Directivity enhancement of a cylindrical wire antenna by a graded index dielectric shell designed using strictly conformal transformation optics
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
34158568
PubMed Central
PMC8219717
DOI
10.1038/s41598-021-92200-4
PII: 10.1038/s41598-021-92200-4
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A transformation-optical method is presented to enhance the directivity of a cylindrical wire antenna by using an all-dielectric graded index medium. The strictly conformal mapping between two doubly connected virtual and physical domains is established numerically. Multiple directive beams are produced, providing directive emission. The state-of-the-art optical path rescaling method is employed to mitigate the superluminal regions. The resulting transformation medium is all-dielectric and nondispersive, which can provide broadband functionality and facilitate the realization of the device using available fabrication technologies. The realization of the device is demonstrated by dielectric perforation based on the effective medium theory. The device's functionality is verified by carrying out both ray-tracing and full-wave simulations using finite-element-based software COMSOL Multiphysics.
Zobrazit více v PubMed
Pendry JB. Controlling electromagnetic fields. Science. 2006;312:1780–1782. doi: 10.1126/science.1125907. PubMed DOI
Leonhardt U. Optical conformal mapping. Science. 2006;312:1777–1780. doi: 10.1126/science.1126493. PubMed DOI
Li J, Pendry JB. Hiding under the carpet: A new strategy for cloaking. Phys. Rev. Lett. 2008;101:203901. doi: 10.1103/physrevlett.101.203901. PubMed DOI
Liu R, et al. Broadband ground-plane cloak. Science. 2009;323:366–369. doi: 10.1126/science.1166949. PubMed DOI
Ma HF, Cui TJ. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun. 2010;1:21. doi: 10.1038/ncomms1023. PubMed DOI PMC
Kadic M, et al. Transformation plasmonics. Nanophotonics. 2012;1:51–64. doi: 10.1515/nanoph-2012-0011. DOI
Liu Y, Zentgraf T, Bartal G, Zhang X. Transformational plasmon optics. Nano Lett. 2010;10:1991–1997. doi: 10.1021/nl1008019. PubMed DOI
Huidobro PA, Nesterov ML, Martin-Moreno L, Garcia-Vidal FJ. Transformation optics for plasmonics. Nano Lett. 2010;10:1985–1990. doi: 10.1021/nl100800c. PubMed DOI
Eskandari H, Tyc T. Controlling refractive index of transformation-optics devices via optical path rescaling. Sci. Rep. 2019;9:18412. doi: 10.1038/s41598-019-54516-0. PubMed DOI PMC
Kwon D-H, Werner DH. Polarization splitter and polarization rotator designs based on transformation optics. Opt. Express. 2008;16:18731–18738. doi: 10.1364/oe.16.018731. PubMed DOI
Mousavi SSS, Majedi MS, Eskandari H. Design and simulation of polarization transformers using transformation electromagnetics. Optik. 2017;130:1099–1106. doi: 10.1016/j.ijleo.2016.11.129. DOI
Eskandari H, Majedi MS, Attari AR. Design of reflectionless non-magnetic homogeneous polarization splitters with minimum anisotropy based on transformation electromagnetics. J. Opt. Soc. Am. B. 2017;34:1191–1198. doi: 10.1364/josab.34.001191. DOI
Eskandari H, Majedi MS, Attari AR. Non-reflecting non-magnetic homogeneous polarization splitter and polarization deflector design based on transformation electromagnetics. Optik. 2017;135:407–416. doi: 10.1016/j.ijleo.2017.01.080. DOI
Eskandari H, Attari AR, Majedi MS. Design of polarization splitting devices with ideal transmission and anisotropy considerations. J. Opt. Soc. Am. B. 2018;35:1585–1595. doi: 10.1364/josab.35.001585. DOI
