Directivity enhancement of a cylindrical wire antenna by a graded index dielectric shell designed using strictly conformal transformation optics

. 2021 Jun 22 ; 11 (1) : 13035. [epub] 20210622

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34158568
Odkazy

PubMed 34158568
PubMed Central PMC8219717
DOI 10.1038/s41598-021-92200-4
PII: 10.1038/s41598-021-92200-4
Knihovny.cz E-zdroje

A transformation-optical method is presented to enhance the directivity of a cylindrical wire antenna by using an all-dielectric graded index medium. The strictly conformal mapping between two doubly connected virtual and physical domains is established numerically. Multiple directive beams are produced, providing directive emission. The state-of-the-art optical path rescaling method is employed to mitigate the superluminal regions. The resulting transformation medium is all-dielectric and nondispersive, which can provide broadband functionality and facilitate the realization of the device using available fabrication technologies. The realization of the device is demonstrated by dielectric perforation based on the effective medium theory. The device's functionality is verified by carrying out both ray-tracing and full-wave simulations using finite-element-based software COMSOL Multiphysics.

Zobrazit více v PubMed

Pendry JB. Controlling electromagnetic fields. Science. 2006;312:1780–1782. doi: 10.1126/science.1125907. PubMed DOI

Leonhardt U. Optical conformal mapping. Science. 2006;312:1777–1780. doi: 10.1126/science.1126493. PubMed DOI

Li J, Pendry JB. Hiding under the carpet: A new strategy for cloaking. Phys. Rev. Lett. 2008;101:203901. doi: 10.1103/physrevlett.101.203901. PubMed DOI

Liu R, et al. Broadband ground-plane cloak. Science. 2009;323:366–369. doi: 10.1126/science.1166949. PubMed DOI

Ma HF, Cui TJ. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun. 2010;1:21. doi: 10.1038/ncomms1023. PubMed DOI PMC

Kadic M, et al. Transformation plasmonics. Nanophotonics. 2012;1:51–64. doi: 10.1515/nanoph-2012-0011. DOI

Liu Y, Zentgraf T, Bartal G, Zhang X. Transformational plasmon optics. Nano Lett. 2010;10:1991–1997. doi: 10.1021/nl1008019. PubMed DOI

Huidobro PA, Nesterov ML, Martin-Moreno L, Garcia-Vidal FJ. Transformation optics for plasmonics. Nano Lett. 2010;10:1985–1990. doi: 10.1021/nl100800c. PubMed DOI

Eskandari H, Tyc T. Controlling refractive index of transformation-optics devices via optical path rescaling. Sci. Rep. 2019;9:18412. doi: 10.1038/s41598-019-54516-0. PubMed DOI PMC

Kwon D-H, Werner DH. Polarization splitter and polarization rotator designs based on transformation optics. Opt. Express. 2008;16:18731–18738. doi: 10.1364/oe.16.018731. PubMed DOI

Mousavi SSS, Majedi MS, Eskandari H. Design and simulation of polarization transformers using transformation electromagnetics. Optik. 2017;130:1099–1106. doi: 10.1016/j.ijleo.2016.11.129. DOI

Eskandari H, Majedi MS, Attari AR. Design of reflectionless non-magnetic homogeneous polarization splitters with minimum anisotropy based on transformation electromagnetics. J. Opt. Soc. Am. B. 2017;34:1191–1198. doi: 10.1364/josab.34.001191. DOI

Eskandari H, Majedi MS, Attari AR. Non-reflecting non-magnetic homogeneous polarization splitter and polarization deflector design based on transformation electromagnetics. Optik. 2017;135:407–416. doi: 10.1016/j.ijleo.2017.01.080. DOI

Eskandari H, Attari AR, Majedi MS. Design of polarization splitting devices with ideal transmission and anisotropy considerations. J. Opt. Soc. Am. B. 2018;35:1585–1595. doi: 10.1364/josab.35.001585. DOI

Schmiele M, Varma VS, Rockstuhl C, Lederer F. Designing optical elements from isotropic materials by using transformation optics. Phys. Rev. A. 2010;81:033837. doi: 10.1103/physreva.81.033837. DOI

Yao K, Jiang X. Designing feasible optical devices via conformal mapping. J. Opt. Soc. Am. B. 2011;28:1037–1042. doi: 10.1364/josab.28.001037. DOI

