biosci. 2020;7:568954. doi: 10.3389/fmolb.2020.568954. PubMed DOI PMC

Kadel S., Kovats S. Sex hormones regulate innate immune cells and promote sex differences in respiratory virus infection. Front. Immunol. 2018;9:1653. doi: 10.3389/fimmu.2018.01653. PubMed DOI PMC

Millas I., Duarte Barros M. Estrogen receptors and their roles in the immune and respiratory systems. Anat. Rec. 2021 doi: 10.1002/ar.24612. PubMed DOI

Li Y., Jerkic M., Slutsky A.S., Zhang H. Molecular mechanisms of sex bias differences in COVID-19 mortality. Crit. Care. 2020;24:405. doi: 10.1186/s13054-020-03118-8. PubMed DOI PMC

Koenig A., Buskiewicz I., Huber S.A. Age-associated changes in estrogen receptor ratios correlate with increased female susceptibility to coxsackievirus B3-induced myocarditis. Front. Immunol. 2017;8:1585. doi: 10.3389/fimmu.2017.01585. PubMed DOI PMC

Wang S.H., Yeh S.H., Lin W.H., Yeh K.H., Yuan Q., Xia N.S., Chen D.S., Chen P.J. Estrogen receptor α represses transcription of HBV genes via interaction with hepatocyte nuclear factor 4α. Gastroenterology. 2012;142 doi: 10.1053/j.gastro.2011.12.045. PubMed DOI

Ulitzky L., Lafer M.M., KuKuruga M.A., Silberstein E., Cehan N., Taylor D.R. A new signaling pathway for HCV inhibition by estrogen: GPR30 activation leads to cleavage of occludin by MMP-9. PLoS ONE. 2016;11:e0145212. doi: 10.1371/journal.pone.0145212. PubMed DOI PMC

Magri A., Barbaglia M.N., Foglia C.Z., Boccato E., Burlone M.E., Cole S., Giarda P., Grossini E., Patel A.H., Minisini R., et al. 17,β-estradiol inhibits hepatitis C virus mainly by interference with the release phase of its life cycle. Liver Int. 2016;37:669–677. doi: 10.1111/liv.13303. PubMed DOI PMC

Villa E., Karampatou A., Camm C., di Leo A., Luongo M., Ferrari A., Petta S., Losi L., Taliani G., Trande P., et al. Early menopause is associated with lack of response to antiviral therapy in women with chronic hepatitis C. Gastroenterology. 2011;140:818–829.e2. doi: 10.1053/j.gastro.2010.12.027. PubMed DOI

Lemes R.M.R., Costa A.J., Bartolomeo C.S., Bassani T.B., Nishino M.S., da Silva Pereira G.J., Smaili S.S., de Barros Maciel R.M., Braconi C.T., da Cruz E.F., et al. 17β-estradiol reduces SARS-CoV-2 infection in vitro. Physiol. Rep. 2021;9:e14707. doi: 10.14814/phy2.14707. PubMed DOI PMC

Penny C.J., Vassileva K., Jha A., Yuan Y., Chee X., Yates E., Mazzon M., Kilpatrick B.S., Muallem S., Marsh M., et al. Mining of ebola virus entry inhibitors identifies approved drugs as two-pore channel pore blockers. Biochim. Biophys. Acta Mol. Cell Res. 2019;1866:1151–1161. doi: 10.1016/j.bbamcr.2018.10.022. PubMed DOI PMC

Jeon S., Ko M., Lee J., Choi I., Byun S.Y., Park S., Shum D., Kim S. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother. 2020;64 doi: 10.1128/AAC.00819-20. PubMed DOI PMC

Ghasemnejad-Berenji M., Pashapour S., Ghasemnejad-Berenji H. Therapeutic potential for clomiphene, a selective estrogen receptor modulator, in the treatment of COVID-19. Med. Hypotheses. 2020;145:110354. doi: 10.1016/j.mehy.2020.110354. PubMed DOI PMC

Nelson E.A., Barnes A.B., Wiehle R.D., Fontenot G.K., Hoenen T., White J.M. Clomiphene and its isomers block ebola virus particle entry and infection with similar potency: Potential therapeutic implications. Viruses. 2016;8:206. doi: 10.3390/v8080206. PubMed DOI PMC