Schmiele M, Varma VS, Rockstuhl C, Lederer F. Designing optical elements from isotropic materials by using transformation optics. Phys. Rev. A. 2010;81:033837. doi: 10.1103/physreva.81.033837. DOI
Yao K, Jiang X. Designing feasible optical devices via conformal mapping. J. Opt. Soc. Am. B. 2011;28:1037–1042. doi: 10.1364/josab.28.001037. DOI
Aghanejad I, Abiri H, Yahaghi A. Design of high-gain lens antenna by gradient-index metamaterials using transformation optics. IEEE Trans. Antennas Propag. 2012;60:4074–4081. doi: 10.1109/tap.2012.2207051. DOI
Aghanejad I, Abiri H, Yahaghi A. High-gain planar lens antennas based on transformation optics and substrate-integrated waveguide (SIW) technology. Prog. Electromagn. Res. C. 2016;68:45–55. doi: 10.2528/pierc16070807. DOI
Wu Q, Turpin JP, Werner DH. Integrated photonic systems based on transformation optics enabled gradient index devices. Light Sci. Appl. 2012;1:e38. doi: 10.1038/lsa.2012.38. DOI
Wu Q, et al. Transformation optics inspired multibeam lens antennas for broadband directive radiation. IEEE Trans. Antennas Propag. 2013;61:5910–5922. doi: 10.1109/tap.2013.2282905. DOI
Ebrahimpouri M, Quevedo-Teruel O. Bespoke lenses based on quasi-conformal transformation optics technique. IEEE Trans. Antennas Propag. 2017;65:2256–2264. doi: 10.1109/tap.2017.2679494. DOI
Rahm M, Roberts DA, Pendry JB, Smith DR. Transformation-optical design of adaptive beam bends and beam expanders. Opt. Express. 2008;16:11555–11567. doi: 10.1364/oe.16.011555. PubMed DOI
Emiroglu CD, Kwon D-H. Impedance-matched three-dimensional beam expander and compressor designs via transformation optics. J. Appl. Phys. 2010;107:084502. doi: 10.1063/1.3383057. DOI
García-Meca C, et al. Squeezing and expanding light without reflections via transformation optics. Opt. Express. 2011;19:3562–3575. doi: 10.1364/oe.19.003562. PubMed DOI
Markov P, Valentine JG, Weiss SM. Fiber-to-chip coupler designed using an optical transformation. Opt. Express. 2012;20:14705–14713. doi: 10.1364/oe.20.014705. PubMed DOI
Eskandari H, Majedi MS, Attari AR. Reflectionless compact nonmagnetic optical waveguide coupler design based on transformation optics. Appl. Opt. 2017;56:5599–5606. doi: 10.1364/ao.56.005599. PubMed DOI
Eskandari H, Attari AR, Majedi MS. Reflectionless design of a nonmagnetic homogeneous optical waveguide coupler based on transformation optics. J. Opt. Soc. Am. B. 2017;35:54–60. doi: 10.1364/josab.35.000054. PubMed DOI
Li S, et al. Universal multimode waveguide crossing based on transformation optics. Optica. 2018;5:1549–1556. doi: 10.1364/optica.5.001549. DOI
Tao S, Zhou Y, Chen H. Maxwell’s fish-eye lenses under Schwartz–Christoffel mappings. Phys. Rev. A. 2019;99:013837. doi: 10.1103/physreva.99.013837. DOI
Eskandari H, Quevedo-Teruel O, Attari AR, Majedi MS. Transformation optics for perfect two-dimensional non-magnetic all-mode waveguide couplers. Opt. Mater. Express. 2019;9:1320–1332. doi: 10.1364/ome.9.001320. DOI
Quevedo-Teruel O, et al. Transformation optics for antennas: Why limit the bandwidth with metamaterials? Sci. Rep. 2013;3:1903. doi: 10.1038/srep01903. PubMed DOI PMC
Eskandari H, Majedi MS, Attari AR, Quevedo-Teruel O. Elliptical generalized Maxwell fish-eye lens using conformal mapping. New J. Phys. 2019;21:063010. doi: 10.1088/1367-2630/ab2471. DOI
Ebrahimpouri M, Quevedo-Teruel O. Ultrawideband anisotropic glide-symmetric metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2019;18:1547–1551. doi: 10.1109/lawp.2019.2922238. DOI
Chen Q, Giusti F, Valerio G, Mesa F, Quevedo-Teruel O. Anisotropic glide-symmetric substrate-integrated-holey metasurface for a compressed ultrawideband Luneburg lens. Appl. Phys. Lett. 2021;118:084102. doi: 10.1063/5.0041586. DOI
