H-plane horn antenna with enhanced directivity using conformal transformation optics
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
34253802
PubMed Central
PMC8275783
DOI
10.1038/s41598-021-93812-6
PII: 10.1038/s41598-021-93812-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Conformal transformation optics is employed to enhance an H-plane horn's directivity by designing a graded-index all-dielectric lens. The transformation is applied so that the phase error at the aperture is gradually eliminated inside the lens, leading to a low-profile high-gain lens antenna. The physical space shape is modified such that singular index values are avoided, and the optical path inside the lens is rescaled to eliminate superluminal regions. A prototype of the lens is fabricated using three-dimensional printing. The measurement results show that the realized gain of an H-plane horn antenna can be improved by 1.5-2.4 dB compared to a reference H-plane horn.
Department of Electrical Engineering Ferdowsi University of Mashhad Mashhad Iran
Division of Electromagnetic Engineering KTH Royal Institute of Technology Stockholm Sweden
Zobrazit více v PubMed
Pendry JB. Controlling electromagnetic fields. Science. 2006;312:1780–1782. doi: 10.1126/science.1125907. PubMed DOI
Leonhardt U. Optical conformal mapping. Science. 2006;312:1777–1780. doi: 10.1126/science.1126493. PubMed DOI
Li J, Pendry JB. Hiding under the carpet: A new strategy for cloaking. Physical Review Letters. 2008;101:203901. doi: 10.1103/physrevlett.101.203901. PubMed DOI
Chang Z, Zhou X, Hu J, Hu G. Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries. Optics Express. 2010;18:6089–6096. doi: 10.1364/oe.18.006089. PubMed DOI
Ma HF, Cui TJ. Three-dimensional broadband ground-plane cloak made of metamaterials. Nature Communications. 2010;1:21. doi: 10.1038/ncomms1023. PubMed DOI PMC
Kwon D-H, Werner DH. Polarization splitter and polarization rotator designs based on transformation optics. Optics Express. 2008;16:18731–18738. doi: 10.1364/oe.16.018731. PubMed DOI
Eskandari H, Majedi MS, Attari AR. Design of reflectionless non-magnetic homogeneous polarization splitters with minimum anisotropy based on transformation electromagnetics. Journal of the Optical Society of America B. 2017;34:1191–1198. doi: 10.1364/josab.34.001191. DOI
Mousavi SSS, Majedi MS, Eskandari H. Design and simulation of polarization transformers using transformation electromagnetics. Optik. 2017;130:1099–1106. doi: 10.1016/j.ijleo.2016.11.129. DOI
Eskandari H, Majedi MS, Attari AR. Non-reflecting non-magnetic homogeneous polarization splitter and polarization deflector design based on transformation electromagnetics. Optik. 2017;135:407–416. doi: 10.1016/j.ijleo.2017.01.080. DOI
Eskandari H, Attari AR, Majedi MS. Design of polarization splitting devices with ideal transmission and anisotropy considerations. Journal of the Optical Society of America B. 2018;35:1585–1595. doi: 10.1364/josab.35.001585. DOI
Landy NI, Padilla WJ. Guiding light with conformal transformations. Optics Express. 2009;17:14872–14879. doi: 10.1364/oe.17.014872. PubMed DOI
García-Meca C, et al. Squeezing and expanding light without reflections via transformation optics. Optics Express. 2011;19:3562–3575. doi: 10.1364/oe.19.003562. PubMed DOI
Eskandari H, Majedi MS, Attari AR. Reflectionless compact nonmagnetic optical waveguide coupler design based on transformation optics. Applied Optics. 2017;56:5599–5606. doi: 10.1364/ao.56.005599. PubMed DOI
Eskandari H, Attari AR, Majedi MS. Reflectionless design of a nonmagnetic homogeneous optical waveguide coupler based on transformation optics. Journal of the Optical Society of America B. 2017;35:54–60. doi: 10.1364/josab.35.000054. PubMed DOI
Eskandari H, Quevedo-Teruel O, Attari AR, Majedi MS. Transformation optics for perfect two-dimensional non-magnetic all-mode waveguide couplers. Optical Materials Express. 2019;9:1320–1332. doi: 10.1364/ome.9.001320. DOI
Eskandari, H., Quevedo-Teruel, O., Attari, A. R. & Majedi, M. S. Design of nonmagnetic all-mode waveguide coupler with perfect transmission using transformation optics. In 2019 13th European Conference on Antennas and Propagation (EuCAP), 1–4 (2019).