Calderone A., Menichetti F., Santini F., Colangelo L., Lucenteforte E., Calderone V. Selective estrogen receptor modulators in COVID-19: A possible therapeutic option? Front. Pharmacol. 2020;11:1085. doi: 10.3389/fphar.2020.01085. PubMed DOI PMC

Cooper L., Schafer A., Li Y., Cheng H., Medegan Fagla B., Shen Z., Nowar R., Dye K., Anantpadma M., Davey R.A., et al. Screening and reverse-engineering of estrogen receptor ligands as potent pan-filovirus inhibitors. J. Med. Chem. 2020;63:11085–11099. doi: 10.1021/acs.jmedchem.0c01001. PubMed DOI PMC

Martin W.R., Cheng F. Repurposing of FDA-approved toremifene to treat COVID-19 by blocking the spike glycoprotein and NSP14 of SARS-CoV-2. J. Proteome Res. 2020;19:4670–4677. doi: 10.1021/acs.jproteome.0c00397. PubMed DOI PMC

Hong S., Chang J.O., Jeong K., Lee W. Raloxifene as a treatment option for viral infections. J. Microbiol. 2021;59:124–131. doi: 10.1007/s12275-021-0617-7. PubMed DOI PMC

Fan H., Du X., Zhang J., Zheng H., Lu X., Wu Q., Li H., Wang H., Shi Y., Gao G., et al. Selective inhibition of ebola entry with selective estrogen receptor modulators by disrupting the endolysosomal calcium. Sci. Rep. 2017;7 doi: 10.1038/srep41226. PubMed DOI PMC

Tohma D., Tajima S., Kato F., Sato H., Kakisaka M., Hishiki T., Kataoka M., Takeyama H., Lim C.K., Aida Y., et al. An estrogen antagonist, cyclofenil, has anti-dengue-virus activity. Arch. Virol. 2019;164:225–234. doi: 10.1007/s00705-018-4079-0. PubMed DOI

Li E., Stupack D.G., Brown S.L., Klemke R., Schlaepfer D.D., Nemerow G.R. Association of P130(CAS) with phosphatidylinositol-3-OH kinase mediates adenovirus cell entry. J. Biol. Chem. 2000;275:14729–14735. doi: 10.1074/jbc.275.19.14729. PubMed DOI

Akula S.M., Hurley D.J., Wixon R.L., Wang C., Chase C.C.L. Effect of genistein on replication of bovine herpesvirus type 1. Am. J. Vet. Res. 2002;63:1124–1128. doi: 10.2460/ajvr.2002.63.1124. PubMed DOI

Andres A., Donovan S.M., Kuhlenschmidt M.S. Soy isoflavones and virus infections. J. Nutr. Biochem. 2009;20:563–569. doi: 10.1016/j.jnutbio.2009.04.004. PubMed DOI PMC

Evers D.L., Chao C.F., Wang X., Zhang Z., Huong S.M., Huang E.S. Human cytomegalovirus-inhibitory flavonoids: Studies on antiviral activity and mechanism of action. Antivir. Res. 2005;68:124–134. doi: 10.1016/j.antiviral.2005.08.002. PubMed DOI PMC

Stantchev T.S., Markovic I., Telford W.G., Clouse K.A., Broder C.C. The tyrosine kinase inhibitor genistein blocks HIV-1 infection in primary human macrophages. Virus Res. 2007;123:178–189. doi: 10.1016/j.virusres.2006.09.004. PubMed DOI PMC

Vela E.M., Bowick G.C., Herzog N.K., Aronson J.F. Genistein treatment of cells inhibits arenavirus infection. Antivir. Res. 2008;77:153–156. doi: 10.1016/j.antiviral.2007.09.005. PubMed DOI PMC

Arabyan E., Hakobyan A., Kotsinyan A., Karalyan Z., Arakelov V., Arakelov G., Nazaryan K., Simonyan A., Aroutiounian R., Ferreira F., et al. Genistein inhibits African swine fever virus replication in vitro by disrupting viral DNA synthesis. Antivir. Res. 2018;156:128–137. doi: 10.1016/j.antiviral.2018.06.014. PubMed DOI PMC

