Estrogen Receptor Modulators in Viral Infections Such as SARS-CoV-2: Therapeutic Consequences
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000785
Ministerstvo Školství, Mládeže a Tělovýchovy
PROGRES Q28
Univerzita Karlova v Praze
PubMed
34207220
PubMed Central
PMC8233910
DOI
10.3390/ijms22126551
PII: ijms22126551
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, IL-6, SARS−CoV−2, cytokine storm, estrogen, estrogen receptor, viral replication,
- MeSH
- COVID-19 komplikace patologie virologie MeSH
- internalizace viru účinky léků MeSH
- lidé MeSH
- modulátory estrogenních receptorů metabolismus farmakologie terapeutické užití MeSH
- nádory prsu komplikace farmakoterapie patologie MeSH
- proteiny virové matrix antagonisté a inhibitory metabolismus MeSH
- receptory pro estrogeny chemie metabolismus MeSH
- replikace viru účinky léků MeSH
- SARS-CoV-2 účinky léků izolace a purifikace fyziologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- membrane protein, SARS-CoV-2 MeSH Prohlížeč
- modulátory estrogenních receptorů MeSH
- proteiny virové matrix MeSH
- receptory pro estrogeny MeSH
COVID-19 is a pandemic respiratory disease caused by the SARS-CoV-2 coronavirus. The worldwide epidemiologic data showed higher mortality in males compared to females, suggesting a hypothesis about the protective effect of estrogens against severe disease progression with the ultimate end being patient's death. This article summarizes the current knowledge regarding the potential effect of estrogens and other modulators of estrogen receptors on COVID-19. While estrogen receptor activation shows complex effects on the patient's organism, such as an influence on the cardiovascular/pulmonary/immune system which includes lower production of cytokines responsible for the cytokine storm, the receptor-independent effects directly inhibits viral replication. Furthermore, it inhibits the interaction of IL-6 with its receptor complex. Interestingly, in addition to natural hormones, phytestrogens and even synthetic molecules are able to interact with the estrogen receptor and exhibit some anti-COVID-19 activity. From this point of view, estrogen receptor modulators have the potential to be included in the anti-COVID-19 therapeutic arsenal.
BIOCEV 1st Faculty of Medicine Charles University 252 50 Vestec Czech Republic
BIOCEV Faculty of Sciences Charles University 252 50 Vestec Czech Republic
Department of Neurology 1st Faculty of Medicine Charles University 120 00 Prague Czech Republic
Institute of Anatomy 1st Faculty of Medicine Charles University 120 00 Prague Czech Republic
Zobrazit více v PubMed
Costeira R., Lee K.A., Murray B., Christiansen C., Castillo-Fernandez J., Lochlainn M.N., Pujol J.C., Macfarlane H., Kenny L.C., Buchan I., et al. Estrogen and COVID-19 symptoms: Associations in women from the COVID symptom study. medRxiv. 2020 doi: 10.1101/2020.07.30.20164921. PubMed DOI PMC
Viveiros A., Rasmuson J., Vu J., Mulvagh S.L., Yip C.Y.Y., Norris C.M., Oudit G.Y. Sex differences in COVID-19: Candidate pathways, genetics of ACE2, and sex hormones. Am. J. Physiol. Heart Circ. Physiol. 2021;320:H296–H304. doi: 10.1152/ajpheart.00755.2020. PubMed DOI PMC
Channappanavar R., Fett C., Mack M., ten Eyck P.P., Meyerholz D.K., Perlman S. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J. Immunol. 2017;198:4046–4053. doi: 10.4049/jimmunol.1601896. PubMed DOI PMC