Eskandari, H., Attari, A. R., Majedi, M. S. & Tyc, T. Waveguide tapering using conformal transformation optics for ideal transmission. In 2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), X–116–X–118. 10.1109/MetaMaterials.2019.8900947 (2019).
Quevedo-Teruel, O. et al. Transformation optics for antennas: why limit the bandwidth with metamaterials?. Sci. Rep.3, 10.1038/srep01903 (2013). PubMed PMC
Eskandari H, Majedi MS, Attari AR, Quevedo-Teruel O. Elliptical generalized Maxwell fish-eye lens using conformal mapping. New Journal of Physics. 2019;21:063010. doi: 10.1088/1367-2630/ab2471. DOI
Ebrahimpouri M, Quevedo-Teruel O. Ultrawideband anisotropic glide-symmetric metasurfaces. IEEE Antennas and Wireless Propagation Letters. 2019;18:1547–1551. doi: 10.1109/lawp.2019.2922238. DOI
Chen Q, Giusti F, Valerio G, Mesa F, Quevedo-Teruel O. Anisotropic glide-symmetric substrate-integrated-holey metasurface for a compressed ultrawideband Luneburg lens. Applied Physics Letters. 2021;118:084102. doi: 10.1063/5.0041586. DOI
Hunt J, et al. Planar, flattened luneburg lens at infrared wavelengths. Optics Express. 2012;20:1706–1713. doi: 10.1364/oe.20.001706. PubMed DOI
Driscoll T, et al. Performance of a three dimensional transformation-optical-flattened lüneburg lens. Optics Express. 2012;20:13262–13273. doi: 10.1364/oe.20.013262. PubMed DOI
Zhou F, et al. Additive manufacturing of a 3D terahertz gradient-refractive index lens. Advanced Optical Materials. 2016;4:1034–1040. doi: 10.1002/adom.201600033. DOI
Yao K, Jiang X. Designing feasible optical devices via conformal mapping. Journal of the Optical Society of America B. 2011;28:1037–1042. doi: 10.1364/josab.28.001037. DOI
Schmiele M, Varma VS, Rockstuhl C, Lederer F. Designing optical elements from isotropic materials by using transformation optics. Physical Review A. 2010;81:033837. doi: 10.1103/physreva.81.033837. DOI
Aghanejad I, Abiri H, Yahaghi A. Design of high-gain lens antenna by gradient-index metamaterials using transformation optics. IEEE Transactions on Antennas and Propagation. 2012;60:4074–4081. doi: 10.1109/tap.2012.2207051. DOI
Ebrahimpouri M, Quevedo-Teruel O. Bespoke lenses based on quasi-conformal transformation optics technique. IEEE Transactions on Antennas and Propagation. 2017;65:2256–2264. doi: 10.1109/tap.2017.2679494. DOI
Ding T, Yi J, Li H, Zhang H, Burokur SN. 3D field-shaping lens using all-dielectric gradient refractive index materials. Scientific Reports. 2017;7:782. doi: 10.1038/s41598-017-00681-z. PubMed DOI PMC
Ebrahimpouri M, Zetterstrom O, Quevedo-Teruel O. Experimental validation of a bespoke lens for a slot log-spiral feed. IEEE Antennas and Wireless Propagation Letters. 2020;19:557–560. doi: 10.1109/LAWP.2020.2971852. DOI
Eskandari, H., Saviz, S. & Tyc, T. Directivity enhancement of a cylindrical wire antenna by a graded index dielectric shell designed using strictly conformal transformation optics. Sci. Rep.11, 10.1038/s41598-021-92200-4 (2021). PubMed PMC
Xu, Y., Fu, Y. & Chen, H. Planar gradient metamaterials. Nat. Rev. Mater. 1, 10.1038/natrevmats.2016.67 (2016).
