Non-Homogeneous Tumor Growth and Its Implications for Radiotherapy: A Phenomenological Approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Birken- i.n. 08CT8610100110 , cup: G89J18000700007
FERS Sicilia for Tumor-Immune System Dynamics
PubMed
34207503
PubMed Central
PMC8229245
DOI
10.3390/jpm11060527
PII: jpm11060527
Knihovny.cz E-zdroje
- Klíčová slova
- dose-boost, radiotherapy, tumor instability,
- Publikační typ
- časopisecké články MeSH
Tumor regrowth and heterogeneity are important clinical parameters during radiotherapy, and the probability of treatment benefit critically depends on the tumor progression pattern in the interval between the fractional irradiation treatments. We propose an analytic, easy-to-use method to take into account clonal subpopulations with different specific growth rates and radiation resistances. The different strain regrowth effects, as described by Gompertz law, require a dose-boost to reproduce the survival probability of the corresponding homogeneous system and for uniform irradiation. However, the estimate of the survival fraction for a tumor with a hypoxic subpopulation is more reliable when there is a slow specific regrowth rate and when the dependence on the oxygen enhancement ratio of radiotherapy is consistently taken into account. The approach is discussed for non-linear two-population dynamics for breast cancer and can be easily generalized to a larger number of components and different tumor phenotypes.
Faculty of Mathematics and Physics Charles University 18000 Prague Czech Republic
Istituto Nazionale Fisica Nucleare 95100 Catania Italy
Zobrazit více v PubMed
Greene F.L., Balch C.M., Fleming I.D., Fritz A., Haller D.G., Morrow M., Page D.L. AJCC Cancer Staging Handbook: TNM Classification of Malignant Tumors. 6th ed. Springer; New York, NY, USA: 2002.
Kim J.J., Tannock I.F. Repopultaion of cancer cells during therapy: An important cause of treatment failure. Nat. Rev. Cancer. 2005;5:516–525. doi: 10.1038/nrc1650. PubMed DOI
Fowler J.F. The linear-quadratic formula and progresses in fractionated radiotherapy. Br. J. Radiol. 1989;62:679–694. doi: 10.1259/0007-1285-62-740-679. PubMed DOI
Steel G.G. Growth Kinetics of Tumours. Clarendon Press; Oxford, UK: 1977.
Wheldon T.E. Mathematical Models in Cancer Research. Adam Hilger Publisher; London, UK: 1988.
Norton L. A Gompertzian model of human breast cancer growth. Cancer Res. 1988;48:7067–7071. PubMed
Yorke E.D., Fuks Z., Norton L., Whitmore W., Ling C.C. Modeling the development of metastases from primary and locally recurrent tumors: Comparison with a clinical data base for prostatic cancer. Cancer Res. 1993;53:2987–2993. PubMed
Vaghi C., Rodallec A., Fanciullino R., Ciccolini J., Mochel J.P., Mastri M., Benzekry S. Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLoS Comput. Biol. 2020;16:e1007178. doi: 10.1371/journal.pcbi.1007178. PubMed DOI PMC
Gompertz B. On the nature of the function expressive of the law of human mortality and a new mode of determining life contingencies. Phil. Trans. R. Soc. 1825;115:513. PubMed PMC
Jung H., Kruger H.J., Brammer I., Zywietz F., Beck-Bomholdt H.P. Cell population kinetics of the rhabdomyosarcoma R1H of the rat after single doses of X rays. Int. J. Radiat. Biol. 1990;57:567–589. doi: 10.1080/09553009014552701. PubMed DOI
