Pathogenic SPTBN1 variants cause an autosomal dominant neurodevelopmental syndrome
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P50 HD103573
NICHD NIH HHS - United States
P30 NS045892
NINDS NIH HHS - United States
U01 HG007672
NHGRI NIH HHS - United States
R01 NS110810
NINDS NIH HHS - United States
R01 MH101221
NIMH NIH HHS - United States
Cancer Research UK - United Kingdom
Howard Hughes Medical Institute - United States
Department of Health - United Kingdom
P30 CA016086
NCI NIH HHS - United States
U54 HD079124
NICHD NIH HHS - United States
Medical Research Council - United Kingdom
PubMed
34211179
PubMed Central
PMC8273149
DOI
10.1038/s41588-021-00886-z
PII: 10.1038/s41588-021-00886-z
Knihovny.cz E-zdroje
- MeSH
- dominantní geny * MeSH
- fenotyp MeSH
- genetická predispozice k nemoci * MeSH
- genetická variace * MeSH
- genetické asociační studie metody MeSH
- heterozygot MeSH
- lidé MeSH
- myši MeSH
- neurovývojové poruchy diagnóza genetika MeSH
- spektrin genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- spektrin MeSH
- SPTBN1 protein, human MeSH Prohlížeč
SPTBN1 encodes βII-spectrin, the ubiquitously expressed β-spectrin that forms micrometer-scale networks associated with plasma membranes. Mice deficient in neuronal βII-spectrin have defects in cortical organization, developmental delay and behavioral deficiencies. These phenotypes, while less severe, are observed in haploinsufficient animals, suggesting that individuals carrying heterozygous SPTBN1 variants may also show measurable compromise of neural development and function. Here we identify heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features. We show that these SPTBN1 variants lead to effects that affect βII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics. Our studies define SPTBN1 variants as the genetic basis of a neurodevelopmental syndrome, expand the set of spectrinopathies affecting the brain and underscore the critical role of βII-spectrin in the central nervous system.
Center for Individualized Medicine Mayo Clinic Rochester MN USA
Clinical and Translational Sciences Institute Medical College of Wisconsin Milwaukee WI USA
Department of Biochemistry Medical College of Wisconsin Milwaukee WI USA
Department of Clinical Genetics Cambridge University Hospitals Cambridge UK
Department of Clinical Genetics Erasmus MC University Medical Center Rotterdam the Netherlands
Department of Clinical Genomics Mayo Clinic Rochester MN USA
Department of Genetics University Medical Center Utrecht Utrecht the Netherlands
Department of Genetics University of North Carolina at Chapel Hill Chapel Hill NC USA
Department of Genome Sciences University of Washington School of Medicine Seattle WA USA
Department of Neurology Columbia University New York NY USA
Department of Neurology University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
Department of Pathology Yale University New Haven CT USA
Department of Pediatrics Duke University Medical Center Duke University Durham NC USA
Department of Pharmacology University of North Carolina at Chapel Hill Chapel Hill NC USA
Department of Psychiatry and Behavioral Sciences University of Washington Seattle WA USA
Department of Psychiatry University of North Carolina at Chapel Hill Chapel Hill NC USA
Department of Quantitative Health Sciences Mayo Clinic Rochester MN USA
Division of Genetics and Genomics Boston Children's Hospital Boston MA USA
Genetics Driscoll Children's Hospital Corpus Christi TX USA
Howard Hughes Medical Institute University of Washington Seattle WA USA
Human Pluripotent Stem Cell Core University of North Carolina at Chapel Hill Chapel Hill NC USA
Institute for Genomic Medicine Columbia University New York NY USA
Institute for Human Genetics University of California San Francisco San Francisco CA USA
Institute of Human Genetics Technical University of Munich Munich Germany
Institute of Human Genetics University Medical Center Hamburg Eppendorf Hamburg Germany
Institute of Neurogenomics Helmholtz Zentrum München Munich Germany
Lehrstuhl für Neurogenetik Technische Universität München Munich Germany
McMaster University Hamilton Ontario Canada
Munich Cluster for Systems Neurology SyNergy Munich Germany