Al-kuraishy H.M., Al-Gareeb A.I., Faidah H., Al-Maiahy T.J., Cruz-Martins N., Batiha G.E.S. The looming effects of estrogen in covid-19: A rocky rollout. Front. Nutr. 2021;8:649128. doi: 10.3389/fnut.2021.649128. PubMed DOI PMC
Sha J., Qie G., Yao Q., Sun W., Wang C., Zhang Z., Wang X., Wang P., Jiang J., Bai X., et al. Sex differences on clinical characteristics, severity, and mortality in adult patients with COVID-19: A multicentre retrospective study. Front. Med. 2021;8:607059. doi: 10.3389/fmed.2021.607059. PubMed DOI PMC
Gooz M. ADAM-17: The enzyme that does it all. Crit. Rev. Biochem. Mol. Biol. 2010;45:146–169. doi: 10.3109/10409231003628015. PubMed DOI PMC
Lacina L., Brábek J., Král V., Kodet O., Smetana K. Interleukin-6: A molecule with complex biological impact in cancer. Histol. Histopathol. 2019;34 doi: 10.14670/HH-18-033. PubMed DOI
Giagulli V.A., Guastamacchia E., Magrone T., Jirillo E., Lisco G., de Pergola G., Triggiani V. Worse progression of COVID-19 in men: Is testosterone a key factor? Andrology. 2021;9:53–64. doi: 10.1111/andr.12836. PubMed DOI PMC
Stelzig K.E., Canepa-Escaro F., Schiliro M., Berdnikovs S., Prakash Y.S., Chiarella S.E. Estrogen regulates the expression of SARS-CoV-2 receptor ACE2 in differentiated airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020;318 doi: 10.1152/ajplung.00153.2020. PubMed DOI PMC
Wang Q., Liu J., Shao R., Han X., Su C., Lu W. Risk and clinical outcomes of COVID-19 in patients with rheumatic diseases compared with the general population: A systematic review and meta-analysis. Rheumatol. Int. 2021;41:851–861. doi: 10.1007/s00296-021-04803-9. PubMed DOI PMC
Moradi F., Enjezab B., Ghadiri-Anari A. The role of androgens in COVID-19. Diabetes Metab. Syndr. Clin. Res. Rev. 2020;14:2003–2006. doi: 10.1016/j.dsx.2020.10.014. PubMed DOI PMC
Vahedian-Azimi A., Pourhoseingholi M.A., Saberi M., Behnam B., Sahebkar A. Advances in Experimental Medicine and Biology. Volume 1321. Springer; Berlin/Heidelberg, Germany: 2021. Gender susceptibility to COVID-19 mortality: Androgens as the usual suspects? pp. 261–264. PubMed
Alopecia and Severity of COVID-19: A Cross-Sectional Study in Peru—PubMed. [(accessed on 10 May 2021)]; Available online: https://pubmed.ncbi.nlm.nih.gov/33664171/ PubMed
Subramanian A., Anand A., Adderley N.J., Okoth K., Toulis K.A., Gokhale K., Sainsbury C., O’Reilly M.W., Arlt W., Nirantharakumar K. Increased COVID-19 infections in women with polycystic ovary syndrome: A population-based study. Eur. J. Endocrinol. 2021;184:637–645. doi: 10.1530/EJE-20-1163. PubMed DOI PMC
Chanana N., Palmo T., Sharma K., Kumar R., Graham B.B., Pasha Q. Sex-derived attributes contributing to SARS-CoV-2 mortality. Am. J. Physiol. Endocrinol. Metab. 2020;319:E562–E567. doi: 10.1152/ajpendo.00295.2020. PubMed DOI PMC
Klein S.L., Flanagan K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016;16:626–638. doi: 10.1038/nri.2016.90. PubMed DOI
Forsyth K.S., Anguera M.C. Time to get ill: The intersection of viral infections, sex, and the X chromosome. Curr. Opin. Physiol. 2021;19:62–72. doi: 10.1016/j.cophys.2020.09.015. PubMed DOI PMC
Yakimchuk K., Jondal M., Okret S. Estrogen receptor α and β in the normal immune system and in lymphoid malignancies. Mol. Cell. Endocrinol. 2013;375:121–129. doi: 10.1016/j.mce.2013.05.016. PubMed DOI
Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell. Immunol. 2015;294:63–69. doi: 10.1016/j.cellimm.2015.01.018. PubMed DOI PMC
