On the relevance of the alpha frequency oscillation's small-world network architecture for cognitive flexibility

. 2017 Oct 24 ; 7 (1) : 13910. [epub] 20171024

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29066804
Odkazy

PubMed 29066804
PubMed Central PMC5654836
DOI 10.1038/s41598-017-14490-x
PII: 10.1038/s41598-017-14490-x
Knihovny.cz E-zdroje

Cognitive flexibility is a major requirement for successful behavior. nNeural oscillations in the alpha frequency band were repeatedly associated with cognitive flexibility in task-switching paradigms. Alpha frequencies are modulated by working memory load and are used to process information during task switching, however we do not know how this oscillatory network communication is modulated. In order to understand the mechanisms that drive cognitive flexibility, ERPs, oscillatory power and how the communication within these networks is organized are of importance. The EEG data show that during phases reflecting preparatory processes to pre-activate task sets, alpha oscillatory power but not the small world properties of the alpha network architecture was modulated. During the switching only the N2 ERP component showed clear modulations. After the response, alpha oscillatory power reinstates and therefore seems to be important to deactivate or maintain the previous task set. For these reactive control processes the network architecture in terms of small-world properties is modulated. Effects of memory load on small-world aspects were seen in repetition trials, where small-world properties were higher when memory processes were relevant. These results suggest that the alpha oscillatory network becomes more small-world-like when reactive control processes during task switching are less complex.

Zobrazit více v PubMed

Diamond A. Executive functions. Annu. Rev. Psychol. 2013;64:135–168. doi: 10.1146/annurev-psych-113011-143750. PubMed DOI PMC

Kiesel A, et al. Control and interference in task switching–a review. Psychol. Bull. 2010;136:849–874. doi: 10.1037/a0019842. PubMed DOI

Chmielewski WX, Beste C. Action control processes in autism spectrum disorder–insights from a neurobiological and neuroanatomical perspective. Prog. Neurobiol. 2015;124:49–83. doi: 10.1016/j.pneurobio.2014.11.002. PubMed DOI

Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001;24:167–202. doi: 10.1146/annurev.neuro.24.1.167. PubMed DOI

Monsell S. Task switching. Trends Cogn. Sci. 2003;7:134–140. doi: 10.1016/S1364-6613(03)00028-7. PubMed DOI

Poljac E, Yeung N. Dissociable neural correlates of intention and action preparation in voluntary task switching. Cereb. Cortex N. Y. N 1991. 2014;24:465–478. PubMed PMC

Gajewski PD, Hengstler JG, Golka K, Falkenstein M, Beste C. The Met-allele of the BDNF Val66Met polymorphism enhances task switching in elderly. Neurobiol. Aging. 2011;32:2327.e7–19. doi: 10.1016/j.neurobiolaging.2011.06.010. PubMed DOI

Wolff, N., Chmielewski, W. X., Beste, C. & Roessner, V. Working memory load affects repetitive behaviour but not cognitive flexibility in adolescent autism spectrum disorder. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 1–12 10.1080/15622975.2017.1296973 (2017). PubMed

Wolff, N., Gussek, P., Stock, A.-K. & Beste, C. Effects of high-dose ethanol intoxication and hangover on cognitive flexibility. Addict. Biol. 10.1111/adb.12470 (2016). PubMed

Wolff N, Roessner V, Beste C. Behavioral and neurophysiological evidence for increased cognitive flexibility in late childhood. Sci. Rep. 2016;6:28954. doi: 10.1038/srep28954. PubMed DOI PMC

Barceló F, Periáñez JA, Nyhus E. An information theoretical approach to task-switching: evidence from cognitive brain potentials in humans. Front. Hum. Neurosci. 2007;1:13. PubMed PMC

Logan GD. Out with the old, in with the new: more valid measures of switch cost and retrieval time in the task span procedure. Psychon. Bull. Rev. 2006;13:139–144. doi: 10.3758/BF03193825. PubMed DOI

Mayr, U. & Kliegl, R. Task-set switching and long-term memory retrieval. (2000). PubMed

Sohn M-H, Anderson JR. Task preparation and task repetition: Two-component model of task switching. J. Exp. Psychol.-Gen. 2001;130:764–778. doi: 10.1037/0096-3445.130.4.764. PubMed DOI