Hansen O., Grau C., Bentzen S.M., Overgaard J. Repopulation in the SCCVII squamous cell carcinoma assessed by an in vivo-in vitro excision essay. Radioth. Oncol. 1996;32:137–144. doi: 10.1016/0167-8140(96)01728-8. PubMed DOI
O’Donogue J. A. The response of tumours with Gompertzian growth characteristics to fractionated radiotherapy. Int. J. Radiat. Biol. 1997;72:325–339. doi: 10.1080/095530097143329. PubMed DOI
Epel B., Maggio M.C., Barth E.D., Miller R.C., Pelizzari C.A., Krzykawska-Serda M., Sundramoorthy S.V., Aydogan B., Weichselbaum R.R., Tormyshev V.M., et al. Oxygen-Guided Radiation Therapy. Int. J. Radiat. Oncol. Biol Phys. 2019;103:977–984. doi: 10.1016/j.ijrobp.2018.10.041. PubMed DOI PMC
Sentjurc M., Cemazar M., Sersa G. EPR oximetry of tumors in vivo in cancer therapy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004;60:1379–1385. doi: 10.1016/j.saa.2003.10.036. PubMed DOI
Epel B., Redler G., Tormyshev V., Halpern H.J. Towards Human Oxygen Images with Electron Paramagnetic Resonance Imaging. Adv. Exp. Med. Biol. 2016;876:363–369. PubMed PMC
Epel B., Krzykawska-Serda M., Tormyshev V., Maggio M.C., Barth E.D., Pelizzari C.A., Halpern H.J. Spin Lattice Relaxation EPR pO2 Images May Direct the Location of Radiation Tumor Boosts to Enhance Tumor Cure. Cell Biochem. Biophys. 2017;75:295–298. doi: 10.1007/s12013-017-0825-2. PubMed DOI
Servagi-Vernat S., Differding S., Sterpin E., Hanin F.X., Labar D., Bol A., Lee J.A., Grégoire V. Hypoxia-guided adaptive radiation dose escalation in head and neck carcinoma: A planning study. Acta Oncol. 2015;54:1008–1016. doi: 10.3109/0284186X.2014.990109. PubMed DOI
Lazzeroni M., Toma-Dasu I., Ureba A., Schiavo F., Wiedenmann N., Bunea H., Thomann B., Baltas D., Mix M., Stoykow C., et al. Quantification of Tumor Oxygenation Based on FMISO PET: Influence of Location and Oxygen Level of the Well-Oxygenated Reference Region. Adv. Exp. Med. Biol. 2020;1232:177–182. PubMed
Lee N.Y., Mechalakos J.G., Nehmeh S., Lin Z., Squire O.D., Cai S., Chan K., Zanzonico P.B., Greco C., Ling C.C., et al. Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: A feasibility study. Int. J. Radiat. Oncol. Biol. Phys. 2008;70:2–13. doi: 10.1016/j.ijrobp.2007.06.039. PubMed DOI PMC
Ruggieri R., Nahum A.E. The impact of hypofractionatedation on simultaneous dose-boosting to hypoxic tumor subvolumes. Med. Phys. 2006;33:4044–4055. doi: 10.1118/1.2358205. PubMed DOI
Castorina P., Guiot C., Delsanto P. Classification Scheme for Phenomenological Universalities in Growth Problems in Physics and Other Sciences. Phys. Rev. Lett. 2006;96:188701. doi: 10.1103/PhysRevLett.96.188701. PubMed DOI
Castorina P., Daniela C., Caterina G., Deisboeck T.S. Tumor growth instability and its implications for chemotherapy. Cancer Res. 2009;69:8507–8515. doi: 10.1158/0008-5472.CAN-09-0653. PubMed DOI PMC
Wiedenmann N.E., Bucher S., Hentschel M., Mix M., Vach W., Bittner M.I., Grosu A.L. Serial [18F]-fluoromisonidazole PET during radiochemotherapy for locally advanced head and neck cancer and its correlation with outcome. Radiother. Oncol. 2015;117:113–117. doi: 10.1016/j.radonc.2015.09.015. PubMed DOI
Sorensen A., Carles M., Bunea H., Majerus L., Stoykow C., Nicolay N.H., Mix M. Textural features of hypoxia PET predict survival in head and neck cancer during chemoradiotherapy. Eur. J. Nucl. Med. Mol. Imaging. 2020;47:1056–1064. doi: 10.1007/s00259-019-04609-9. PubMed DOI
Tumor Volume Regression during and after Radiochemotherapy: A Macroscopic Description