Wray S., Arrowsmith S. The physiological mechanisms of the sex-based difference in outcomes of COVID19 infection. Front. Physiol. 2021;12:71. doi: 10.3389/fphys.2021.627260. PubMed DOI PMC
Breithaupt-Faloppa A.C., de Jesus Correia C., Prado C.M., Stilhano R.S., Ureshino R.P., Moreira L.F.P. 17b-Estradiol, a Potential Ally to Alleviate SARS-CoV-2 Infection. Clinics. 2020;75:1–8. doi: 10.6061/clinics/2020/e1980. PubMed DOI PMC
Pinna G. Sex and COVID-19: A protective role for reproductive steroids. Trends Endocrinol. Metab. 2021;32:3–6. doi: 10.1016/j.tem.2020.11.004. PubMed DOI PMC
Zhao G., Xu Y., Li J., Cui X., Tan X., Zhang H., Dang L. Sex differences in immune responses to SARS-CoV-2 in patients with COVID-19. Biosci. Rep. 2021;41 doi: 10.1042/BSR20202074. PubMed DOI PMC
Vatansev H., Kadiyoran C., Cumhur Cure M., Cure E. COVID-19 infection can cause chemotherapy resistance development in patients with breast cancer and tamoxifen may cause susceptibility to COVID-19 infection. Med. Hypotheses. 2020;143:110091. doi: 10.1016/j.mehy.2020.110091. PubMed DOI PMC
Bravaccini S., Fonzi E., Tebaldi M., Angeli D., Martinelli G., Nicolini F., Parrella P., Mazza M. Estrogen and androgen receptor inhibitors: Unexpected allies in the fight against COVID-19. Cell Transplant. 2021;30 doi: 10.1177/0963689721991477. PubMed DOI PMC
Acheampong D.O., Barffour I.K., Boye A., Aninagyei E., Ocansey S., Morna M.T. Male predisposition to severe COVID-19: Review of evidence and potential therapeutic prospects. Biomed. Pharmacother. 2020;131:110748. doi: 10.1016/j.biopha.2020.110748. PubMed DOI PMC
Feng Q., Li L., Wang X. Identifying pathways and networks associated with the SARS-CoV-2 cell receptor ACE2 based on gene expression profiles in normal and SARS-CoV-2-infected human tissues. Front. Mol. Biosci. 2020;7:568954. doi: 10.3389/fmolb.2020.568954. PubMed DOI PMC
Kadel S., Kovats S. Sex hormones regulate innate immune cells and promote sex differences in respiratory virus infection. Front. Immunol. 2018;9:1653. doi: 10.3389/fimmu.2018.01653. PubMed DOI PMC
Millas I., Duarte Barros M. Estrogen receptors and their roles in the immune and respiratory systems. Anat. Rec. 2021 doi: 10.1002/ar.24612. PubMed DOI
Li Y., Jerkic M., Slutsky A.S., Zhang H. Molecular mechanisms of sex bias differences in COVID-19 mortality. Crit. Care. 2020;24:405. doi: 10.1186/s13054-020-03118-8. PubMed DOI PMC
Koenig A., Buskiewicz I., Huber S.A. Age-associated changes in estrogen receptor ratios correlate with increased female susceptibility to coxsackievirus B3-induced myocarditis. Front. Immunol. 2017;8:1585. doi: 10.3389/fimmu.2017.01585. PubMed DOI PMC
Wang S.H., Yeh S.H., Lin W.H., Yeh K.H., Yuan Q., Xia N.S., Chen D.S., Chen P.J. Estrogen receptor α represses transcription of HBV genes via interaction with hepatocyte nuclear factor 4α. Gastroenterology. 2012;142 doi: 10.1053/j.gastro.2011.12.045. PubMed DOI
Ulitzky L., Lafer M.M., KuKuruga M.A., Silberstein E., Cehan N., Taylor D.R. A new signaling pathway for HCV inhibition by estrogen: GPR30 activation leads to cleavage of occludin by MMP-9. PLoS ONE. 2016;11:e0145212. doi: 10.1371/journal.pone.0145212. PubMed DOI PMC
Magri A., Barbaglia M.N., Foglia C.Z., Boccato E., Burlone M.E., Cole S., Giarda P., Grossini E., Patel A.H., Minisini R., et al. 17,β-estradiol inhibits hepatitis C virus mainly by interference with the release phase of its life cycle. Liver Int. 2016;37:669–677. doi: 10.1111/liv.13303. PubMed DOI PMC
