A homozygous stop-gain variant in ARHGAP42 is associated with childhood interstitial lung disease, systemic hypertension, and immunological findings
Language English Country United States Media electronic-ecollection
Document type Case Reports, Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
UL1 TR001863
NCATS NIH HHS - United States
U54 HG006504
NHGRI NIH HHS - United States
R01 AR068429
NIAMS NIH HHS - United States
U54 HD090255
NICHD NIH HHS - United States
U01 HL122642
NHLBI NIH HHS - United States
R01 HL142879
NHLBI NIH HHS - United States
PubMed
34232960
PubMed Central
PMC8289122
DOI
10.1371/journal.pgen.1009639
PII: PGENETICS-D-21-00247
Knihovny.cz E-resources
- MeSH
- Child MeSH
- Homozygote MeSH
- Hypertension genetics MeSH
- Lung Diseases, Interstitial genetics pathology MeSH
- Leukocytosis genetics immunology MeSH
- Humans MeSH
- Lymphocytosis genetics immunology MeSH
- Mice MeSH
- GTPase-Activating Proteins genetics MeSH
- rhoA GTP-Binding Protein genetics metabolism MeSH
- Pedigree MeSH
- Exome Sequencing MeSH
- Animals MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- ARHGAP42 protein, human MeSH Browser
- Graf3 protein, mouse MeSH Browser
- GTPase-Activating Proteins MeSH
- rhoA GTP-Binding Protein MeSH
- RHOA protein, human MeSH Browser
ARHGAP42 encodes Rho GTPase activating protein 42 that belongs to a member of the GTPase Regulator Associated with Focal Adhesion Kinase (GRAF) family. ARHGAP42 is involved in blood pressure control by regulating vascular tone. Despite these findings, disorders of human variants in the coding part of ARHGAP42 have not been reported. Here, we describe an 8-year-old girl with childhood interstitial lung disease (chILD), systemic hypertension, and immunological findings who carries a homozygous stop-gain variant (c.469G>T, p.(Glu157Ter)) in the ARHGAP42 gene. The family history is notable for both parents with hypertension. Histopathological examination of the proband lung biopsy showed increased mural smooth muscle in small airways and alveolar septa, and concentric medial hypertrophy in pulmonary arteries. ARHGAP42 stop-gain variant in the proband leads to exon 5 skipping, and reduced ARHGAP42 levels, which was associated with enhanced RhoA and Cdc42 expression. This is the first report linking a homozygous stop-gain variant in ARHGAP42 with a chILD disorder, systemic hypertension, and immunological findings in human patient. Evidence of smooth muscle hypertrophy on lung biopsy and an increase in RhoA/ROCK signaling in patient cells suggests the potential mechanistic link between ARHGAP42 deficiency and the development of chILD disorder.
See more in PubMed
Bai X, Lenhart KC, Bird KE, Suen AA, Rojas M, Kakoki M, et al.. The smooth muscle-selective RhoGAP GRAF3 is a critical regulator of vascular tone and hypertension. Nature communications. 2013;4:2910. doi: 10.1038/ncomms3910 PubMed DOI PMC
Wain LV, Verwoert GC, O’Reilly PF, Shi G, Johnson T, Johnson AD, et al.. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nature genetics. 2011;43(10):1005. doi: 10.1038/ng.922 PubMed DOI PMC
Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al.. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103. doi: 10.1038/nature10405 PubMed DOI PMC
Kato N, Loh M, Takeuchi F, Verweij N, Wang X, Zhang W, et al.. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nature genetics. 2015;47(11):1282. doi: 10.1038/ng.3405 PubMed DOI PMC
Bai X, Dee R, Mangum KD, Mack CP, Taylor JM. RhoA signaling and blood pressure: The consequence of failing to “Tone it Down”. World Journal of Hypertension. 2016;6(1):18–35.
Bai X, Mangum K, Kakoki M, Smithies O, Mack CP, Taylor JM. GRAF3 serves as a blood volume-sensitive rheostat to control smooth muscle contractility and blood pressure. Small GTPases. 2018:1–10. doi: 10.1080/21541248.2017.1375602 PubMed DOI PMC
Zhu Z, Wang X, Li X, Lin Y, Shen S, Liu CL, et al.. Genetic overlap of chronic obstructive pulmonary disease and cardiovascular disease-related traits: a large-scale genome-wide cross-trait analysis. Respir Res. 2019;20(1):64. Epub 2019/04/04. doi: 10.1186/s12931-019-1036-8 . PubMed DOI PMC
Cao J, O’Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, et al.. A human cell atlas of fetal gene expression. Science. 2020;370(6518). Epub 2020/11/14. doi: 10.1126/science.aba7721 . PubMed DOI PMC
Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJG, Evans PR, et al.. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science. 2004;303(5657):495–9. doi: 10.1126/science.1092586 PubMed DOI
Frost A, Unger VM, De Camilli P. The BAR domain superfamily: membrane-molding macromolecules. Cell. 2009;137(2):191–6. doi: 10.1016/j.cell.2009.04.010 PubMed DOI PMC
Luo W, Janoštiak R, Tolde O, Ryzhova LM, Koudelková L, Dibus M, et al.. ARHGAP42 is activated by Src–mediated tyrosine phosphorylation to promote cell motility. J Cell Sci. 2017:jcs. 197434. doi: 10.1242/jcs.197434 PubMed DOI PMC
Fjorder AS, Rasmussen MB, Mehrjouy MM, Nazaryan-Petersen L, Hansen C, Bak M, et al.. Haploinsufficiency of ARHGAP42 is associated with hypertension. European Journal of Human Genetics. 2019;27(8):1296–303. doi: 10.1038/s41431-019-0382-9 PubMed DOI PMC
Bai X, Mangum KD, Dee RA, Stouffer GA, Lee CR, Oni-Orisan A, et al.. Blood pressure–associated polymorphism controls ARHGAP42 expression via serum response factor DNA binding. The Journal of clinical investigation. 2017;127(2):670–80. doi: 10.1172/JCI88899 PubMed DOI PMC
Monaghan-Benson E, Wittchen ES, Doerschuk CM, Burridge K. A Rnd3/p190RhoGAP pathway regulates RhoA activity in idiopathic pulmonary fibrosis fibroblasts. Mol Biol Cell. 2018;29(18):2165–75. Epub 2018/07/12. doi: 10.1091/mbc.E17-11-0642 . PubMed DOI PMC
Knipe RS, Probst CK, Lagares D, Franklin A, Spinney JJ, Brazee PL, et al.. The Rho kinase isoforms ROCK1 and ROCK2 each contribute to the development of experimental pulmonary fibrosis. American journal of respiratory cell and molecular biology. 2018;58(4):471–81. doi: 10.1165/rcmb.2017-0075OC PubMed DOI PMC
Bei Y, Hua-Huy T, Nicco C, Duong-Quy S, Le-Dong NN, Tiev KP, et al.. RhoA/Rho-kinase activation promotes lung fibrosis in an animal model of systemic sclerosis. Exp Lung Res. 2016;42(1):44–55. Epub 2016/02/14. doi: 10.3109/01902148.2016.1141263 . PubMed DOI
Watts KL, Cottrell E, Hoban PR, Spiteri MA. RhoA signaling modulates cyclin D1 expression in human lung fibroblasts; implications for idiopathic pulmonary fibrosis. Respir Res. 2006;7:88. Epub 2006/06/17. doi: 10.1186/1465-9921-7-88 . PubMed DOI PMC
Knipe RS, Tager AM, Liao JK. The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis. Pharmacological reviews. 2015;67(1):103–17. doi: 10.1124/pr.114.009381 PubMed DOI PMC
Mathew D, Kremer KN, Torres RM. ARHGEF1 deficiency reveals Galpha13-associated GPCRs are critical regulators of human lymphocyte function. J Clin Invest. 2019;129(3):965–8. Epub 2019/02/05. doi: 10.1172/JCI125893 . PubMed DOI PMC
Bouafia A, Lofek S, Bruneau J, Chentout L, Lamrini H, Trinquand A, et al.. Loss of ARHGEF1 causes a human primary antibody deficiency. J Clin Invest. 2019;129(3):1047–60. Epub 2018/12/07. doi: 10.1172/JCI120572 . PubMed DOI PMC
Hu Q, Lin X, Ding L, Zeng Y, Pang D, Ouyang N, et al.. ARHGAP42 promotes cell migration and invasion involving PI3K/Akt signaling pathway in nasopharyngeal carcinoma. Cancer Med. 2018;7(8):3862–74. Epub 2018/06/25. doi: 10.1002/cam4.1552 . PubMed DOI PMC
Jiang K, Liu P, Xu H, Liang D, Fang K, Du S, et al.. SASH1 suppresses triple-negative breast cancer cell invasion through YAP-ARHGAP42-actin axis. Oncogene. 2020;39(27):5015–30. Epub 2020/06/12. doi: 10.1038/s41388-020-1356-7 . PubMed DOI
Smedemark-Margulies N, Brownstein CA, Vargas S, Tembulkar SK, Towne MC, Shi J, et al.. A novel de novo mutation in ATP1A3 and childhood-onset schizophrenia. Cold Spring Harb Mol Case Stud. 2016;2(5):a001008. Epub 2016/09/15. doi: 10.1101/mcs.a001008 . PubMed DOI PMC
Schmitz-Abe K, Li Q, Rosen SM, Nori N, Madden JA, Genetti CA, et al.. Unique bioinformatic approach and comprehensive reanalysis improve diagnostic yield of clinical exomes. Eur J Hum Genet. 2019;27(9):1398–405. Epub 2019/04/14. doi: 10.1038/s41431-019-0401-x . PubMed DOI PMC
Wall FE, Henkel RD, Stern MP, Jenson HB, Moyer MP. An efficient method for routine Epstein-Barr virus immortalization of human B lymphocytes. In Vitro Cellular & Developmental Biology-Animal. 1995;31(2):156–9. doi: 10.1007/BF02633976 PubMed DOI