Aghanejad I, Abiri H, Yahaghi A. Design of high-gain lens antenna by gradient-index metamaterials using transformation optics. IEEE Trans. Antennas Propag. 2012;60:4074–4081. doi: 10.1109/tap.2012.2207051. DOI

Aghanejad I, Abiri H, Yahaghi A. High-gain planar lens antennas based on transformation optics and substrate-integrated waveguide (SIW) technology. Prog. Electromagn. Res. C. 2016;68:45–55. doi: 10.2528/pierc16070807. DOI

Wu Q, Turpin JP, Werner DH. Integrated photonic systems based on transformation optics enabled gradient index devices. Light Sci. Appl. 2012;1:e38. doi: 10.1038/lsa.2012.38. DOI

Wu Q, et al. Transformation optics inspired multibeam lens antennas for broadband directive radiation. IEEE Trans. Antennas Propag. 2013;61:5910–5922. doi: 10.1109/tap.2013.2282905. DOI

Ebrahimpouri M, Quevedo-Teruel O. Bespoke lenses based on quasi-conformal transformation optics technique. IEEE Trans. Antennas Propag. 2017;65:2256–2264. doi: 10.1109/tap.2017.2679494. DOI

Rahm M, Roberts DA, Pendry JB, Smith DR. Transformation-optical design of adaptive beam bends and beam expanders. Opt. Express. 2008;16:11555–11567. doi: 10.1364/oe.16.011555. PubMed DOI

Emiroglu CD, Kwon D-H. Impedance-matched three-dimensional beam expander and compressor designs via transformation optics. J. Appl. Phys. 2010;107:084502. doi: 10.1063/1.3383057. DOI

García-Meca C, et al. Squeezing and expanding light without reflections via transformation optics. Opt. Express. 2011;19:3562–3575. doi: 10.1364/oe.19.003562. PubMed DOI

Markov P, Valentine JG, Weiss SM. Fiber-to-chip coupler designed using an optical transformation. Opt. Express. 2012;20:14705–14713. doi: 10.1364/oe.20.014705. PubMed DOI

Eskandari H, Majedi MS, Attari AR. Reflectionless compact nonmagnetic optical waveguide coupler design based on transformation optics. Appl. Opt. 2017;56:5599–5606. doi: 10.1364/ao.56.005599. PubMed DOI

Eskandari H, Attari AR, Majedi MS. Reflectionless design of a nonmagnetic homogeneous optical waveguide coupler based on transformation optics. J. Opt. Soc. Am. B. 2017;35:54–60. doi: 10.1364/josab.35.000054. PubMed DOI

Li S, et al. Universal multimode waveguide crossing based on transformation optics. Optica. 2018;5:1549–1556. doi: 10.1364/optica.5.001549. DOI

Tao S, Zhou Y, Chen H. Maxwell’s fish-eye lenses under Schwartz–Christoffel mappings. Phys. Rev. A. 2019;99:013837. doi: 10.1103/physreva.99.013837. DOI

Eskandari H, Quevedo-Teruel O, Attari AR, Majedi MS. Transformation optics for perfect two-dimensional non-magnetic all-mode waveguide couplers. Opt. Mater. Express. 2019;9:1320–1332. doi: 10.1364/ome.9.001320. DOI

Quevedo-Teruel O, et al. Transformation optics for antennas: Why limit the bandwidth with metamaterials? Sci. Rep. 2013;3:1903. doi: 10.1038/srep01903. PubMed DOI PMC

Eskandari H, Majedi MS, Attari AR, Quevedo-Teruel O. Elliptical generalized Maxwell fish-eye lens using conformal mapping. New J. Phys. 2019;21:063010. doi: 10.1088/1367-2630/ab2471. DOI

Ebrahimpouri M, Quevedo-Teruel O. Ultrawideband anisotropic glide-symmetric metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2019;18:1547–1551. doi: 10.1109/lawp.2019.2922238. DOI

Chen Q, Giusti F, Valerio G, Mesa F, Quevedo-Teruel O. Anisotropic glide-symmetric substrate-integrated-holey metasurface for a compressed ultrawideband Luneburg lens. Appl. Phys. Lett. 2021;118:084102. doi: 10.1063/5.0041586. DOI

Cai W, Chettiar UK, Kildishev AV, Shalaev VM, Milton GW. Nonmagnetic cloak with minimized scattering. Appl. Phys. Lett. 2007;91:111105. doi: 10.1063/1.2783266. DOI