Villa E., Karampatou A., Camm C., di Leo A., Luongo M., Ferrari A., Petta S., Losi L., Taliani G., Trande P., et al. Early menopause is associated with lack of response to antiviral therapy in women with chronic hepatitis C. Gastroenterology. 2011;140:818–829.e2. doi: 10.1053/j.gastro.2010.12.027. PubMed DOI
Lemes R.M.R., Costa A.J., Bartolomeo C.S., Bassani T.B., Nishino M.S., da Silva Pereira G.J., Smaili S.S., de Barros Maciel R.M., Braconi C.T., da Cruz E.F., et al. 17β-estradiol reduces SARS-CoV-2 infection in vitro. Physiol. Rep. 2021;9:e14707. doi: 10.14814/phy2.14707. PubMed DOI PMC
Penny C.J., Vassileva K., Jha A., Yuan Y., Chee X., Yates E., Mazzon M., Kilpatrick B.S., Muallem S., Marsh M., et al. Mining of ebola virus entry inhibitors identifies approved drugs as two-pore channel pore blockers. Biochim. Biophys. Acta Mol. Cell Res. 2019;1866:1151–1161. doi: 10.1016/j.bbamcr.2018.10.022. PubMed DOI PMC
Jeon S., Ko M., Lee J., Choi I., Byun S.Y., Park S., Shum D., Kim S. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother. 2020;64 doi: 10.1128/AAC.00819-20. PubMed DOI PMC
Ghasemnejad-Berenji M., Pashapour S., Ghasemnejad-Berenji H. Therapeutic potential for clomiphene, a selective estrogen receptor modulator, in the treatment of COVID-19. Med. Hypotheses. 2020;145:110354. doi: 10.1016/j.mehy.2020.110354. PubMed DOI PMC
Nelson E.A., Barnes A.B., Wiehle R.D., Fontenot G.K., Hoenen T., White J.M. Clomiphene and its isomers block ebola virus particle entry and infection with similar potency: Potential therapeutic implications. Viruses. 2016;8:206. doi: 10.3390/v8080206. PubMed DOI PMC
Calderone A., Menichetti F., Santini F., Colangelo L., Lucenteforte E., Calderone V. Selective estrogen receptor modulators in COVID-19: A possible therapeutic option? Front. Pharmacol. 2020;11:1085. doi: 10.3389/fphar.2020.01085. PubMed DOI PMC
Cooper L., Schafer A., Li Y., Cheng H., Medegan Fagla B., Shen Z., Nowar R., Dye K., Anantpadma M., Davey R.A., et al. Screening and reverse-engineering of estrogen receptor ligands as potent pan-filovirus inhibitors. J. Med. Chem. 2020;63:11085–11099. doi: 10.1021/acs.jmedchem.0c01001. PubMed DOI PMC
Martin W.R., Cheng F. Repurposing of FDA-approved toremifene to treat COVID-19 by blocking the spike glycoprotein and NSP14 of SARS-CoV-2. J. Proteome Res. 2020;19:4670–4677. doi: 10.1021/acs.jproteome.0c00397. PubMed DOI PMC
Hong S., Chang J.O., Jeong K., Lee W. Raloxifene as a treatment option for viral infections. J. Microbiol. 2021;59:124–131. doi: 10.1007/s12275-021-0617-7. PubMed DOI PMC
Fan H., Du X., Zhang J., Zheng H., Lu X., Wu Q., Li H., Wang H., Shi Y., Gao G., et al. Selective inhibition of ebola entry with selective estrogen receptor modulators by disrupting the endolysosomal calcium. Sci. Rep. 2017;7 doi: 10.1038/srep41226. PubMed DOI PMC
Tohma D., Tajima S., Kato F., Sato H., Kakisaka M., Hishiki T., Kataoka M., Takeyama H., Lim C.K., Aida Y., et al. An estrogen antagonist, cyclofenil, has anti-dengue-virus activity. Arch. Virol. 2019;164:225–234. doi: 10.1007/s00705-018-4079-0. PubMed DOI
Li E., Stupack D.G., Brown S.L., Klemke R., Schlaepfer D.D., Nemerow G.R. Association of P130(CAS) with phosphatidylinositol-3-OH kinase mediates adenovirus cell entry. J. Biol. Chem. 2000;275:14729–14735. doi: 10.1074/jbc.275.19.14729. PubMed DOI
Akula S.M., Hurley D.J., Wixon R.L., Wang C., Chase C.C.L. Effect of genistein on replication of bovine herpesvirus type 1. Am. J. Vet. Res. 2002;63:1124–1128. doi: 10.2460/ajvr.2002.63.1124. PubMed DOI
