Regulation of KRAS protein expression by miR-544a and KRAS-LCS6 polymorphism in wild-type KRAS sporadic colon adenocarcinoma
Language English Country Japan Media print-electronic
Document type Journal Article
Grant support
HRZZ-IP-2016-06-1430
Hrvatska Zaklada za Znanost
PubMed
34235620
DOI
10.1007/s13577-021-00576-2
PII: 10.1007/s13577-021-00576-2
Knihovny.cz E-resources
- Keywords
- Colon adenocarcinoma, Immunohistochemistry, KRAS, Let-7a, miR-544a,
- MeSH
- Adenocarcinoma genetics pathology MeSH
- Adult MeSH
- Gene Expression genetics MeSH
- Polymorphism, Single Nucleotide genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- MicroRNAs genetics physiology MeSH
- Colonic Neoplasms genetics pathology MeSH
- Proto-Oncogene Proteins p21(ras) genetics metabolism MeSH
- Gene Expression Regulation, Neoplastic genetics MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- KRAS protein, human MeSH Browser
- MicroRNAs MeSH
- MIRN544 microRNA, human MeSH Browser
- Proto-Oncogene Proteins p21(ras) MeSH
Colorectal carcinoma (CRC) results from the accumulation of genetic mutations and alterations in signaling pathways. KRAS is mutated in 40% of CRC cases and is involved in increased tumor cells proliferation and survival. Although KRAS mutations are a dominant event in CRC tumorigenesis, increased wild-type KRAS expression has a similar effect on accelerated tumor growth. In this study, we investigated the KRAS status in correlation with clinicopathological features in sporadic CRC and more importantly the role of let-7a-5p and miR-544a-3p in the regulation of wild-type KRAS protein expression in the tumor center (T1) and invasive tumor front (T2). Analysis showed that 39.1% of tumor samples had KRAS mutations. In wild-type KRAS tumors, 62.0% were positive for KRAS protein expression and there was a higher percentage of KRAS-positive tumor cells and a higher intensity of immunohistochemical reaction in T2 than in T1 samples. This could not be attributed to differences in KRAS mRNA levels, suggesting regulation via miR-544a-3p expression which was significantly decreased in T2 samples. Furthermore, we demonstrated that tumor samples carrying the KRAS-LCS6 variant allele had significantly higher protein expression of the wild-type KRAS. Our results suggest the role of the KRAS-LCS6 polymorphism and miR-544a-3p expression in the regulation of wild-type KRAS protein expression in sporadic CRC.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Pathology Clinical Hospital Merkur Zagreb Croatia
Department of Surgery Clinical Hospital Merkur Zagreb Croatia
See more in PubMed
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. PubMed PMC
Mondaca S, Yaeger R. Colorectal cancer genomics and designing rational trials. Ann Transl Med. 2018;6(9):159. PubMed DOI PMC
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49.
Tsilimigras DI, Ntanasis-Stathopoulos I, Bagante F, Moris D, Cloyd J, Spartalis E, et al. Clinical significance and prognostic relevance of KRAS, BRAF, PI3K and TP53 genetic mutation analysis for resectable and unresectable colorectal liver metastases: a systematic review of the current evidence. Surg Oncol. 2018;27(2):280–8. PubMed DOI
Guerrero S, Casanova I, Farre L, Mazo A, Capella G, Mangues R. K-ras codon 12 mutation induces higher level of resistance to apoptosis and predisposition to anchorage-independent growth than codon 13 mutation or proto-oncogene overexpression. Cancer Res. 2000;60(23):6750–6. PubMed
Horsch M, Recktenwald CV, Schadler S, Hrabe de Angelis M, Seliger B, Beckers J. Overexpressed vs mutated Kras in murine fibroblasts: a molecular phenotyping study. Br J Cancer. 2009;100(4):656–62. PubMed DOI PMC
Zhou B, Der CJ, Cox AD. The role of wild type RAS isoforms in cancer. Semin Cell Dev Biol. 2016;58:60–9. PubMed DOI PMC
Roncarati R, Lupini L, Shankaraiah RC, Negrini M. The importance of microRNAs in RAS oncogenic activation in human cancer. Front Oncol. 2019;9:988. PubMed DOI PMC
You C, Liang H, Sun W, Li J, Liu Y, Fan Q, et al. Deregulation of the miR-16-KRAS axis promotes colorectal cancer. Sci Rep. 2016;6:37459. PubMed DOI PMC