Wang, H., Xu, Y., Genevet, P., Jiang, J.-H. & Chen, H. Broadband mode conversion via gradient index metamaterials. Sci. Rep.6, 10.1038/srep24529 (2016). PubMed PMC
Fu, Y., Xu, Y. & Chen, H. Applications of gradient index metamaterials in waveguides. Sci. Rep.5, 10.1038/srep18223 (2015). PubMed PMC
Gu, C. et al. A broadband polarization-insensitive cloak based on mode conversion. Sci. Rep.5, 10.1038/srep12106 (2015). PubMed PMC
Fu Y, et al. Compact acoustic retroreflector based on a mirrored luneburg lens. Physical Review Materials. 2018;2:105202. doi: 10.1103/physrevmaterials.2.105202. DOI
Xu, Y., Li, S., Hou, B. & Chen, H. Fano resonances from gradient-index metamaterials. Sci. Rep.6, 10.1038/srep19927 (2016). PubMed PMC
Clarricoats, P. J. B. & Olver, A. D. Corrugated Horns for Microwave Antennas. (IET, 1984).
Olver, A. D., Clarricoats, P., Shafai, L. & Kishk, A. Microwave Horns and Feeds. (IET, 1994).
Lier E. Hard waveguide feeds with circular symmetry for aperture efficiency enhancement. Electronics Letters. 1988;24:166–167. doi: 10.1049/el:19880110. DOI
Bhattacharyya A, Goyette G. Step-horn antenna with high aperture efficiency and low cross-polarisation. Electronics Letters. 2002;38:1495–1496. doi: 10.1049/el:20021081. DOI
Lier, E. & Matthews, J. Performance comparison of high-gain horn antennas. In 2005 IEEE Antennas and Propagation Society International Symposium, 3, 753–756. 10.1109/aps.2005.1552365 (IEEE, 2005).
Morgan KL, Brocker DE, Campbell SD, Werner DH, Werner PL. Transformation-optics-inspired anti-reflective coating design for gradient index lenses. Optics Letters. 2015;40:2521–2524. doi: 10.1364/ol.40.002521. PubMed DOI
Eskandari, H. & Tyc, T. Controlling refractive index of transformation-optics devices via optical path rescaling. Sci. Rep.9, 10.1038/s41598-019-54516-0 (2019). PubMed PMC
Papamichael, N. & Stylianopoulos, N. Numerical Conformal Mapping: Domain Decomposition and the Mapping of Quadrilaterals, chap. 2, 51–63 (World Scientific Pub Co Inc, 2010).
Rahm M, Cummer SA, Schurig D, Pendry JB, Smith DR. Optical design of reflectionless complex media by finite embedded coordinate transformations. Physical Review Letters. 2008;100:063903. doi: 10.1103/physrevlett.100.063903. PubMed DOI
Urzhumov YA, Kundtz NB, Smith DR, Pendry JB. Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches. Journal of Optics. 2010;13:0242002. doi: 10.1088/2040-8978/13/2/024002. DOI
Shilov, G. E., Silverman, R. A. et al.Elementary Real and Complex Analysis (Courier Corporation, 1996).
Balanis, C. A. Antenna Theory: Analysis and Design (Wiley, 2016).
Ebrahimpouri M, Rajo-Iglesias E, Sipus Z, Quevedo-Teruel O. Cost-effective gap waveguide technology based on glide-symmetric holey EBG structures. IEEE Transactions on Microwave Theory and Techniques. 2018;66:927–934. doi: 10.1109/tmtt.2017.2764091. DOI
Ebrahimpouri, M., Algaba Brazalez, A., Manholm, L. & Quevedo-Teruel, O. Using glide-symmetric holes to reduce leakage between waveguide flanges. IEEE Microw. Wirel. Components Lett.28, 473–475. 10.1109/LMWC.2018.2824563 (2018).
Quevedo-Teruel O, et al. Glide-symmetric fully metallic luneburg lens for 5g communications at ka-band. IEEE Antennas and Wireless Propagation Letters. 2018;17:1588–1592. doi: 10.1109/LAWP.2018.2856371. DOI
Zetterstrom O, Hamarneh R, Quevedo-Teruel O. Experimental validation of a metasurface luneburg lens antenna implemented with glide-symmetric substrate-integrated holes. IEEE Antennas and Wireless Propagation Letters. 2021;20:698–702. doi: 10.1109/lawp.2021.3060283. DOI
Bjorkqvist O, Zetterstrom O, Quevedo-Teruel O. Additive manufactured dielectric gutman lens. Electronics Letters. 2019;55:1318–1320. doi: 10.1049/el.2019.2483. DOI