Andres A., Donovan S.M., Kuhlenschmidt M.S. Soy isoflavones and virus infections. J. Nutr. Biochem. 2009;20:563–569. doi: 10.1016/j.jnutbio.2009.04.004. PubMed DOI PMC
Evers D.L., Chao C.F., Wang X., Zhang Z., Huong S.M., Huang E.S. Human cytomegalovirus-inhibitory flavonoids: Studies on antiviral activity and mechanism of action. Antivir. Res. 2005;68:124–134. doi: 10.1016/j.antiviral.2005.08.002. PubMed DOI PMC
Stantchev T.S., Markovic I., Telford W.G., Clouse K.A., Broder C.C. The tyrosine kinase inhibitor genistein blocks HIV-1 infection in primary human macrophages. Virus Res. 2007;123:178–189. doi: 10.1016/j.virusres.2006.09.004. PubMed DOI PMC
Vela E.M., Bowick G.C., Herzog N.K., Aronson J.F. Genistein treatment of cells inhibits arenavirus infection. Antivir. Res. 2008;77:153–156. doi: 10.1016/j.antiviral.2007.09.005. PubMed DOI PMC
Arabyan E., Hakobyan A., Kotsinyan A., Karalyan Z., Arakelov V., Arakelov G., Nazaryan K., Simonyan A., Aroutiounian R., Ferreira F., et al. Genistein inhibits African swine fever virus replication in vitro by disrupting viral DNA synthesis. Antivir. Res. 2018;156:128–137. doi: 10.1016/j.antiviral.2018.06.014. PubMed DOI PMC
Eyr N.S., Kirb E.N., Anfiteatr D.R., Bracho G., Russ A.G., Whit P.A., Aloi A.L., Bear M.R. Identification of estrogen receptor modulators as inhibitors of flavivirus infection. Antimicrob. Agents Chemother. 2020;64 doi: 10.1128/AAC.00289-20. PubMed DOI PMC
Galindo I., Garaigorta U., Lasala F., Cuesta-Geijo M.A., Bueno P., Gil C., Delgado R., Gastaminza P., Alonso C. Antiviral drugs targeting endosomal membrane proteins inhibit distant animal and human pathogenic viruses. Antivir. Res. 2021;186 doi: 10.1016/j.antiviral.2020.104990. PubMed DOI PMC
Rasaeifar B., Gomez-Gutierrez P., Perez J.J. Molecular features of non-selective small molecule antagonists of the bradykinin receptors. Pharmaceuticals. 2020;13:259. doi: 10.3390/ph13090259. PubMed DOI PMC
Schultz B., Zaliani A., Ebeling C., Reinshagen J., Bojkova D., Lage-Rupprecht V., Karki R., Lukassen S., Gadiya Y., Ravindra N.G., et al. The COVID-19 PHARMACOME: Rational selection of drug repurposing candidates from multimodal knowledge harmonization. bioRxiv. 2020 doi: 10.1101/2020.09.23.308239. PubMed DOI PMC
Kouznetsova J., Sun W., Martínez-Romero C., Tawa G., Shinn P., Chen C.Z., Schimmer A., Sanderson P., McKew J.C., Zheng W., et al. Identification of 53 compounds that block ebola virus-like particle entry via a repurposing screen of approved drugs. Emerg. Microbes Infect. 2014;3:e84. doi: 10.1038/emi.2014.88. PubMed DOI PMC
Xiao X., Wang C., Chang D., Wang Y., Dong X., Jiao T., Zhao Z., Ren L., dela Cruz C.S., Sharma L., et al. Identification of potent and safe antiviral therapeutic candidates against SARS-CoV-2. Front. Immunol. 2020;11:586572. doi: 10.3389/fimmu.2020.586572. PubMed DOI PMC
Yoon Y.S., Jang Y., Hoenen T., Shin H., Lee Y., Kim M. Antiviral activity of sertindole, raloxifene and ibutamoren against transcription and replication-competent ebola virus-like particles. BMB Rep. 2020;53:166–171. doi: 10.5483/BMBRep.2020.53.3.175. PubMed DOI PMC
Dyall J., Coleman C.M., Hart B.J., Venkataraman T., Holbrook M.R., Kindrachuk J., Johnson R.F., Olinger G.G., Jahrling P.B., Laidlaw M., et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob. Agents Chemother. 2014;58:4885–4893. doi: 10.1128/AAC.03036-14. PubMed DOI PMC