Logan GD, Gordon RD. Executive control of visual attention in dual-task situations. Psychol. Rev. 2001;108:393. doi: 10.1037/0033-295X.108.2.393. PubMed DOI

Kray J. Task-set switching under cue-based versus memory-based switching conditions in younger and older adults. Brain Res. 2006;1105:83–92. doi: 10.1016/j.brainres.2005.11.016. PubMed DOI

Emerson MJ, Miyake A. The role of inner speech in task switching: A dual-task investigation. J. Mem. Lang. 2003;48:148–168. doi: 10.1016/S0749-596X(02)00511-9. DOI

Baddeley A, Chincotta D, Adlam A. Working memory and the control of action: evidence from task switching. J. Exp. Psychol. Gen. 2001;130:641–657. doi: 10.1037/0096-3445.130.4.641. PubMed DOI

Ferdinand NK, Mecklinger A, Kray J. Error and deviance processing in implicit and explicit sequence learning. J. Cogn. Neurosci. 2008;20:629–642. doi: 10.1162/jocn.2008.20046. PubMed DOI

Koch I. The role of external cues for endogenous advance reconfiguration in task switching. Psychon. Bull. Rev. 2003;10:488–492. doi: 10.3758/BF03196511. PubMed DOI

Schapkin, S. A., Gajewski, P. D. & Freude, G. Age Differences in Memory-Based Task Switching With and Without Cues. J. Psychophysiol. (2014).

Jamadar S, Hughes M, Fulham WR, Michie PT, Karayanidis F. The spatial and temporal dynamics of anticipatory preparation and response inhibition in task-switching. NeuroImage. 2010;51:432–449. doi: 10.1016/j.neuroimage.2010.01.090. PubMed DOI

Karayanidis F, et al. Anticipatory reconfiguration elicited by fully and partially informative cues that validly predict a switch in task. Cogn. Affect. Behav. Neurosci. 2009;9:202–215. doi: 10.3758/CABN.9.2.202. PubMed DOI

Cooper PS, Darriba Á, Karayanidis F, Barceló F. Contextually sensitive power changes across multiple frequency bands underpin cognitive control. NeuroImage. 2016;132:499–511. doi: 10.1016/j.neuroimage.2016.03.010. PubMed DOI

Horschig JM, Jensen O, van Schouwenburg MR, Cools R, Bonnefond M. Alpha activity reflects individual abilities to adapt to the environment. NeuroImage. 2014;89:235–243. doi: 10.1016/j.neuroimage.2013.12.018. PubMed DOI

Mansfield EL, Karayanidis F, Cohen MX. Switch-related and general preparation processes in task-switching: evidence from multivariate pattern classification of EEG data. J. Neurosci. Off. J. Soc. Neurosci. 2012;32:18253–18258. doi: 10.1523/JNEUROSCI.0737-12.2012. PubMed DOI PMC

Sauseng P, et al. Relevance of EEG alpha and theta oscillations during task switching. Exp. Brain Res. 2006;170:295–301. doi: 10.1007/s00221-005-0211-y. PubMed DOI

Gladwin TE, de Jong R. Bursts of occipital theta and alpha amplitude preceding alternation and repetition trials in a task-switching experiment. Biol. Psychol. 2005;68:309–329. doi: 10.1016/j.biopsycho.2004.06.004. PubMed DOI

Vandierendonck A, Liefooghe B, Verbruggen F. Task switching: interplay of reconfiguration and interference control. Psychol. Bull. 2010;136:601–626. doi: 10.1037/a0019791. PubMed DOI

Allport, D. A. & Wylie, G. Task-switching: Positive and negative priming of task-set. in Attention, space, and action: Studies in cognitive neuroscience. 273–296 (Oxford University Press, x, 1999).