Wang S-Y, Yu B, Liu S, Bian B. Optimization for nonmagnetic concentrator with minimized scattering. J. Opt. Soc. Am. A. 2013;30:1563–1567. doi: 10.1364/josaa.30.001563. PubMed DOI

Shu W, Yang S, Yan W, Ke Y, Smith T. Flat designs of impedance-matched nonmagnetic phase transformer and wave-shaping polarization splitter via transformation optics. Opt. Commun. 2015;338:307–312. doi: 10.1016/j.optcom.2014.10.065. DOI

Xu L, Chen H. Conformal transformation optics. Nat. Photonics. 2014;9:15–23. doi: 10.1038/nphoton.2014.307. DOI

Gunderson LC, Holmes GT. Microwave Luneburg lens. Appl. Opt. 1968;7:801–804. doi: 10.1364/ao.7.000801. PubMed DOI

Taskhiri MM, Amirhosseini MK. Design of a broadband hemispherical wave collimator lens using the ray inserting method. J. Opt. Soc. Am. A. 2017;34:1265–1271. doi: 10.1364/josaa.34.001265. PubMed DOI

Vasic B, Isic G, Gajic R, Hingerl K. Controlling electromagnetic fields with graded photonic crystals in metamaterial regime. Opt. Express. 2010;18:20321. doi: 10.1364/oe.18.020321. PubMed DOI

Gilarlue M, Badri SH, Saghai HR, Nourinia J, Ghobadi C. Photonic crystal waveguide intersection design based on Maxwell’s fish-eye lens. Photonics Nanostruct. Fundam. Appl. 2018;31:154–159. doi: 10.1016/j.photonics.2018.08.001. DOI

Gilarlue M, Badri SH. Photonic crystal waveguide crossing based on transformation optics. Opt. Commun. 2019;450:308–315. doi: 10.1016/j.optcom.2019.06.025. DOI

Peeler G, Coleman H. Microwave stepped-index Luneberg lenses. IRE Trans. Antennas Propag. 1958;6:202–207. doi: 10.1109/tap.1958.1144575. DOI

Fuchs B, Lafond O, Rondineau S, Himdi M. Design and characterization of half Maxwell fish-eye lens antennas in millimeter waves. IEEE Trans. Microw. Theory Tech. 2006;54:2292–2300. doi: 10.1109/tmtt.2006.875255. DOI

Zentgraf T, Valentine J, Tapia N, Li J, Zhang X. An optical “Janus” device for integrated photonics. Adv. Mater. 2010;22:2561–2564. doi: 10.1002/adma.200904139. PubMed DOI

Gabrielli LH, Lipson M. Transformation optics on a silicon platform. J. Opt. 2010;13:024010. doi: 10.1088/2040-8978/13/2/024010. DOI

Bitton O, Bruch R, Leonhardt U. Two-dimensional Maxwell fisheye for integrated optics. Phys. Rev. Appl. 2018;10:044059. doi: 10.1103/physrevapplied.10.044059. DOI

Ebrahimpouri M, Zetterstrom O, Quevedo-Teruel O. Experimental validation of a Bespoke lens for a slot log-spiral feed. IEEE Antennas Wirel. Propag. Lett. 2020;19:557–560. doi: 10.1109/lawp.2020.2971852. DOI

Bjorkqvist O, Zetterstrom O, Quevedo-Teruel O. Additive manufactured dielectric Gutman lens. Electron. Lett. 2019;55:1318–1320. doi: 10.1049/el.2019.2483. DOI

Balanis CA. Antenna Theory: Analysis and Design. Wiley; 2016.

Henrici P. Applied and Computational Complex Analysis, Volume 3: Discrete Fourier Analysis, Cauchy Integrals, Construction of Conformal Maps, Univalent Functions. Wiley; 1986.

DeLillo TK, Elcrat AR, Pfaltzgraff JA. Schwarz–Christoffel mapping of the annulus. SIAM Rev. 2001;43:469–477. doi: 10.1137/s0036144500375280. DOI

Driscoll TA, Trefethen LN. Schwarz–Christoffel Mapping, Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press; 2009.

Hu C. Algorithm 785: A software package for computing Schwarz–Christoffel conformal transformation for doubly connected polygonal regions. ACM Trans. Math. Softw. 1998;24:317–333. doi: 10.1145/292395.291204. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

H-plane horn antenna with enhanced directivity using conformal transformation optics

. 2021 Jul 12 ; 11 (1) : 14322. [epub] 20210712

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...