Cham L.B., Friedrich S.K., Adomati T., Bhat H., Schiller M., Bergerhausen M., Hamdan T., Li F., Machlah Y.M., Ali M., et al. Tamoxifen protects from vesicular stomatitis virus infection. Pharmaceuticals. 2019;12:142. doi: 10.3390/ph12040142. PubMed DOI PMC
Gaisina I.N., Peet N.P., Wong L., Schafer A.M., Cheng H., Anantpadma M., Davey R.A., Thatcher G.R.J., Rong L. Discovery and structural optimization of 4-(aminomethyl)benzamides as potent entry inhibitors of ebola and marburg virus infections. J. Med. Chem. 2020;63:7211–7225. doi: 10.1021/acs.jmedchem.0c00463. PubMed DOI PMC
McMullan L.K., Flint M., Chakrabarti A., Guerrero L., Lo M.K., Porter D., Nichol S.T., Spiropoulou C.F., Albariño C. Characterisation of infectious ebola virus from the ongoing outbreak to guide response activities in the Democratic Republic of the Congo: A phylogenetic and in vitro analysis. Lancet Infect. Dis. 2019;19:1023–1032. doi: 10.1016/S1473-3099(19)30291-9. PubMed DOI PMC
Zhou Y., Hou Y., Shen J., Huang Y., Martin W., Cheng F. Network-based drug repurposing for novel coronavirus 2019-NCoV/SARS-CoV-2. Cell Discov. 2020;6:14. doi: 10.1038/s41421-020-0153-3. PubMed DOI PMC
Lubrano V., Balzan S. Cardiovascular risk in COVID-19 infection. Am. J. Cardiovasc. Dis. 2020;10:284–293. PubMed PMC
Johansen L.M., DeWald L.E., Shoemaker C.J., Hoffstrom B.G., Lear-Rooney C.M., Stossel A., Nelson E., Delos S.E., Simmons J.A., Grenier J.M., et al. A screen of approved drugs and molecular probes identifies therapeutics with anti-ebola virus activity. Sci. Transl. Med. 2015;7 doi: 10.1126/scitranslmed.aaa5597. PubMed DOI
Aguilar-Pineda J.A., Albaghdadi M., Jiang W., Vera Lopez K.J., Davila G., Pharmd D.-C., Gómez Valdez B., Lindsay M.E., Malhotra R., Cardenas C.L.L. Structural and functional analysis of female sex hormones against SARS-Cov2 cell entry. bioRxiv. 2020 doi: 10.2139/ssrn.3671734. DOI
Wang H., Sun X., VonCannon J.L., Kon N.D., Ferrario C.M., Groban L. Estrogen receptors are linked to angiotensin-converting enzyme 2 (ACE2), ADAM metallopeptidase domain 17 (ADAM-17), and transmembrane protease serine 2 (TMPRSS2) expression in the human atrium: Insights into COVID-19. Hypertens. Res. 2021;Feb 3:1–3. doi: 10.1038/s41440-021-00626-0. PubMed DOI PMC
Ghanbari R., Teimoori A., Sadeghi A., Mohamadkhani A., Rezasoltani S., Asadi E., Jouyban A., Sumner S.C.J. Existing antiviral options against SARS-CoV-2 replication in COVID-19 patients. Future Microbiol. 2020;15:1747–1758. doi: 10.2217/fmb-2020-0120. PubMed DOI PMC
Mengist H.M., Mekonnen D., Mohammed A., Shi R., Jin T. Potency, safety, and pharmacokinetic profiles of potential inhibitors targeting SARS-CoV-2 main protease. Front. Pharmacol. 2021;11:2495. doi: 10.3389/fphar.2020.630500. PubMed DOI PMC
Rajarshi K., Khan R., Singh M.K., Ranjan T., Ray S., Ray S. Essential functional molecules associated with SARS-CoV-2 infection: Potential therapeutic targets for COVID-19. Gene. 2021;768:145313. doi: 10.1016/j.gene.2020.145313. PubMed DOI PMC
Nayeem S.M., Sohail E.M., Sudhir G.P., Reddy M.S. Computational and theoretical exploration for clinical suitability of remdesivir drug to SARS-CoV-2. Eur. J. Pharmacol. 2021;890 doi: 10.1016/j.ejphar.2020.173642. PubMed DOI PMC
Cherrak S.A., Merzouk H., Mokhtari-Soulimane N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS ONE. 2020;15:e0240653. doi: 10.1371/journal.pone.0240653. PubMed DOI PMC
Banerjee R., Perera L., Tillekeratne L.M.V. Potential SARS-CoV-2 main protease inhibitors. Drug Discov. Today. 2021;26:804–816. doi: 10.1016/j.drudis.2020.12.005. PubMed DOI PMC