Neuropediatrics Department of Pediatrics University Medical Center Hamburg Eppendorf Hamburg Germany
Neuroscience Center University of North Carolina at Chapel Hill Chapel Hill NC USA
Nicklaus Children's Hospital Miami FL USA
Service de Génétique Médicale CHU Nantes Nantes France
Spectrum Health Medical Genetics Grand Rapids MI USA
The Epilepsy NeuroGenetics Initiative Children's Hospital of Philadelphia Philadelphia PA USA
Université de Nantes CNRS INSERM L'Institut du Thorax Nantes France
Zobrazit více v PubMed
Bennett V & Lorenzo DN Spectrin- and ankyrin-based membrane domains and the evolution of vertebrates. Curr. Top. Membr 72, 1–37 (2013). PubMed
Bennett V & Lorenzo DN An adaptable spectrin/ankyrin-based mechanism for long-range organization of plasma membranes in vertebrate tissues. Curr. Top. Membr 77, 143–184 (2016). PubMed
Lorenzo DN Cargo hold and delivery: Ankyrins, spectrins, and their functional patterning of neurons. Cytoskeleton 77, 129–148 (2020). PubMed
Ikeda Y et al. Spectrin mutations cause spinocerebellar ataxia type 5. Nat. Genet 38, 184–190 (2006). PubMed
Saitsu H et al. Dominant-negative mutations in alpha-II spectrin cause West syndrome with severe cerebral hypomyelination, spastic quadriplegia, and developmental delay. Am. J. Hum. Genet 86, 881–891 (2010). PubMed PMC
Wang CC et al. βIV spectrinopathies cause profound intellectual disability, congenital hypotonia, and motor axonal neuropathy. Am. J. Hum. Genet 102, 1158–1168 (2018). PubMed PMC
Jacob FD, Ho ES, Martinez-Ojeda M, Darras BT & Khwaja OS Case of infantile onset spinocerebellar ataxia type 5. J. Child Neurol 28, 1292–1295 (2013). PubMed
Parolin Schnekenberg R et al. De novo point mutations in patients diagnosed with ataxic cerebral palsy. Brain 138, 1817–1832 (2015). PubMed PMC
Nuovo S et al. Between SCA5 and SCAR14: delineation of the SPTBN2 p.R480W-associated phenotype. Eur. J. Hum. Genet 26, 928–929 (2018). PubMed PMC
Nicita F et al. Heterozygous missense variants of SPTBN2 are a frequent cause of congenital cerebellar ataxia. Clin. Genet 96, 169–175 (2019). PubMed
Mizuno T et al. Infantile-onset spinocerebellar ataxia type 5 associated with a novel SPTBN2 mutation: A case report. Brain Development 41, 630–633 (2019). PubMed
Accogli A et al. Heterozygous missense pathogenic variants within the second spectrin repeat of SPTBN2 lead to infantile-onset cerebellar ataxia. J. Child Neurol 35, 106–110 (2019). PubMed
Lise S et al. Recessive mutations in SPTBN2 implicate β-III spectrin in both cognitive and motor development. PLoS Genet 8, e1003074 (2012). PubMed PMC
Yıldız Bölükbaşı E et al. Progressive SCAR14 with unclear speech, developmental delay, tremor, and behavioral problems caused by a homozygous deletion of the SPTBN2 pleckstrin homology domain. Am. J. Med. Genet. A 173, 2494–2499 (2017). PubMed
Al-Muhaizea M, et al. A novel homozygous mutation in SPTBN2 leads to spinocerebellar ataxia in a consanguineous family: Report of a new infantile-onset case and brief review of the literature. Cerebellum 17, 276–285 (2018). PubMed
Writzl K et al. Early onset West syndrome with severe hypomyelination and coloboma-like optic discs in a girl with SPTAN1 mutation. Epilepsia 53, e106–e110 (2012). PubMed
Hamdan FF et al. Identification of a novel in-frame de novo mutation in SPTAN1 in intellectual disability and pontocerebellar atrophy. Eur. J. Hum. Genet 20, 796–800 (2012). PubMed PMC
Nonoda Y et al. Progressive diffuse brain atrophy in West syndrome with marked hypomyalination due to SPTAN1 gene mutation. Brain Dev 35, 280–283 (2013). PubMed
Tohyama J et al. SPTAN1 encephalopathy: distinct phenotypes and genotypes. J. Hum. Genet 60, 167–173 (2015). PubMed
Syrbe S et al. Delineating SPTAN1 associated phenotypes: from isolated epilepsy to encephalopathy with progressive brain atrophy. Brain 140, 2322–2336 (2017). PubMed PMC
Beijer D et al. Nonsense mutations in alpha-II spectrin in three families with juvenile onset hereditary motor neuropathy. Brain 142, 2605–2616 (2019). PubMed
Knierim E et al. A recessive mutation in beta-IV-spectrin (SPTBN4) associates with congenital myopathy, neuropathy, and central deafness. Hum. Genet 136, 903–910 (2017). PubMed