Cai W, Chettiar UK, Kildishev AV, Shalaev VM, Milton GW. Nonmagnetic cloak with minimized scattering. Appl. Phys. Lett. 2007;91:111105. doi: 10.1063/1.2783266. DOI
Wang S-Y, Yu B, Liu S, Bian B. Optimization for nonmagnetic concentrator with minimized scattering. J. Opt. Soc. Am. A. 2013;30:1563–1567. doi: 10.1364/josaa.30.001563. PubMed DOI
Shu W, Yang S, Yan W, Ke Y, Smith T. Flat designs of impedance-matched nonmagnetic phase transformer and wave-shaping polarization splitter via transformation optics. Opt. Commun. 2015;338:307–312. doi: 10.1016/j.optcom.2014.10.065. DOI
Xu L, Chen H. Conformal transformation optics. Nat. Photonics. 2014;9:15–23. doi: 10.1038/nphoton.2014.307. DOI
Gunderson LC, Holmes GT. Microwave Luneburg lens. Appl. Opt. 1968;7:801–804. doi: 10.1364/ao.7.000801. PubMed DOI
Taskhiri MM, Amirhosseini MK. Design of a broadband hemispherical wave collimator lens using the ray inserting method. J. Opt. Soc. Am. A. 2017;34:1265–1271. doi: 10.1364/josaa.34.001265. PubMed DOI
Vasic B, Isic G, Gajic R, Hingerl K. Controlling electromagnetic fields with graded photonic crystals in metamaterial regime. Opt. Express. 2010;18:20321. doi: 10.1364/oe.18.020321. PubMed DOI
Gilarlue M, Badri SH, Saghai HR, Nourinia J, Ghobadi C. Photonic crystal waveguide intersection design based on Maxwell’s fish-eye lens. Photonics Nanostruct. Fundam. Appl. 2018;31:154–159. doi: 10.1016/j.photonics.2018.08.001. DOI
Gilarlue M, Badri SH. Photonic crystal waveguide crossing based on transformation optics. Opt. Commun. 2019;450:308–315. doi: 10.1016/j.optcom.2019.06.025. DOI
Peeler G, Coleman H. Microwave stepped-index Luneberg lenses. IRE Trans. Antennas Propag. 1958;6:202–207. doi: 10.1109/tap.1958.1144575. DOI
Fuchs B, Lafond O, Rondineau S, Himdi M. Design and characterization of half Maxwell fish-eye lens antennas in millimeter waves. IEEE Trans. Microw. Theory Tech. 2006;54:2292–2300. doi: 10.1109/tmtt.2006.875255. DOI
Zentgraf T, Valentine J, Tapia N, Li J, Zhang X. An optical “Janus” device for integrated photonics. Adv. Mater. 2010;22:2561–2564. doi: 10.1002/adma.200904139. PubMed DOI
Gabrielli LH, Lipson M. Transformation optics on a silicon platform. J. Opt. 2010;13:024010. doi: 10.1088/2040-8978/13/2/024010. DOI
Bitton O, Bruch R, Leonhardt U. Two-dimensional Maxwell fisheye for integrated optics. Phys. Rev. Appl. 2018;10:044059. doi: 10.1103/physrevapplied.10.044059. DOI
Ebrahimpouri M, Zetterstrom O, Quevedo-Teruel O. Experimental validation of a Bespoke lens for a slot log-spiral feed. IEEE Antennas Wirel. Propag. Lett. 2020;19:557–560. doi: 10.1109/lawp.2020.2971852. DOI
Bjorkqvist O, Zetterstrom O, Quevedo-Teruel O. Additive manufactured dielectric Gutman lens. Electron. Lett. 2019;55:1318–1320. doi: 10.1049/el.2019.2483. DOI
Balanis CA. Antenna Theory: Analysis and Design. Wiley; 2016.
Henrici P. Applied and Computational Complex Analysis, Volume 3: Discrete Fourier Analysis, Cauchy Integrals, Construction of Conformal Maps, Univalent Functions. Wiley; 1986.
DeLillo TK, Elcrat AR, Pfaltzgraff JA. Schwarz–Christoffel mapping of the annulus. SIAM Rev. 2001;43:469–477. doi: 10.1137/s0036144500375280. DOI
Driscoll TA, Trefethen LN. Schwarz–Christoffel Mapping, Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press; 2009.
Hu C. Algorithm 785: A software package for computing Schwarz–Christoffel conformal transformation for doubly connected polygonal regions. ACM Trans. Math. Softw. 1998;24:317–333. doi: 10.1145/292395.291204. DOI