Mouffouk C., Mouffouk S., Mouffouk S., Hambaba L., Haba H. Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2) Eur. J. Pharmacol. 2021;891 doi: 10.1016/j.ejphar.2020.173759. PubMed DOI PMC
Chiou W.C., Hsu M.S., Chen Y.T., Yang J.M., Tsay Y.G., Huang H.C., Huang C. Repurposing existing drugs: Identification of SARS-CoV-2 3C-like protease inhibitors. J. Enzym. Inhib. Med. Chem. 2021;36:147–153. doi: 10.1080/14756366.2020.1850710. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Giefing-Kröll C., Berger P., Lepperdinger G., Grubeck-Loebenstein B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell. 2015;14:309–321. doi: 10.1111/acel.12326. PubMed DOI PMC
Schock H., Zeleniuch-Jacquotte A., Lundin E., Grankvist K., Lakso H.Å., Idahl A., Lehtinen M., Surcel H.M., Fortner R.T. Hormone concentrations throughout uncomplicated pregnancies: A longitudinal study. BMC Pregnancy Childbirth. 2016;16:146. doi: 10.1186/s12884-016-0937-5. PubMed DOI PMC
Kraus T.A., Engel S.M., Sperling R.S., Kellerman L., Lo Y., Wallenstein S., Escribese M.M., Garrido J.L., Singh T., Loubeau M., et al. Characterizing the pregnancy immune phenotype: Results of the viral immunity and pregnancy (VIP) study. J. Clin. Immunol. 2012;32:300–311. doi: 10.1007/s10875-011-9627-2. PubMed DOI PMC
Rahimi G., Rahimi B., Panahi M., Abkhiz S., Saraygord-Afshari N., Milani M., Alizadeh E. An overview of betacoronaviruses-associated severe respiratory syndromes, focusing on sex-type-specific immune responses. Int. Immunopharmacol. 2021;92:107365. doi: 10.1016/j.intimp.2021.107365. PubMed DOI PMC
Stanley R.L., Ohashi T., Gordon J., Nathan Mowa C. A proteomic profile of postpartum cervical repair in mice. J. Mol. Endocrinol. 2018;60:17–28. doi: 10.1530/JME-17-0179. PubMed DOI
Wu H.J., Oh J.W., Spandau D.F., Tholpady S., Diaz J., Schroeder L.J., Offutt C.D., Glick A.B., Plikus M.V., Koyama S., et al. Estrogen modulates mesenchyme-epidermis interactions in the adult nipple. Development. 2017;144:1498–1509. doi: 10.1242/dev.141630. PubMed DOI PMC
Yang F., Li N., Gaman M.A., Wang N. Raloxifene has favorable effects on the lipid profile in women explaining its beneficial effect on cardiovascular risk: A meta-analysis of randomized controlled trials. Pharmacol. Res. 2021;166:105512. doi: 10.1016/j.phrs.2021.105512. PubMed DOI
Bunders M.J., Altfeld M. Implications of sex differences in immunity for SARS-CoV-2 pathogenesis and design of therapeutic interventions. Immunity. 2020;53:487–495. doi: 10.1016/j.immuni.2020.08.003. PubMed DOI PMC
Hussman J.P. Cellular and molecular pathways of COVID-19 and potential points of therapeutic intervention. Front. Pharmacol. 2020;11:1169. doi: 10.3389/fphar.2020.01169. PubMed DOI PMC
More S.A., Patil A.S., Sakle N.S., Mokale S.N. Network analysis and molecular mapping for SARS-CoV-2 to reveal drug targets and repurposing of clinically developed drugs. Virology. 2021;555:10–18. doi: 10.1016/j.virol.2020.12.006. PubMed DOI PMC
Sun M., Shankar R., Ko M., Chang C.D., Yeh S.-J., Li S., Liu K., Zhou G., Xing J., VanVelsen A., et al. Sex differences in viral entry protein expression, host responses to SARS-CoV-2, and in vitro responses to sex steroid hormone treatment in COVID-19. Res. Sq. 2020 doi: 10.21203/rs.3.rs-100914/v1. DOI
The Human Protein Atlas. [(accessed on 14 April 2021)]; Available online: https://www.proteinatlas.org/
