Non-Homogeneous Tumor Growth and Its Implications for Radiotherapy: A Phenomenological Approach

. 2021 Jun 09 ; 11 (6) : . [epub] 20210609

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34207503

Grantová podpora
Birken- i.n. 08CT8610100110 , cup: G89J18000700007 FERS Sicilia for Tumor-Immune System Dynamics

Tumor regrowth and heterogeneity are important clinical parameters during radiotherapy, and the probability of treatment benefit critically depends on the tumor progression pattern in the interval between the fractional irradiation treatments. We propose an analytic, easy-to-use method to take into account clonal subpopulations with different specific growth rates and radiation resistances. The different strain regrowth effects, as described by Gompertz law, require a dose-boost to reproduce the survival probability of the corresponding homogeneous system and for uniform irradiation. However, the estimate of the survival fraction for a tumor with a hypoxic subpopulation is more reliable when there is a slow specific regrowth rate and when the dependence on the oxygen enhancement ratio of radiotherapy is consistently taken into account. The approach is discussed for non-linear two-population dynamics for breast cancer and can be easily generalized to a larger number of components and different tumor phenotypes.

Zobrazit více v PubMed

Greene F.L., Balch C.M., Fleming I.D., Fritz A., Haller D.G., Morrow M., Page D.L. AJCC Cancer Staging Handbook: TNM Classification of Malignant Tumors. 6th ed. Springer; New York, NY, USA: 2002.

Kim J.J., Tannock I.F. Repopultaion of cancer cells during therapy: An important cause of treatment failure. Nat. Rev. Cancer. 2005;5:516–525. doi: 10.1038/nrc1650. PubMed DOI

Fowler J.F. The linear-quadratic formula and progresses in fractionated radiotherapy. Br. J. Radiol. 1989;62:679–694. doi: 10.1259/0007-1285-62-740-679. PubMed DOI

Steel G.G. Growth Kinetics of Tumours. Clarendon Press; Oxford, UK: 1977.

Wheldon T.E. Mathematical Models in Cancer Research. Adam Hilger Publisher; London, UK: 1988.

Norton L. A Gompertzian model of human breast cancer growth. Cancer Res. 1988;48:7067–7071. PubMed

Yorke E.D., Fuks Z., Norton L., Whitmore W., Ling C.C. Modeling the development of metastases from primary and locally recurrent tumors: Comparison with a clinical data base for prostatic cancer. Cancer Res. 1993;53:2987–2993. PubMed

Vaghi C., Rodallec A., Fanciullino R., Ciccolini J., Mochel J.P., Mastri M., Benzekry S. Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLoS Comput. Biol. 2020;16:e1007178. doi: 10.1371/journal.pcbi.1007178. PubMed DOI PMC

Gompertz B. On the nature of the function expressive of the law of human mortality and a new mode of determining life contingencies. Phil. Trans. R. Soc. 1825;115:513. PubMed PMC

Jung H., Kruger H.J., Brammer I., Zywietz F., Beck-Bomholdt H.P. Cell population kinetics of the rhabdomyosarcoma R1H of the rat after single doses of X rays. Int. J. Radiat. Biol. 1990;57:567–589. doi: 10.1080/09553009014552701. PubMed DOI

Hansen O., Grau C., Bentzen S.M., Overgaard J. Repopulation in the SCCVII squamous cell carcinoma assessed by an in vivo-in vitro excision essay. Radioth. Oncol. 1996;32:137–144. doi: 10.1016/0167-8140(96)01728-8. PubMed DOI

O’Donogue J. A. The response of tumours with Gompertzian growth characteristics to fractionated radiotherapy. Int. J. Radiat. Biol. 1997;72:325–339. doi: 10.1080/095530097143329. PubMed DOI

Epel B., Maggio M.C., Barth E.D., Miller R.C., Pelizzari C.A., Krzykawska-Serda M., Sundramoorthy S.V., Aydogan B., Weichselbaum R.R., Tormyshev V.M., et al. Oxygen-Guided Radiation Therapy. Int. J. Radiat. Oncol. Biol Phys. 2019;103:977–984. doi: 10.1016/j.ijrobp.2018.10.041. PubMed DOI PMC

Sentjurc M., Cemazar M., Sersa G. EPR oximetry of tumors in vivo in cancer therapy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004;60:1379–1385. doi: 10.1016/j.saa.2003.10.036. PubMed DOI

Epel B., Redler G., Tormyshev V., Halpern H.J. Towards Human Oxygen Images with Electron Paramagnetic Resonance Imaging. Adv. Exp. Med. Biol. 2016;876:363–369. PubMed PMC

Epel B., Krzykawska-Serda M., Tormyshev V., Maggio M.C., Barth E.D., Pelizzari C.A., Halpern H.J. Spin Lattice Relaxation EPR pO2 Images May Direct the Location of Radiation Tumor Boosts to Enhance Tumor Cure. Cell Biochem. Biophys. 2017;75:295–298. doi: 10.1007/s12013-017-0825-2. PubMed DOI

Servagi-Vernat S., Differding S., Sterpin E., Hanin F.X., Labar D., Bol A., Lee J.A., Grégoire V. Hypoxia-guided adaptive radiation dose escalation in head and neck carcinoma: A planning study. Acta Oncol. 2015;54:1008–1016. doi: 10.3109/0284186X.2014.990109. PubMed DOI

Lazzeroni M., Toma-Dasu I., Ureba A., Schiavo F., Wiedenmann N., Bunea H., Thomann B., Baltas D., Mix M., Stoykow C., et al. Quantification of Tumor Oxygenation Based on FMISO PET: Influence of Location and Oxygen Level of the Well-Oxygenated Reference Region. Adv. Exp. Med. Biol. 2020;1232:177–182. PubMed

Lee N.Y., Mechalakos J.G., Nehmeh S., Lin Z., Squire O.D., Cai S., Chan K., Zanzonico P.B., Greco C., Ling C.C., et al. Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: A feasibility study. Int. J. Radiat. Oncol. Biol. Phys. 2008;70:2–13. doi: 10.1016/j.ijrobp.2007.06.039. PubMed DOI PMC

Ruggieri R., Nahum A.E. The impact of hypofractionatedation on simultaneous dose-boosting to hypoxic tumor subvolumes. Med. Phys. 2006;33:4044–4055. doi: 10.1118/1.2358205. PubMed DOI

Castorina P., Guiot C., Delsanto P. Classification Scheme for Phenomenological Universalities in Growth Problems in Physics and Other Sciences. Phys. Rev. Lett. 2006;96:188701. doi: 10.1103/PhysRevLett.96.188701. PubMed DOI

Castorina P., Daniela C., Caterina G., Deisboeck T.S. Tumor growth instability and its implications for chemotherapy. Cancer Res. 2009;69:8507–8515. doi: 10.1158/0008-5472.CAN-09-0653. PubMed DOI PMC

Wiedenmann N.E., Bucher S., Hentschel M., Mix M., Vach W., Bittner M.I., Grosu A.L. Serial [18F]-fluoromisonidazole PET during radiochemotherapy for locally advanced head and neck cancer and its correlation with outcome. Radiother. Oncol. 2015;117:113–117. doi: 10.1016/j.radonc.2015.09.015. PubMed DOI

Sorensen A., Carles M., Bunea H., Majerus L., Stoykow C., Nicolay N.H., Mix M. Textural features of hypoxia PET predict survival in head and neck cancer during chemoradiotherapy. Eur. J. Nucl. Med. Mol. Imaging. 2020;47:1056–1064. doi: 10.1007/s00259-019-04609-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...