Eyr N.S., Kirb E.N., Anfiteatr D.R., Bracho G., Russ A.G., Whit P.A., Aloi A.L., Bear M.R. Identification of estrogen receptor modulators as inhibitors of flavivirus infection. Antimicrob. Agents Chemother. 2020;64 doi: 10.1128/AAC.00289-20. PubMed DOI PMC

Galindo I., Garaigorta U., Lasala F., Cuesta-Geijo M.A., Bueno P., Gil C., Delgado R., Gastaminza P., Alonso C. Antiviral drugs targeting endosomal membrane proteins inhibit distant animal and human pathogenic viruses. Antivir. Res. 2021;186 doi: 10.1016/j.antiviral.2020.104990. PubMed DOI PMC

Rasaeifar B., Gomez-Gutierrez P., Perez J.J. Molecular features of non-selective small molecule antagonists of the bradykinin receptors. Pharmaceuticals. 2020;13:259. doi: 10.3390/ph13090259. PubMed DOI PMC

Schultz B., Zaliani A., Ebeling C., Reinshagen J., Bojkova D., Lage-Rupprecht V., Karki R., Lukassen S., Gadiya Y., Ravindra N.G., et al. The COVID-19 PHARMACOME: Rational selection of drug repurposing candidates from multimodal knowledge harmonization. bioRxiv. 2020 doi: 10.1101/2020.09.23.308239. PubMed DOI PMC

Kouznetsova J., Sun W., Martínez-Romero C., Tawa G., Shinn P., Chen C.Z., Schimmer A., Sanderson P., McKew J.C., Zheng W., et al. Identification of 53 compounds that block ebola virus-like particle entry via a repurposing screen of approved drugs. Emerg. Microbes Infect. 2014;3:e84. doi: 10.1038/emi.2014.88. PubMed DOI PMC

Xiao X., Wang C., Chang D., Wang Y., Dong X., Jiao T., Zhao Z., Ren L., dela Cruz C.S., Sharma L., et al. Identification of potent and safe antiviral therapeutic candidates against SARS-CoV-2. Front. Immunol. 2020;11:586572. doi: 10.3389/fimmu.2020.586572. PubMed DOI PMC

Yoon Y.S., Jang Y., Hoenen T., Shin H., Lee Y., Kim M. Antiviral activity of sertindole, raloxifene and ibutamoren against transcription and replication-competent ebola virus-like particles. BMB Rep. 2020;53:166–171. doi: 10.5483/BMBRep.2020.53.3.175. PubMed DOI PMC

Dyall J., Coleman C.M., Hart B.J., Venkataraman T., Holbrook M.R., Kindrachuk J., Johnson R.F., Olinger G.G., Jahrling P.B., Laidlaw M., et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob. Agents Chemother. 2014;58:4885–4893. doi: 10.1128/AAC.03036-14. PubMed DOI PMC

Cham L.B., Friedrich S.K., Adomati T., Bhat H., Schiller M., Bergerhausen M., Hamdan T., Li F., Machlah Y.M., Ali M., et al. Tamoxifen protects from vesicular stomatitis virus infection. Pharmaceuticals. 2019;12:142. doi: 10.3390/ph12040142. PubMed DOI PMC

Gaisina I.N., Peet N.P., Wong L., Schafer A.M., Cheng H., Anantpadma M., Davey R.A., Thatcher G.R.J., Rong L. Discovery and structural optimization of 4-(aminomethyl)benzamides as potent entry inhibitors of ebola and marburg virus infections. J. Med. Chem. 2020;63:7211–7225. doi: 10.1021/acs.jmedchem.0c00463. PubMed DOI PMC

McMullan L.K., Flint M., Chakrabarti A., Guerrero L., Lo M.K., Porter D., Nichol S.T., Spiropoulou C.F., Albariño C. Characterisation of infectious ebola virus from the ongoing outbreak to guide response activities in the Democratic Republic of the Congo: A phylogenetic and in vitro analysis. Lancet Infect. Dis. 2019;19:1023–1032. doi: 10.1016/S1473-3099(19)30291-9. PubMed DOI PMC