Cadegiani F.A., McCoy J., Gustavo Wambier C., Goren A. Early antiandrogen therapy with dutasteride reduces viral shedding, inflammatory responses, and time-to-remission in males with COVID-19: A randomized, double-blind, placebo-controlled interventional trial (EAT-DUTA AndroCoV Trial—Biochemical) Cureus. 2021;13 doi: 10.7759/cureus.13047. PubMed DOI PMC
Deng Q., ur Rasool R., Russell R.M., Natesan R., Asangani I.A. Targeting androgen regulation of TMPRSS2 and ACE2 as a therapeutic strategy to combat COVID-19. iScience. 2021;24:102254. doi: 10.1016/j.isci.2021.102254. PubMed DOI PMC
Kotfis K., Lechowicz K., Drożdżal S., Niedźwiedzka-Rystwej P., Wojdacz T.K., Grywalska E., Biernawska J., Wiśniewska M., Parczewski M. COVID-19—The potential beneficial therapeutic effects of spironolactone during SARS-CoV-2 infection. Pharmaceuticals. 2021;14:71. doi: 10.3390/ph14010071. PubMed DOI PMC
Gennari L., Merlotti D., de Paola V., Martini G., Nuti R. Bazedoxifene for the prevention of postmenopausal osteoporosis. Ther. Clin. Risk Manag. 2008;4:1229–1242. doi: 10.2147/TCRM.S3476. PubMed DOI PMC
Fujiwara S., Hamaya E., Sato M., Graham-Clarke P., Flynn J.A., Burge R. Systematic review of raloxifene in postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia) Clin. Interv. Aging. 2014;9:1879–1893. PubMed PMC
Thilakasiri P., Huynh J., Poh A.R., Tan C.W., Nero T.L., Tran K., Parslow A.C., Afshar-Sterle S., Baloyan D., Hannan N.J., et al. Repurposing the selective estrogen receptor modulator bazedoxifene to suppress gastrointestinal cancer growth. EMBO Mol. Med. 2019;11 doi: 10.15252/emmm.201809539. PubMed DOI PMC
Pozios I., Seel N.N., Hering N.A., Hartmann L., Liu V., Camaj P., Müller M.H., Lee L.D., Bruns C.J., Kreis M.E., et al. Raloxifene inhibits pancreatic adenocarcinoma growth by interfering with ERβ and IL-6/Gp130/STAT3 signaling. Cell. Oncol. 2021;44:167–177. doi: 10.1007/s13402-020-00559-9. PubMed DOI PMC
Brábek J., Jakubek M., Vellieux F., Novotný J., Kolář M., Lacina L., Szabo P., Strnadová K., Rösel D., Dvořánková B., et al. Interleukin-6: Molecule in the intersection of cancer, ageing and COVID-19. Int. J. Mol. Sci. 2020;21:7937. doi: 10.3390/ijms21217937. PubMed DOI PMC
Smetana K., Smetana K., Brábek J. Role of Interleukin-6 in Lung Complications in Patients with COVID-19: Therapeutic Implications. In Vivo. 2020;34:1589–1592. doi: 10.21873/invivo.11947. PubMed DOI PMC
Smetana K., Rosel D., Brábek J. Raloxifene and bazedoxifene could be promising candidates for preventing the COVID-19 related cytokine storm, ARDS and mortality. In Vivo. 2020;34:3027–3028. doi: 10.21873/invivo.12135. PubMed DOI PMC
Borku Uysal B., Ikitimur H., Yavuzer S., Ikitimur B., Uysal H., Islamoglu M.S., Ozcan E., Aktepe E., Yavuzer H., Cengiz M. Tocilizumab challenge: A series of cytokine storm therapy experiences in hospitalized COVID-19 pneumonia patients. J. Med. Virol. 2020;92:2648–2656. doi: 10.1002/jmv.26111. PubMed DOI PMC
Salama C., Han J., Yau L., Reiss W.G., Kramer B., Neidhart J.D., Criner G.J., Kaplan-Lewis E., Baden R., Pandit L., et al. Tocilizumab in patients hospitalized with covid-19 pneumonia. N. Engl. J. Med. 2021;384:20–30. doi: 10.1056/NEJMoa2030340. PubMed DOI PMC
Van den Eynde E., Gasch O., Oliva J.C., Prieto E., Calzado S., Gomila A., Machado M.L., Falgueras L., Ortonobes S., Morón A., et al. Corticosteroids and tocilizumab reduce in-hospital mortality in severe COVID-19 pneumonia: A retrospective study in a Spanish hospital. Infect. Dis. 2021;53:291–302. doi: 10.1080/23744235.2021.1884286. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI