Design and Self-Assembling Behaviour of Calamitic Reactive Mesogens with Lateral Methyl and Methoxy Substituents and Vinyl Terminal Group

. 2021 Jun 30 ; 13 (13) : . [epub] 20210630

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34208990

Grantová podpora
CSF 19-03564S Czech Science Foundation
LTC19051 Ministry of Education, Youth and Sports of the Czech Republic
SOLID21-CZ.02.1.01/0.0/0.0/16_019/0000760 Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports
TWN-18-01 Czech Academy of Sciences
3.029 Czech Academy of Sciences - Open Science 2018

Smart self-organising systems attract considerable attention in the scientific community. In order to control and stabilise the liquid crystalline behaviour, and hence the self-organisation, the polymerisation process can be effectively used. Mesogenic units incorporated into the backbones as functional side chains of weakly cross-linked macromolecules can become orientationally ordered. Several new calamitic reactive mesogens possessing the vinyl terminal group with varying flexible chain lengths and with/without lateral substitution by the methyl (methoxy) groups have been designed and studied. Depending on the molecular structure, namely, the type and position of the lateral substituents, the resulting materials form the nematic, the orthogonal SmA and the tilted SmC phases in a reasonably broad temperature range, and the structure of the mesophases was confirmed by X-ray diffraction experiments. The main objective of this work is to contribute to better understanding of the molecular structure-mesomorphic property relationship for new functional reactive mesogens, aiming at further design of smart self-assembling macromolecular materials for novel sensor systems.

Zobrazit více v PubMed

Lagerwall J.P.F., Scalia G. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 2012;12:1387–1412. doi: 10.1016/j.cap.2012.03.019. DOI

Nakayama M., Kajiyama S., Kumamoto A., Nishimura T., Ikuhara Y., Yamato M., Kato T. Stimuli-responsive hydroxyapatite liquid crystal with macroscopically controllable ordering and magneto-optical functions. Nat. Commun. 2018;9:568. doi: 10.1038/s41467-018-02932-7. PubMed DOI PMC

Kato T., Mizoshita N., Kishimoto K. Functional Liquid-Crystalline Assemblies: Self-Organized Soft Materials. Angew. Chem. Int. Ed. 2006;45:38–68. doi: 10.1002/anie.200501384. PubMed DOI

Shibaev V.P., Bobrovsky A.Y. Liquid crystalline polymers: Development trends and photocontrollable materials. Russ. Chem. Rev. 2017;86:1024–1072. doi: 10.1070/RCR4747. DOI

Hughes T., Simon G.P., Saito K. Chemistries and capabilities of photo-formable and photoreversible crosslinked polymer networks. Mater. Horizons. 2019;6:1762–1773. doi: 10.1039/C9MH00217K. DOI

Dierking I. Polymer Network Stabilized Liquid Crystals. Adv. Mater. 2000;12:167–181. doi: 10.1002/(SICI)1521-4095(200002)12:3<167::AID-ADMA167>3.0.CO;2-I. DOI

Rudquist P., Elfström D., Lagerwall S.T., Dąbrowski R. Polymer-Stabilized Orthoconic Antiferroelectric Liquid Crystals. Ferroelectrics. 2006;344:177–188. doi: 10.1080/00150190600968116. DOI

Czerwiński M., Urbańska M., Bennis N., Rudquist P. Influence of the type of phase sequence and polymer-stabilization on the physicochemical and electro-optical properties of novel high-tilt antiferroelectric liquid crystalline materials. J. Mol. Liq. 2019;288:111057. doi: 10.1016/j.molliq.2019.111057. DOI

Czerwiński M., de Blas M.G., Bennis N., Herman J., Dmochowska E., Otón J.M. Polymer stabilized highly tilted antiferroelectric liquid crystals—The influence of monomer structure and phase sequence of base mixtures. J. Mol. Liq. 2021;327:114869. doi: 10.1016/j.molliq.2020.114869. DOI