Häusler MG et al. A novel homozygous splice-site mutation in the SPTBN4 gene causes axonal neuropathy without intellectual disability. Eur. J. Med. Genet 63, 103826 (2020). PubMed
Xu K, Zhong G & Zhuang X Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013). PubMed PMC
Cheney R, Hirokawa N, Levine J & Willard M Intracellular movement of fodrin. Cell Motility 3, 649–655 (1983). PubMed
Lorenzo DN et al. βII-spectrin promotes mouse brain connectivity through stabilizing axonal plasma membranes and enabling axonal organelle transport. Proc. Natl. Acad. Sci. USA 116, 15686–15695 (2019). PubMed PMC
Jaganathan K et al. Predicting splicing from primary sequence with deep learning. Cell 176, 535–548 (2019). PubMed
Karczewski KJ et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020). PubMed PMC
Huang N, Lee I, Marcotte EM & Hurles ME Characterising and predicting haploinsufficiency in the human genome. PLoS Genet 6, e1001154. (2010). PubMed PMC
Zech M et al. Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurol 19, 908–918 (2020). PubMed PMC
Willsey AJ et al. De novo coding variants are strongly associated with Tourette Disorder. Neuron 94, 486–499 (2017). PubMed PMC
Firth HV et al. DECIPHER: Database of chromosomal imbalance and phenotype in humans using ensembl resources. Am. J. Hum. Genet 84, 524–533 (2009). PubMed PMC
Iossifov I et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221. (2014). PubMed PMC
Schultz-Rogers L et al. Haploinsufficiency as a disease mechanism in GNB1-associated neurodevelopmental disorder. Mol. Genet. Genomic Med 8, e1477 (2020). PubMed PMC
Richards S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med 17, 405–424 (2015). PubMed PMC
Abou Tayoun AN et al. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum. Mutat 39, 1517–1524 (2018). PubMed PMC
Strande NT et al. Evaluating the clinical validity of gene-disease associations: An evidence-based framework developed by the Clinical Genome Resource. Am. J. Hum. Genet 100, 895–906 (2017). PubMed PMC
Brnich SE et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med 12, 3 (2019). PubMed PMC
Molina SG, Beltran AA & Beltran AS Generation of an integration-free induced pluripotent stem cell line (UNC001-A) from blood of a healthy individual. Stem Cell Res 49, 102015 (2020). PubMed
Speicher DW, Weglarz L & DeSilva TM Properties of human red cell spectrin heterodimer (side-to-side) assembly and identification of an essential nucleation site. J. Biol. Chem 267, 14775–14782 (1992). PubMed
Li X & Bennett V Identification of the spectrin subunit and domains required for formation of spectrin/adducin/actin complexes. J. Biol. Chem 271, 15695‐15702 (1996). PubMed
Davis L et al. Localization and structure of the ankyrin-binding site on beta2-spectrin. J. Biol. Chem 284, 6982‐6987 (2009). PubMed PMC
Bignone PA & Baines AJ Spectrin alpha II and beta II isoforms interact with high affinity at the tetramerization site. Biochem. J 374, 613‐624 (2003). PubMed PMC
Hyvönen M et al. Structure of the binding site for inositol phosphates in a PH domain. EMBO J 14, 4676‐4685 (1995). PubMed PMC
Korenbaum E & Rivero F Calponin homology domains at a glance. J. Cell Sci 115, 3543–3545 (2002). PubMed
Yin LM, Schnoor M & Jun CD Structural characteristics, binding partners and related diseases of the calponin homology (CH) domain. Front. Cell. Dev. Biol 8, 342 (2020). PubMed PMC
Keep NH et al. Crystal structure of the actin-binding region of utrophin reveals a head-to-tail dimer. Structure 7, 1539–1546 (1999). PubMed
Bañuelos S, Saraste M & Djinović Carugo K Structural comparisons of calponin homology domains: implications for actin binding. Structure 6, 1419–1431 (1998). PubMed
Avery AW et al. Structural basis for high-affinity actin binding revealed by a β-III-spectrin SCA5 missense mutation. Nat. Commun 8, 1350 (2017). PubMed PMC
Vajda S et al. New additions to the ClusPro server motivated by CAPRI. Proteins 85, 435–444 (2017). PubMed PMC
Kozakov D et al. The ClusPro web server for protein-protein docking. Nat. Protoc 12, 255–278 (2017). PubMed PMC
Galiano MR et al. A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assembly. Cell 149, 1125‐1139 (2012). PubMed PMC