Zhou Y., Hou Y., Shen J., Huang Y., Martin W., Cheng F. Network-based drug repurposing for novel coronavirus 2019-NCoV/SARS-CoV-2. Cell Discov. 2020;6:14. doi: 10.1038/s41421-020-0153-3. PubMed DOI PMC

Lubrano V., Balzan S. Cardiovascular risk in COVID-19 infection. Am. J. Cardiovasc. Dis. 2020;10:284–293. PubMed PMC

Johansen L.M., DeWald L.E., Shoemaker C.J., Hoffstrom B.G., Lear-Rooney C.M., Stossel A., Nelson E., Delos S.E., Simmons J.A., Grenier J.M., et al. A screen of approved drugs and molecular probes identifies therapeutics with anti-ebola virus activity. Sci. Transl. Med. 2015;7 doi: 10.1126/scitranslmed.aaa5597. PubMed DOI

Aguilar-Pineda J.A., Albaghdadi M., Jiang W., Vera Lopez K.J., Davila G., Pharmd D.-C., Gómez Valdez B., Lindsay M.E., Malhotra R., Cardenas C.L.L. Structural and functional analysis of female sex hormones against SARS-Cov2 cell entry. bioRxiv. 2020 doi: 10.2139/ssrn.3671734. DOI

Wang H., Sun X., VonCannon J.L., Kon N.D., Ferrario C.M., Groban L. Estrogen receptors are linked to angiotensin-converting enzyme 2 (ACE2), ADAM metallopeptidase domain 17 (ADAM-17), and transmembrane protease serine 2 (TMPRSS2) expression in the human atrium: Insights into COVID-19. Hypertens. Res. 2021;Feb 3:1–3. doi: 10.1038/s41440-021-00626-0. PubMed DOI PMC

Ghanbari R., Teimoori A., Sadeghi A., Mohamadkhani A., Rezasoltani S., Asadi E., Jouyban A., Sumner S.C.J. Existing antiviral options against SARS-CoV-2 replication in COVID-19 patients. Future Microbiol. 2020;15:1747–1758. doi: 10.2217/fmb-2020-0120. PubMed DOI PMC

Mengist H.M., Mekonnen D., Mohammed A., Shi R., Jin T. Potency, safety, and pharmacokinetic profiles of potential inhibitors targeting SARS-CoV-2 main protease. Front. Pharmacol. 2021;11:2495. doi: 10.3389/fphar.2020.630500. PubMed DOI PMC

Rajarshi K., Khan R., Singh M.K., Ranjan T., Ray S., Ray S. Essential functional molecules associated with SARS-CoV-2 infection: Potential therapeutic targets for COVID-19. Gene. 2021;768:145313. doi: 10.1016/j.gene.2020.145313. PubMed DOI PMC

Nayeem S.M., Sohail E.M., Sudhir G.P., Reddy M.S. Computational and theoretical exploration for clinical suitability of remdesivir drug to SARS-CoV-2. Eur. J. Pharmacol. 2021;890 doi: 10.1016/j.ejphar.2020.173642. PubMed DOI PMC

Cherrak S.A., Merzouk H., Mokhtari-Soulimane N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS ONE. 2020;15:e0240653. doi: 10.1371/journal.pone.0240653. PubMed DOI PMC

Banerjee R., Perera L., Tillekeratne L.M.V. Potential SARS-CoV-2 main protease inhibitors. Drug Discov. Today. 2021;26:804–816. doi: 10.1016/j.drudis.2020.12.005. PubMed DOI PMC

Mouffouk C., Mouffouk S., Mouffouk S., Hambaba L., Haba H. Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2) Eur. J. Pharmacol. 2021;891 doi: 10.1016/j.ejphar.2020.173759. PubMed DOI PMC

Chiou W.C., Hsu M.S., Chen Y.T., Yang J.M., Tsay Y.G., Huang H.C., Huang C. Repurposing existing drugs: Identification of SARS-CoV-2 3C-like protease inhibitors. J. Enzym. Inhib. Med. Chem. 2021;36:147–153. doi: 10.1080/14756366.2020.1850710. PubMed DOI PMC

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Giefing-Kröll C., Berger P., Lepperdinger G., Grubeck-Loebenstein B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell. 2015;14:309–321. doi: 10.1111/acel.12326. PubMed DOI PMC

Schock H., Zeleniuch-Jacquotte A., Lundin E., Grankvist K., Lakso H.Å., Idahl A., Lehtinen M., Surcel H.M., Fortner R.T. Hormone concentrations throughout uncomplicated pregnancies: A longitudinal study. BMC Pregnancy Childbirth. 2016;16:146. doi: 10.1186/s12884-016-0937-5. PubMed DOI PMC

Kraus T.A., Engel S.M., Sperling R.S., Kellerman L., Lo Y., Wallenstein S., Escribese M.M., Garrido J.L., Singh T., Loubeau M., et al. Characterizing the pregnancy immune phenotype: Results of the viral immunity and pregnancy (VIP) study. J. Clin. Immunol. 2012;32:300–311. doi: 10.1007/s10875-011-9627-2. PubMed DOI PMC

Rahimi G., Rahimi B., Panahi M., Abkhiz S., Saraygord-Afshari N., Milani M., Alizadeh E. An overview of betacoronaviruses-associated severe respiratory syndromes, focusing on sex-type-specific immune responses. Int. Immunopharmacol. 2021;92:107365. doi: 10.1016/j.intimp.2021.107365. PubMed DOI PMC

Stanley R.L., Ohashi T., Gordon J., Nathan Mowa C. A proteomic profile of postpartum cervical repair in mice. J. Mol. Endocrinol. 2018;60:17–28. doi: 10.1530/JME-17-0179. PubMed DOI

Wu H.J., Oh J.W., Spandau D.F., Tholpady S., Diaz J., Schroeder L.J., Offutt C.D., Glick A.B., Plikus M.V., Koyama S., et al. Estrogen modulates mesenchyme-epidermis interactions in the adult nipple. Development. 2017;144:1498–1509. doi: 10.1242/dev.141630. PubMed DOI PMC

Yang F., Li N., Gaman M.A., Wang N. Raloxifene has favorable effects on the lipid profile in women explaining its beneficial effect on cardiovascular risk: A meta-analysis of randomized controlled trials. Pharmacol. Res. 2021;166:105512. doi: 10.1016/j.phrs.2021.105512. PubMed DOI

Bunders M.J., Altfeld M. Implications of sex differences in immunity for SARS-CoV-2 pathogenesis and design of therapeutic interventions. Immunity. 2020;53:487–495. doi: 10.1016/j.immuni.2020.08.003. PubMed DOI PMC

Hussman J.P. Cellular and molecular pathways of COVID-19 and potential points of therapeutic intervention. Front. Pharmacol. 2020;11:1169. doi: 10.3389/fphar.2020.01169. PubMed DOI PMC

More S.A., Patil A.S., Sakle N.S., Mokale S.N. Network analysis and molecular mapping for SARS-CoV-2 to reveal drug targets and repurposing of clinically developed drugs. Virology. 2021;555:10–18. doi: 10.1016/j.virol.2020.12.006. PubMed DOI PMC

Sun M., Shankar R., Ko M., Chang C.D., Yeh S.-J., Li S., Liu K., Zhou G., Xing J., VanVelsen A., et al. Sex differences in viral entry protein expression, host responses to SARS-CoV-2, and in vitro responses to sex steroid hormone treatment in COVID-19. Res. Sq. 2020 doi: 10.21203/rs.3.rs-100914/v1. DOI

The Human Protein Atlas. [(accessed on 14 April 2021)]; Available online: https://www.proteinatlas.org/

Cadegiani F.A., McCoy J., Gustavo Wambier C., Goren A. Early antiandrogen therapy with dutasteride reduces viral shedding, inflammatory responses, and time-to-remission in males with COVID-19: A randomized, double-blind, placebo-controlled interventional trial (EAT-DUTA AndroCoV Trial—Biochemical) Cureus. 2021;13 doi: 10.7759/cureus.13047. PubMed DOI PMC