Kim M, Slack FJ. MicroRNA-mediated regulation of KRAS in cancer. J Hematol Oncol. 2014;7:84. PubMed DOI PMC
Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120(5):635–47. PubMed DOI
Ma R, Zhang G, Wang H, Lv H, Fang F, Kang X. Downregulation of miR-544 in tissue, but not in serum, is a novel biomarker of malignant transformation in glioma. Oncol Lett. 2012;4(6):1321–4. PubMed DOI PMC
Yanaka Y, Muramatsu T, Uetake H, Kozaki K, Inazawa J. miR-544a induces epithelial-mesenchymal transition through the activation of WNT signaling pathway in gastric cancer. Carcinogenesis. 2015;36(11):1363–71. PubMed DOI
Liang D, Meyer L, Chang DW, Lin J, Pu X, Ye Y, et al. Genetic variants in MicroRNA biosynthesis pathways and binding sites modify ovarian cancer risk, survival, and treatment response. Can Res. 2010;70(23):9765–76. DOI
Gottmann P, Ouni M, Zellner L, Jahnert M, Rittig K, Walther D, et al. Polymorphisms in miRNA binding sites involved in metabolic diseases in mice and humans. Sci Rep. 2020;10(1):7202. PubMed DOI PMC
Jacinta-Fernandes A, Xavier JM, Magno R, Lage JG, Maia AT. Allele-specific miRNA-binding analysis identifies candidate target genes for breast cancer risk. NPJ Genom Med. 2020;5:4. PubMed DOI PMC
Gholami M, Larijani B, Sharifi F, Hasani-Ranjbar S, Taslimi R, Bastami M, et al. MicroRNA-binding site polymorphisms and risk of colorectal cancer: a systematic review and meta-analysis. Cancer Med. 2019;8(17):7477–99. PubMed DOI PMC
Sclafani F, Chau I, Cunningham D, Peckitt C, Lampis A, Hahne JC, et al. Prognostic role of the LCS6 KRAS variant in locally advanced rectal cancer: results of the EXPERT-C trial. Ann Oncol. 2015;26(9):1936–41. PubMed DOI PMC
Ryan BM, Robles AI, Harris CC. KRAS-LCS6 genotype as a prognostic marker in early-stage CRC–letter. Clin Cancer Res. 2012;18(12):3487–8. PubMed DOI PMC
Usher-Smith JA, Walter FM, Emery JD, Win AK, Griffin SJ. Risk prediction models for colorectal cancer: a systematic review. Cancer Prev Res (Phila). 2016;9(1):13–26. DOI
Dou R, Nishihara R, Cao Y, Hamada T, Mima K, Masuda A, et al. MicroRNA let-7, T cells, and patient survival in colorectal cancer. Cancer Immunol Res. 2016;4(11):927–35. PubMed DOI PMC
Luu C, Heinrich EL, Duldulao M, Arrington AK, Fakih M, Garcia-Aguilar J, et al. TP53 and let-7a micro-RNA regulate K-Ras activity in HCT116 colorectal cancer cells. PLoS ONE. 2013;8(8):70604. DOI
Sha D, Lee AM, Shi Q, Alberts SR, Sargent DJ, Sinicrope FA, et al. Association study of the let-7 miRNA-complementary site variant in the 3’ untranslated region of the KRAS gene in stage III colon cancer (NCCTG N0147 Clinical Trial). Clin Cancer Res. 2014;20(12):3319–27. PubMed DOI PMC
Fang C, Li Y. Prospective applications of microRNAs in oral cancer. Oncol Lett. 2019;18(4):3974–84. PubMed PMC
Ghosh RD, Pattatheyil A, Roychoudhury S. Functional landscape of dysregulated microRNAs in oral squamous cell carcinoma: clinical implications. Front Oncol. 2020;10:619. PubMed DOI PMC
Paterson EL, Kazenwadel J, Bert AG, Khew-Goodall Y, Ruszkiewicz A, Goodall GJ. Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression. Neoplasia. 2013;15(2):180–91. PubMed DOI PMC
Spaventi R, Pecur L, Pavelic K, Pavelic ZP, Spaventi S, Stambrook PJ. Human tumour bank in Croatia: a possible model for a small bank as part of the future European tumour bank network. Eur J Cancer. 1994;30A(3):419. PubMed DOI
Nollau P, Moser C, Weinland G, Wagener C. Detection of K-ras mutations in stools of patients with colorectal cancer by mutant-enriched PCR. Int J Cancer. 1996;66(3):332–6. PubMed DOI
Saridaki Z, Weidhaas JB, Lenz HJ, Laurent-Puig P, Jacobs B, De Schutter J, et al. A let-7 microRNA-binding site polymorphism in KRAS predicts improved outcome in patients with metastatic colorectal cancer treated with salvage cetuximab/panitumumab monotherapy. Clin Cancer Res. 2014;20(17):4499–510. PubMed DOI PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. PubMed PMC
D’Agostino RB, Belanger A, D’Agostino RB Jr. A suggestion for using powerful and informative test of normality. Am Stat. 1990;44(4):316–21.
Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789–99. PubMed DOI
Crespo P, Leon J. Ras proteins in the control of the cell cycle and cell differentiation. Cell Mol Life Sci. 2000;57(11):1613–36. PubMed DOI
Tuveson DA, Shaw AT, Willis NA, Silver DP, Jackson EL, Chang S, et al. Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell. 2004;5(4):375–87. PubMed DOI
Valtorta E, Misale S, Sartore-Bianchi A, Nagtegaal ID, Paraf F, Lauricella C, et al. KRAS gene amplification in colorectal cancer and impact on response to EGFR-targeted therapy. Int J Cancer. 2013;133(5):1259–65. PubMed DOI
Serebriiskii IG, Connelly C, Frampton G, Newberg J, Cooke M, Miller V, et al. Comprehensive characterization of RAS mutations in colon and rectal cancers in old and young patients. Nat Commun. 2019;10(1):3722. PubMed DOI PMC
Guo F, Gong H, Zhao H, Chen J, Zhang Y, Zhang L, et al. Mutation status and prognostic values of KRAS, NRAS, BRAF and PIK3CA in 353 Chinese colorectal cancer patients. Sci Rep. 2018;8(1):6076. PubMed DOI PMC
Chuang SC, Huang CW, Chen YT, Ma CJ, Tsai HL, Chang TK, et al. Effect of KRAS and NRAS mutations on the prognosis of patients with synchronous metastatic colorectal cancer presenting with liver-only and lung-only metastases. Oncol Lett. 2020;20(3):2119–30. PubMed DOI PMC
Liu P, Wang Y, Li X. Targeting the untargetable KRAS in cancer therapy. Acta Pharm Sin B. 2019;9(5):871–9. PubMed DOI PMC
Piton N, Lonchamp E, Nowak F, Sabourin JC. Real-life distribution of KRAS and NRAS mutations in metastatic colorectal carcinoma from French routine genotyping. Cancer Epidemiol Biomarkers Prev. 2015;24(9):1416–8. PubMed DOI
van Wyk HC, Roseweir A, Alexander P, Park JH, Horgan PG, McMillan DC, et al. The relationship between tumor budding, tumor microenvironment, and survival in patients with primary operable colorectal cancer. Ann Surg Oncol. 2019;26(13):4397–404. PubMed DOI PMC
Ozer SP, Barut SG, Ozer B, Catal O, Sit M. The relationship between tumor budding and survival in colorectal carcinomas. Rev Assoc Med Bras (1992). 2019;65(12):1442–7. DOI
Dawson H, Lugli A. Molecular and pathogenetic aspects of tumor budding in colorectal cancer. Front Med (Lausanne). 2015;2:11.