Bobrovsky A., Svyakhovskiy S., Bogdanov A., Shibaev V., Cigl M., Hamplová V., Bubnov A. Photocontrollable Photonic Crystals Based on Porous Silicon Filled with Photochromic Liquid Crystalline Mixture. Adv. Opt. Mater. 2020;8:2001267. doi: 10.1002/adom.202001267. DOI

Rešetič A., Milavec J., Domenici V., Zupančič B., Bubnov A., Zalar B. Stress-strain and thermomechanical characterization of nematic to smectic A transition in a strongly-crosslinked bimesogenic liquid crystal elastomer. Polymer. 2018;158:96–102. doi: 10.1016/j.polymer.2018.10.049. DOI

Domenici V., Milavec J., Bubnov A., Pociecha D., Župančič B., Rešetič A., Hamplová V., Górecka E., Zalar B. Effect of co-monomers’ relative concentration on self-assembling behaviour of side-chain liquid crystalline elastomers. RSC Adv. 2014;4:44056–44064. doi: 10.1039/C4RA07454H. DOI

Milavec J., Rešetič A., Bubnov A., Zalar B., Domenici V. Dynamic investigations of liquid crystalline elastomers and their constituents by 2H NMR spectroscopy. Liq. Cryst. 2018;45:2158–2173. doi: 10.1080/02678292.2018.1494858. DOI

Rešetič A., Milavec J., Zupančič B., Domenici V., Zalar B. Polymer-dispersed liquid crystal elastomers. Nat. Commun. 2016;7:13140. doi: 10.1038/ncomms13140. PubMed DOI PMC

Bubnov A., Domenici V., Hamplova V., Kašpar M., Zalar B. First liquid single crystal elastomer containing lactic acid derivative as chiral co-monomer: Synthesis and properties. Polymer. 2011;52:4490–4497. doi: 10.1016/j.polymer.2011.07.046. DOI

Bobrovsky A., Shibaev V., Bubnov A., Hamplova V., Kašpar M., Glogarová M. Effect of Molecular Structure on Chiro-Optical and Photo-Optical Properties of Smart Liquid Crystalline Polyacrylates. Macromolecules. 2013;46:4276–4284. doi: 10.1021/ma401010t. DOI

Bubnov A., Cigl M., Machado A.M., Pociecha D., Hamplova V., Cidade M.T. Design of calamitic self-assembling reactive mesogenic units: Mesomorphic behaviour and rheological characterisation. Liq. Cryst. 2017;45:561–573. doi: 10.1080/02678292.2017.1359858. DOI

Colen J., Han M., Zhang R., Redford S.A., Lemma L.M., Morgan L., Ruijgrok P.V., Adkins R., Bryant Z., Dogic Z., et al. Machine learning active-nematic hydrodynamics. Proc. Natl. Acad. Sci. USA. 2021;118:2016708118. doi: 10.1073/pnas.2016708118. PubMed DOI PMC

Kárný M., Guy T.V. Decision Making with Imperfect Decision Makers. Volume 28. Springer; Berlin/Heidelberg, Germany: 2012. On support of imperfect Bayesian participants; pp. 29–56. Intelligent Systems Reference Library. DOI

Kárný M., Guy T.V. Preference Elicitation within Framework of Fully Probabilistic Design of Decision Strategies. IFAC-PapersOnLine. 2019;52:239–244. doi: 10.1016/j.ifacol.2019.12.656. DOI

Bobrovsky A., Shibaev V., Piryazev A., Anokhin D.V., Ivanov D., Sinitsyna O., Hamplova V., Kaspar M., Bubnov A. Photo-Orientation Phenomena in Photochromic Liquid Crystalline Azobenzene-Containing Polymethacrylates with Different Spacer Length. Macromol. Chem. Phys. 2017;218:1700127. doi: 10.1002/macp.201700127. DOI

Bobrovsky A., Shibaev V., Cigl M., Hamplova V., Pociecha D., Bubnov A. Azobenzene-containing LC polymethacrylates highly photosensitive in broad spectral range. J. Polym. Sci. Part A Polym. Chem. 2016;54:2962–2970. doi: 10.1002/pola.28181. DOI

Tóth-Katona T., Cigl M., Fodor-Csorba K., Hamplova V., Jánossy I., Kašpar M., Vojtylová T., Hampl F., Bubnov A. Functional Photochromic Methylhydrosiloxane-Based Side-Chain Liquid-Crystalline Polymers. Macromol. Chem. Phys. 2014;215:742–752. doi: 10.1002/macp.201300729. DOI

Bobrovsky A., Shibaev V., Cigl M., Hamplová V., Dorovatovskii P., Ostrovskii B., Bubnov A. The effect of spacer and alkyl tail lengths on the photoorientation processes in amorphousized films of azobenzene-containing liquid crystalline polymethacrylates. Liq. Cryst. 2019;47:377–383. doi: 10.1080/02678292.2019.1655171. DOI

Domenici V., Milavec J., Župančič B., Bubnov A., Hamplová V., Zalar B. Brief overview on2H NMR studies of polysiloxane-based side-chain nematic elastomers. Magn. Reson. Chem. 2014;52:649–655. doi: 10.1002/mrc.4092. PubMed DOI

Zhang L., Yao W., Gao Y., Zhang C., Yang H. Polysiloxane-Based Side Chain Liquid Crystal Polymers: From Synthesis to Structure–Phase Transition Behavior Relationships. Polymers. 2018;10:794. doi: 10.3390/polym10070794. PubMed DOI PMC

Bubnov A., Kašpar M., Hamplová V., Glogarová M., Samaritani S., Galli G., Andersson G., Komitov L. Polar liquid crystalline monomers with two or three lactate groups for the preparation of side chain polysiloxanes. Liq. Cryst. 2006;33:559–566. doi: 10.1080/02678290600604809. DOI

Petrova I., Gaj A., Pochiecha D., Shcherbina M.A., Makarova N.N., Bubnov A. Design and self-assembling behaviour of comb-like stereoregular cyclolinear methylsiloxane copolymers with chiral lactate groups. Liq. Cryst. 2019;46:25–36. doi: 10.1080/02678292.2018.1461265. DOI

Wang R., Li C., Jiang Z., Wang Z. Self-Assembly of Amphiphilic Linear−Dendritic Carbosilane Block Surfactant for Waterborne Polyurethane Coating. Polymers. 2020;12:1318. doi: 10.3390/polym12061318. PubMed DOI PMC

Hanemann T., Honnef K. Optical and Thermomechanical Properties of Doped Polyfunctional Acrylate Copolymers. Polymers. 2018;10:337. doi: 10.3390/polym10030337. PubMed DOI PMC

Kizhakidathazhath R., Nishikawa H., Okumura Y., Higuchi H., Kikuchi H. High-Performance Polymer Dispersed Liquid Crystal Enabled by Uniquely Designed Acrylate Monomer. Polymers. 2020;12:1625. doi: 10.3390/polym12081625. PubMed DOI PMC

Dmochowska E., Herman J., Czerwiński M., Stulov S., Bubnov A., Kula P. Self-assembling behaviour of chiral calamitic monoacrylates targeted for polymer stabilisation of polar smectic phases in chiral liquid crystals. J. Mol. Liq. 2021;331:115723. doi: 10.1016/j.molliq.2021.115723. DOI

Herman J., Dmochowska E., Czerwiński M. Synthesis of new chiral mono- and diacrylates for ferro- and antiferroelectric liquid crystals. J. Mol. Liq. 2018;271:353–360. doi: 10.1016/j.molliq.2018.09.017. DOI

Bubnov A., Cigl M., Sedláčková N., Pociecha D., Böhmová Z., Hamplová V. Self-assembling behaviour of new functional photosensitive cinnamoyl-based reactive mesogens. Liq. Cryst. 2020;47:2276–2291. doi: 10.1080/02678292.2020.1783586. DOI