Gohil K, Dippel G, Beste C. Questioning the role of the frontopolar cortex in multi-component behavior–a TMS/EEG study. Sci. Rep. 2016;6:22317. doi: 10.1038/srep22317. PubMed DOI PMC

Zhang, R., Stock, A.-K. & Beste, C. The neurophysiological basis of reward effects on backward inhibition processes. NeuroImage10.1016/j.neuroimage.2016.05.080 (2016). PubMed

Zhang, R., Stock, A.-K., Fischer, R. & Beste, C. The system neurophysiological basis of backward inhibition. Brain Struct. Funct. 10.1007/s00429-016-1186-0 (2016). PubMed

Klimesch W. Evoked alpha and early access to the knowledge system: the P1 inhibition timing hypothesis. Brain Res. 2011;1408:52–71. doi: 10.1016/j.brainres.2011.06.003. PubMed DOI PMC

Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res. Rev. 2007;53:63–88. doi: 10.1016/j.brainresrev.2006.06.003. PubMed DOI

Koch I, Gade M, Schuch S, Philipp AM. The role of inhibition in task switching: A review. Psychon. Bull. Rev. 2010;17:1–14. doi: 10.3758/PBR.17.1.1. PubMed DOI

Jensen O. Oscillations in the Alpha Band (9-12 Hz) Increase with Memory Load during Retention in a Short-term Memory Task. Cereb. Cortex. 2002;12:877–882. doi: 10.1093/cercor/12.8.877. PubMed DOI

Waldhauser GT, Johansson M, Hanslmayr S. Alpha/Beta Oscillations Indicate Inhibition of Interfering Visual Memories. J. Neurosci. 2012;32:1953–1961. doi: 10.1523/JNEUROSCI.4201-11.2012. PubMed DOI PMC

Cooper PS, et al. Theta frontoparietal connectivity associated with proactive and reactive cognitive control processes. NeuroImage. 2015;108:354–363. doi: 10.1016/j.neuroimage.2014.12.028. PubMed DOI

Palva S, Monto S, Palva JM. Graph properties of synchronized cortical networks during visual working memory maintenance. Neuroimage. 2010;49:3257–3268. doi: 10.1016/j.neuroimage.2009.11.031. PubMed DOI

Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 2007;3:e17. doi: 10.1371/journal.pcbi.0030017. PubMed DOI PMC

Bassett DS, Bullmore E. Small-World Brain Networks. The Neuroscientist. 2006;12:512–523. doi: 10.1177/1073858406293182. PubMed DOI

Jin S-H, Lin P, Hallett M. Reorganization of brain functional small-world networks during finger movements. Hum. Brain Mapp. 2012;33:861–872. doi: 10.1002/hbm.21253. PubMed DOI PMC

Klimesch W. α-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 2012;16:606–617. doi: 10.1016/j.tics.2012.10.007. PubMed DOI PMC

Klimesch W, Freunberger R, Sauseng P. Oscillatory mechanisms of process binding in memory. Neurosci. Biobehav. Rev. 2010;34:1002–1014. doi: 10.1016/j.neubiorev.2009.10.004. PubMed DOI

Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009;10:186–198. doi: 10.1038/nrn2575. PubMed DOI

Salvador R, et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex N. Y. N 1991. 2005;15:1332–1342. PubMed

Barceló F, Muñoz-Céspedes JM, Pozo MA, Rubia FJ. Attentional set shifting modulates the target P3b response in the Wisconsin card sorting test. Neuropsychologia. 2000;38:1342–1355. doi: 10.1016/S0028-3932(00)00046-4. PubMed DOI

Karayanidis F, Coltheart M, Michie PT, Murphy K. Electrophysiological correlates of anticipatory and poststimulus components of task switching. Psychophysiology. 2003;40:329–348. doi: 10.1111/1469-8986.00037. PubMed DOI

Kieffaber PD, Hetrick WP. Event-related potential correlates of task switching and switch costs. Psychophysiology. 2005;42:56–71. doi: 10.1111/j.1469-8986.2005.00262.x. PubMed DOI

Lorist MM, et al. Mental fatigue and task control: planning and preparation. Psychophysiology. 2000;37:614–625. doi: 10.1111/1469-8986.3750614. PubMed DOI

Gajewski PD, Falkenstein M. Diversity of the P3 in the task-switching paradigm. Brain Res. 2011;1411:87–97. doi: 10.1016/j.brainres.2011.07.010. PubMed DOI