Trinh A, Ladrach C, Dawson HE, Ten Hoorn S, Kuppen PJK, Reimers MS, et al. Tumour budding is associated with the mesenchymal colon cancer subtype and RAS/RAF mutations: a study of 1320 colorectal cancers with Consensus Molecular Subgroup (CMS) data. Br J Cancer. 2018;119(10):1244–51. PubMed DOI PMC
Maffeis V, Nicole L, Cappellesso R. RAS, cellular plasticity, and tumor budding in colorectal cancer. Front Oncol. 2019;9:1255. PubMed DOI PMC
Rimbert J, Tachon G, Junca A, Villalva C, Karayan-Tapon L, Tougeron D. Association between clinicopathological characteristics and RAS mutation in colorectal cancer. Mod Pathol. 2018;31(3):517–26. PubMed DOI
Rosty C, Young JP, Walsh MD, Clendenning M, Walters RJ, Pearson S, et al. Colorectal carcinomas with KRAS mutation are associated with distinctive morphological and molecular features. Mod Pathol. 2013;26(6):825–34. PubMed DOI
Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486(7404):532–6. PubMed DOI PMC
Elsabah MT, Adel I. Immunohistochemical assay for detection of K-ras protein expression in metastatic colorectal cancer. J Egypt Natl Canc Inst. 2013;25(1):51–6. PubMed DOI
Piton N, Borrini F, Bolognese A, Lamy A, Sabourin JC. KRAS and BRAF Mutation Detection: Is Immunohistochemistry a Possible Alternative to Molecular Biology in Colorectal Cancer? Gastroenterol Res Pract. 2015;2015:753903. PubMed DOI PMC
Dhawan A, Scott JG, Harris AL, Buffa FM. Pan-cancer characterisation of microRNA across cancer hallmarks reveals microRNA-mediated downregulation of tumour suppressors. Nat Commun. 2018;9(1):5228. PubMed DOI PMC
Niveditha D, Jasoria M, Narayan J, Majumder S, Mukherjee S, Chowdhury R, et al. Common and unique microRNAs in multiple carcinomas regulate similar network of pathways to mediate cancer progression. Sci Rep. 2020;10(1):2331. PubMed DOI PMC
Jevsinek Skok D, Hauptman N, Bostjancic E, Zidar N. The integrative knowledge base for miRNA-mRNA expression in colorectal cancer. Sci Rep. 2019;9(1):18065. PubMed DOI PMC
Fadaka AO, Pretorius A, Klein A. MicroRNA assisted gene regulation in colorectal cancer. Int J Mol Sci. 2019;20(19):4899.
Moszynska A, Gebert M, Collawn JF, Bartoszewski R. SNPs in microRNA target sites and their potential role in human disease. Open Biol. 2017;7(4):170019.
Chin LJ, Ratner E, Leng SG, Zhai RH, Nallur S, Babar I, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3’ untranslated region increases non-small cell lung cancer risk. Can Res. 2008;68(20):8535–40. DOI
Chen M, Liu YY, Zheng MQ, Wang XL, Gao XH, Chen L, et al. microRNA-544 promoted human osteosarcoma cell proliferation by downregulating AXIN2 expression. Oncol Lett. 2018;15(5):7076–82. PubMed PMC
Smits KM, Paranjape T, Nallur S, Wouters KA, Weijenberg MP, Schouten LJ, et al. A let-7 microRNA SNP in the KRAS 3’UTR is prognostic in early-stage colorectal cancer. Clin Cancer Res. 2011;17(24):7723–31. PubMed DOI PMC
Christensen BC, Moyer BJ, Avissar M, Ouellet LG, Plaza SL, McClean MD, et al. A let-7 microRNA-binding site polymorphism in the KRAS 3’ UTR is associated with reduced survival in oral cancers. Carcinogenesis. 2009;30(6):1003–7. PubMed DOI PMC
Liang D, Meyer L, Chang DW, Lin J, Pu X, Ye Y, et al. Genetic variants in MicroRNA biosynthesis pathways and binding sites modify ovarian cancer risk, survival, and treatment response. Cancer Res. 2010;70(23):9765–76. PubMed DOI PMC
Ganzinelli M, Rulli E, Caiola E, Garassino MC, Broggini M, Copreni E, et al. Role of KRAS-LCS6 polymorphism in advanced NSCLC patients treated with erlotinib or docetaxel in second line treatment (TAILOR). Sci Rep. 2015;5:16331. PubMed DOI PMC
Nelson HH, Christensen BC, Plaza SL, Wiencke JK, Marsit CJ, Kelsey KT. KRAS mutation, KRAS-LCS6 polymorphism, and non-small cell lung cancer. Lung Cancer. 2010;69(1):51–3. PubMed DOI
Uvirova M, Simova J, Kubova B, Dvorackova N, Tomaskova H, Sedivcova M, et al. Comparison of the prevalence of KRAS-LCS6 polymorphism (rs61764370) within different tumour types (colorectal, breast, non-small cell lung cancer and brain tumours). A study of the Czech population. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015;159(3):466–71. PubMed DOI