Kašpar M., Bubnov A., Sedláková Z., Stojanović M., Havlicek J., Obadović D.Ž., Ilavský M. Liquid crystalline polybutadiene diols with chiral thiol side-chain units. Eur. Polym. J. 2008;44:233–243. doi: 10.1016/j.eurpolymj.2007.10.014. DOI

Cidade M.T., Pereira G., Bubnov A., Hamplová V., Kaspar M., Casquilho J. Rheological characterisation of a liquid-crystalline diol and its dependence with an applied electric field. Liq. Cryst. 2012;39:191–197. doi: 10.1080/02678292.2011.628702. DOI

Kašpar M., Bubnov A., Hamplova V., Novotna V., Lhotáková I., Havlicek J., Ilavský M. Synthesis and Mesomorphic Properties of New Chiral Liquid-Crystalline Diols. Mol. Cryst. Liq. Cryst. 2005;428:49–63. doi: 10.1080/154214090892744. DOI

Cigl M., Bubnov A., Kašpar M., Hampl F., Hamplova V., Pacherová O., Svoboda J. Photosensitive chiral self-assembling materials: Significant effects of small lateral substituents. J. Mater. Chem. C. 2016;4:5326–5333. doi: 10.1039/C6TC01103A. DOI

Kaspar M., Hamplová V., Pakhomov S.A., Stibor I., Sverenyák H., Bubnov A., Glogarová M., Vanek P. The effect of a lateral substituent on the mesomorphic properties in a series of ferroelectric liquid crystals with a 2-alkoxypropionate unit. Liq. Cryst. 1997;22:557–561. doi: 10.1080/026782997208947. DOI

Bubnov A., Kašpar M., Novotna V., Hamplova V., Glogarová M., Kapernaum N., Giesselmann F. Effect of lateral methoxy substitution on mesomorphic and structural properties of ferroelectric liquid crystals. Liq. Cryst. 2008;35:1329–1337. doi: 10.1080/02678290802585525. DOI

Stojanović M., Bubnov A., Obadović D.Ž., Hamplova V., Cvetinov M., Kašpar M. Effect of a bulky lateral substitution by chlorine atom and methoxy group on self-assembling properties of lactic acid derivatives. Mater. Chem. Phys. 2014;146:18–25. doi: 10.1016/j.matchemphys.2014.02.036. DOI

Pytlarczyk M., Dmochowska E., Czerwiński M., Herman J. Effect of lateral substitution by chlorine and fluorine atoms of 4-alkyl-p-terphenyls on mesomorphic behaviour. J. Mol. Liq. 2019;292:111379. doi: 10.1016/j.molliq.2019.111379. DOI

Kašpar M., Bubnov A., Hamplova V., Málková Z., Pirkl S., Glogarová M. Effect of lateral substitution by fluorine and bromine atoms in ferroelectric liquid crystalline materials containing a 2-alkoxypropanoate unit. Liq. Cryst. 2007;34:1185–1192. doi: 10.1080/02678290701527461. DOI

Żurowska M.U., Dziaduszek J., Szala M., Morawiak P., Bubnov A. Effect of lateral fluorine substitution far from the chiral center on mesomorphic behaviour of highly titled antiferroelectric (S) and (R) enantiomers. J. Mol. Liq. 2018;267:504–510. doi: 10.1016/j.molliq.2017.12.114. DOI

Milewska K., Drzewiński W., Czerwiński M., Dabrowski R. Design, synthesis and mesomorphic properties of chiral benzoates and fluorobenzoates with direct SmCA*-Iso phase transition. Liq. Cryst. 2015;42:1601–1611. doi: 10.1080/02678292.2015.1078916. DOI