Gajewski PD, Kleinsorge T, Falkenstein M. Electrophysiological correlates of residual switch costs. Cortex J. Devoted Study Nerv. Syst. Behav. 2010;46:1138–1148. doi: 10.1016/j.cortex.2009.07.014. PubMed DOI

Hsieh S, Liu H. Electrophysiological evidence of the adaptive task-set inhibition in task switching. Brain Res. 2009;1255:122–131. doi: 10.1016/j.brainres.2008.11.103. PubMed DOI

Rushworth MFS, Passingham RE, Nobre AC. Components of switching intentional set. J. Cogn. Neurosci. 2002;14:1139–1150. doi: 10.1162/089892902760807159. PubMed DOI

Polich J, Kok A. Cognitive and biological determinants of P300: an integrative review. Biol. Psychol. 1995;41:103–146. doi: 10.1016/0301-0511(95)05130-9. PubMed DOI

Barceló. An information theoretical approach to task-switching: evidence from cognitive brain potentials in humans. Front. Hum. Neurosci. 10.3389/neuro.09.013.2007 (2007). PubMed PMC

Polich J. Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2007;118:2128–2148. doi: 10.1016/j.clinph.2007.04.019. PubMed DOI PMC

Chmielewski WX, Mückschel M, Stock A-K, Beste C. The impact of mental workload on inhibitory control subprocesses. NeuroImage. 2015;112:96–104. doi: 10.1016/j.neuroimage.2015.02.060. PubMed DOI

Jensen O, Gelfand J, Kounios J, Lisman JE. Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb. Cortex N. Y. N 1991. 2002;12:877–882. PubMed

Waldhauser GT, Johansson M, Hanslmayr S. α/β oscillations indicate inhibition of interfering visual memories. J. Neurosci. Off. J. Soc. Neurosci. 2012;32:1953–1961. doi: 10.1523/JNEUROSCI.4201-11.2012. PubMed DOI PMC

Vandierendonck A. A Working Memory System With Distributed Executive Control. Perspect. Psychol. Sci. J. Assoc. Psychol. Sci. 2016;11:74–100. doi: 10.1177/1745691615596790. PubMed DOI

Wolff, N., Mückschel, M. & Beste, C. Neural mechanisms and functional neuroanatomical networks during memory and cue-based task switching as revealed by residue iteration decomposition (RIDE) based source localization. Brain Struct. Funct. 10.1007/s00429-017-1437-8 (2017). PubMed

Wolff N, Buse J, Tost J, Roessner V, Beste C. Modulations of cognitive flexibility in obsessive compulsive disorder reflect dysfunctions of perceptual categorization. J. Child Psychol. Psychiatry. 2017;58:939–949. doi: 10.1111/jcpp.12733. PubMed DOI

Nunez PL, Pilgreen KL. The Spline-Laplacian in Clinical Neurophysiology: A Method to Improve EEG Spatial Resolution. J. Clin. Neurophysiol. 1991;8:397–413. doi: 10.1097/00004691-199110000-00005. PubMed DOI

Nunez PL, Pilgreen KL. The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 1991;8:397–413. PubMed

Tenke CE, Kayser J. Generator localization by current source density (CSD): Implications of volume conduction and field closure at intracranial and scalp resolutions. Clin. Neurophysiol. 2012;123:2328–2345. doi: 10.1016/j.clinph.2012.06.005. PubMed DOI PMC

Luck, S. An introduction to the event-related potential technique. (MIT press, 2012).

Mückschel M, Stock A-K, Beste C. Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb. Cortex N. Y. N 1991. 2014;24:2120–2129. PubMed

Tallon-Baudry C, Bertrand O, Delpuech C, Permier J. Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. J. Neurosci. Off. J. Soc. Neurosci. 1997;17:722–734. PubMed PMC

Nolte G, et al. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 2004;115:2292–2307. doi: 10.1016/j.clinph.2004.04.029. PubMed DOI

Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393:440–442. doi: 10.1038/30918. PubMed DOI

Telesford QK, Joyce KE, Hayasaka S, Burdette JH, Laurienti PJ. The Ubiquity of Small-World Networks. Brain Connect. 2011;1:367–375. doi: 10.1089/brain.2011.0038. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...