Deng Q., ur Rasool R., Russell R.M., Natesan R., Asangani I.A. Targeting androgen regulation of TMPRSS2 and ACE2 as a therapeutic strategy to combat COVID-19. iScience. 2021;24:102254. doi: 10.1016/j.isci.2021.102254. PubMed DOI PMC

Kotfis K., Lechowicz K., Drożdżal S., Niedźwiedzka-Rystwej P., Wojdacz T.K., Grywalska E., Biernawska J., Wiśniewska M., Parczewski M. COVID-19—The potential beneficial therapeutic effects of spironolactone during SARS-CoV-2 infection. Pharmaceuticals. 2021;14:71. doi: 10.3390/ph14010071. PubMed DOI PMC

Gennari L., Merlotti D., de Paola V., Martini G., Nuti R. Bazedoxifene for the prevention of postmenopausal osteoporosis. Ther. Clin. Risk Manag. 2008;4:1229–1242. doi: 10.2147/TCRM.S3476. PubMed DOI PMC

Fujiwara S., Hamaya E., Sato M., Graham-Clarke P., Flynn J.A., Burge R. Systematic review of raloxifene in postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia) Clin. Interv. Aging. 2014;9:1879–1893. PubMed PMC

Thilakasiri P., Huynh J., Poh A.R., Tan C.W., Nero T.L., Tran K., Parslow A.C., Afshar-Sterle S., Baloyan D., Hannan N.J., et al. Repurposing the selective estrogen receptor modulator bazedoxifene to suppress gastrointestinal cancer growth. EMBO Mol. Med. 2019;11 doi: 10.15252/emmm.201809539. PubMed DOI PMC

Pozios I., Seel N.N., Hering N.A., Hartmann L., Liu V., Camaj P., Müller M.H., Lee L.D., Bruns C.J., Kreis M.E., et al. Raloxifene inhibits pancreatic adenocarcinoma growth by interfering with ERβ and IL-6/Gp130/STAT3 signaling. Cell. Oncol. 2021;44:167–177. doi: 10.1007/s13402-020-00559-9. PubMed DOI PMC

Brábek J., Jakubek M., Vellieux F., Novotný J., Kolář M., Lacina L., Szabo P., Strnadová K., Rösel D., Dvořánková B., et al. Interleukin-6: Molecule in the intersection of cancer, ageing and COVID-19. Int. J. Mol. Sci. 2020;21:7937. doi: 10.3390/ijms21217937. PubMed DOI PMC

Smetana K., Smetana K., Brábek J. Role of Interleukin-6 in Lung Complications in Patients with COVID-19: Therapeutic Implications. In Vivo. 2020;34:1589–1592. doi: 10.21873/invivo.11947. PubMed DOI PMC

Smetana K., Rosel D., Brábek J. Raloxifene and bazedoxifene could be promising candidates for preventing the COVID-19 related cytokine storm, ARDS and mortality. In Vivo. 2020;34:3027–3028. doi: 10.21873/invivo.12135. PubMed DOI PMC

Borku Uysal B., Ikitimur H., Yavuzer S., Ikitimur B., Uysal H., Islamoglu M.S., Ozcan E., Aktepe E., Yavuzer H., Cengiz M. Tocilizumab challenge: A series of cytokine storm therapy experiences in hospitalized COVID-19 pneumonia patients. J. Med. Virol. 2020;92:2648–2656. doi: 10.1002/jmv.26111. PubMed DOI PMC

Salama C., Han J., Yau L., Reiss W.G., Kramer B., Neidhart J.D., Criner G.J., Kaplan-Lewis E., Baden R., Pandit L., et al. Tocilizumab in patients hospitalized with covid-19 pneumonia. N. Engl. J. Med. 2021;384:20–30. doi: 10.1056/NEJMoa2030340. PubMed DOI PMC

Van den Eynde E., Gasch O., Oliva J.C., Prieto E., Calzado S., Gomila A., Machado M.L., Falgueras L., Ortonobes S., Morón A., et al. Corticosteroids and tocilizumab reduce in-hospital mortality in severe COVID-19 pneumonia: A retrospective study in a Spanish hospital. Infect. Dis. 2021;53:291–302. doi: 10.1080/23744235.2021.1884286. PubMed DOI PMC

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...