Węgłowska D., Czerwiński M., Kula P., Mrukiewicz M., Mazur R., Herman J. Fast-response halogenated 4-alkyl-4′′-cyano-p-terphenyls as dual frequency addressing nematics. Fluid Phase Equilibria. 2020;522:112770. doi: 10.1016/j.fluid.2020.112770. DOI

Czerwiński M., Gaładyk K., Morawiak P., Piecek W., Chrunik M., Kurp K., Kula P., Jaroszewicz L.R. Pyrimidine-based ferroelectric mixtures—The influence of oligophenyl based chiral doping system. J. Mol. Liq. 2020;303:112693. doi: 10.1016/j.molliq.2020.112693. DOI

Kašpar M., Bílková P., Bubnov A., Hamplova V., Novotna V., Glogarová M., Knížek K., Pociecha D. New chlorine-substituted liquid crystals possessing frustrated TGBA and SmQ phases. Liq. Cryst. 2008;35:641–651. doi: 10.1080/02678290802056212. DOI

Podoliak N., Cigl M., Hamplová V., Pociecha D., Novotná V. Multichiral liquid crystals based on terphenyl core laterally substituted by chlorine atom. J. Mol. Liq. 2021;336:116267. doi: 10.1016/j.molliq.2021.116267. DOI

Podoliak N., Hamplová V., Kašpar M., Novotná V., Glogarová M., Pociecha D., Górecka E. Highly tilted smectogens with bromine-substituted molecular core. Liq. Cryst. 2013;40:321–328. doi: 10.1080/02678292.2012.747111. DOI

Deptuch A., Jaworska-Gołąb T., Marzec M., Urbańska M., Tykarska M. Cold crystallization from chiral smectic phase. Phase Transit. 2018;92:126–134. doi: 10.1080/01411594.2018.1556270. DOI

Lagerwall J.P.F., Giesselmann F., Radcliffe M.D. Optical and x-ray evidence of the “de Vries”Sm−A*–Sm−C*transition in a non-layer-shrinkage ferroelectric liquid crystal with very weak interlayer tilt correlation. Phys. Rev. E. 2002;66:031703. doi: 10.1103/PhysRevE.66.031703. PubMed DOI

Shibaev V.P. Liquid-crystalline polymer systems: From the past to the present. Polym. Sci. Ser. A. 2014;56:727–762. doi: 10.1134/S0965545X14060091. DOI

Sulyanov S.N., Dorovatovskii P.V., Bobrovsky A.Y., Shibaev V.P., Cigl M., Hamplova V., Bubnov A., Ostrovskii B.I. Mesomorphic and structural properties of liquid crystalline side-chain polymethacrylates: From smectic C* to columnar phases. Liq. Cryst. 2018;46:825–834. doi: 10.1080/02678292.2018.1530386. DOI

Huang H.-M., Chuang E.-Y., Chen F.-L., Lin J.-D., Hsiao Y.-C. Color-Indicating, Label-Free, Dye-Doped Liquid Crystal Organic-Polymer-Based-Bioinspired Sensor for Biomolecule Immunodetection. Polymers. 2020;12:2294. doi: 10.3390/polym12102294. PubMed DOI PMC

Xue Y., Zhou Z., Xu M., Lu H. Tunable liquid crystal microlens array with negative and positive optical powers based on a self-assembled polymer convex array. Liq. Cryst. 2021 doi: 10.1080/02678292.2021.1900435. DOI

Choi Y., Lee K.-H., Kim H.-R., Kim J.-H. Dynamic focusing microlens array using liquid crystalline polymer and a liquid crystal. Proc. SPIE Int. Soc. Opt. Eng. 2006;6352:63521H. doi: 10.1117/12.691799. DOI

Shen Z., Tang M., Chen P., Zhou S., Ge S., Duan W., Wei T., Liang X., Hu W., Lu Y. Planar Terahertz Photonics Mediated by Liquid Crystal Polymers. Adv. Opt. Mater. 2020;8:1902124. doi: 10.1002/adom.201902124. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...