Sleigh JN, Rossor AM, Fellows AD, Tosolini AP & Schiavo G Axonal transport and neurological disease. Nat. Rev. Neurol 15, 691‐703 (2019). PubMed
Susuki K et al. Glial βII spectrin contributes to paranode formation and maintenance. J. Neurosci 38, 6063–6075 (2018). PubMed PMC
Gobius I et al. Astroglial-mediated remodeling of the interhemispheric midline is required for the formation of the corpus callosum. Cell Rep 17, 735–747 (2016). PubMed PMC
Goebbels S et al. Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44, 611–621 (2006). PubMed
Fame RM, MacDonald JL & Macklis JD Development, specification, and diversity of callosal projection neurons. Trends Neurosci 34, 41–50 (2011). PubMed PMC
Satterstrom FK et al. Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants. Nat. Neurosci 22, 1961–1965 (2019). PubMed PMC
Yang R et al. ANK2 autism mutation targeting giant ankyrin-B promotes axon branching and ectopic connectivity. Proc. Natl. Acad. Sci. USA 116, 15262–15271 (2019). PubMed PMC
Lorenzo DN et al. A PIK3C3–ankyrin-B–dynactin pathway promotes axonal growth and multiorganelle transport. J. Cell Biol 207, 735–752 (2014). PubMed PMC
Zhong G et al. Developmental mechanism of the periodic membrane skeleton in axons. Elife 3, e04581 (2014). PubMed PMC
Zhou R, Han B, Xia C & Zhuang X Membrane-associated periodic skeleton is a signaling platform for RTK transactivation in neurons. Science 365, 929–934 (2019). PubMed PMC
Lek M et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016). PubMed PMC
Park J et al. Mutational characteristics of ANK1 and SPTB genes in hereditary spherocytosis. Clin. Genet 90, 69–78 (2016). PubMed
Baek HJ et al. Transforming growth factor-β adaptor, β2-spectrin, modulates cyclin dependent kinase 4 to reduce development of hepatocellular cancer. Hepatology 53, 1676–1684 (2011). PubMed PMC
Derbala MH, Guo AS, Mohler PJ & Smith SA The role of βII spectrin in cardiac health and disease. Life Sci 192, 278–285 (2018). PubMed PMC
Sobreira N, Schiettecatte F, Valle D & Hamosh A GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat 36, 928–930 (2015). PubMed PMC
Zepeda-Mendoza CJ et al. An intragenic duplication of TRPS1 leading to abnormal transcripts and causing trichorhinophalangeal syndrome type I. Cold Spring Harb. Mol. Case Stud 5, a004655 (2019). PubMed PMC
Kalari KR et al. MAP-RSeq: Mayo analysis pipeline for RNA sequencing. BMC Bioinformatics 15, 224 (2014). PubMed PMC
Kim D et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14, R36 (2013). PubMed PMC
Langmead B Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinformatics 11, 7 (2010). PubMed PMC
Anders S, Pyl PT & Huber W HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics, 31, 166–169 (2015). PubMed PMC
Quinlan AR BEDTools: The Swiss-aramy tool for genome feature analysis. Curr. Protoc. Bioinformatics 47, 1–34 (2014). PubMed PMC
Lorenzo DN & Bennett V Cell-autonomous adiposity through increased cell surface GLUT4 due to ankyrin-B deficiency. Proc. Natl. Acad. Sci. USA 114, 12743–12748 (2017). PubMed PMC
Burridge K, Kelly T & Mangeat P Nonerythrocyte spectrins: actin-membrane attachment proteins occurring in many cell types. J. Cell Biol 95, 478–486 (1982). PubMed PMC
Snouwaert JN et al. A mutation in the Borcs7 subunit of the lysosome regulatory BORC complex results in motor deficits and dystrophic axonopathy in mice. Cell Rep 24, 1254–1265 (2018). PubMed
García-Alvarez B, Bobkov A, Sonnenberg A & de Pereda JM Structural and functional analysis of the actin binding domain of plectin suggests alternative mechanisms for binding to F-actin and integrin beta4. Structure 11, 615–625 (2003). PubMed
Zhang Y I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40 (2008). PubMed PMC
von der Ecken J, Heissler SM, Pathan-Chhatbar S, Manstein DJ & Raunser S Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution. Nature 534, 724–728 (2016). PubMed
Källberg M, Margaryan G, Wang S, Ma J & Xu J RaptorX server: a resource for template-based protein structure modeling. Methods Mol. Biol 1137, 17–27 (2014). PubMed
Jurrus E et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci 27, 112–128 (2018). PubMed PMC
Shindyalov IN & Bourne PE Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11, 739–747 (1998). PubMed