Herbarium Specimens: A Treasure for DNA Extraction, an Update
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- Klíčová slova
- AFLP, DNA extraction, Difficult plant tissues, Herbarium specimens, Microsatellites, Next-generation sequencing, PCR,
- MeSH
- analýza polymorfismu délky amplifikovaných restrikčních fragmentů MeSH
- chemická frakcionace metody MeSH
- DNA rostlinná genetika izolace a purifikace MeSH
- listy rostlin genetika MeSH
- mikrosatelitní repetice MeSH
- orgánová specificita MeSH
- polymerázová řetězová reakce MeSH
- reagenční diagnostické soupravy MeSH
- rostliny klasifikace genetika MeSH
- sekvenční analýza DNA MeSH
- taxonomické DNA čárové kódování metody MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- reagenční diagnostické soupravy MeSH
With the expansion of molecular techniques, the historical collections have become widely used. The last boom started with using next- and second-generation sequencing in which massive parallel sequencing replaced targeted sequencing and third-generation technology involves single molecule technology. Studying plant DNA using these modern molecular techniques plays an important role in understanding evolutionary relationships, identification through DNA barcoding, conservation status, and many other aspects of plant biology. Enormous herbarium collections are an important source of material especially for taxonomic long-standing issues, specimens from areas difficult to access or from taxa that are now extinct. The ability to utilize these specimens greatly enhances the research. However, the process of extracting DNA from herbarium specimens is often fraught with difficulty related to such variables as plant chemistry, drying method of the specimen, and chemical treatment of the specimen. The result of these applications is often fragmented DNA. The reason new sequencing approaches have been so successful is that the template DNA needs to be fragmented for proper library building, and herbarium DNA is exactly that. Although many methods have been developed for extraction of DNA from herbarium specimens, the most frequently used are modified CTAB and DNeasy Plant Mini Kit protocols. Nine selected protocols in this chapter have been successfully used for high-quality DNA extraction from different kinds of plant herbarium tissues. These methods differ primarily with respect to their requirements for input material (from algae to vascular plants), type of the plant tissue (leaves with incrustations, sclerenchyma strands, mucilaginous tissues, needles, seeds), and further possible applications (PCR-based methods, microsatellites, AFLP or next-generation sequencing).
Zobrazit více v PubMed
Guschanski K, Krause J, Sawyer S, Valente LM, Bailey S, Finstermeier K, Sabin R, Gilissen E, Sonet G, Nagy ZT et al (2013) Next-generation museomics disentangles one of the largest primate radiations. Syst Biol 62:539–554 PubMed DOI PMC
Rogers SO (1994) Phylogenetic and taxonomic information from herbarium and mummified DNA. In: Adams RP et al (eds) Conservation of plant genes II: utilization of ancient and modern DNA, Monographs in systematic botany from the Missouri Botanical Garden, vol 48. Missouri Botanical Garden
Tailor JW, Swann EC (1994) Dried samples: soft tissues, DNA from herbarium specimens. In: Herrmann B, Hummel S (eds) Ancient DNA. Springer Verlag, Heidelberg
Hall DW (1981) Microwave: a method to control herbarium insects. Taxon 30:818–819 DOI
Hill SR (1983) Microwave and the herbarium specimen: potential dangers. Taxon 32:614–615 DOI
Bacci M, Checcuccii A, Checcuccii G, Palandek MR (1983) Microwave drying of herbarium specimens. Taxon 34:649–653 DOI
Metsger DA, Byers SC (1999) Managing the modern herbarium, an interdisciplinary approach. Society for the preservation of natural history collections, Washington DC, p 384
Lindahl T, Andersson A (1972) Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry 11:3618–3623 PubMed DOI
Doyle JJ, Dickson EE (1987) Preservation of plant species for DNA restriction endonuclease analysis. Taxon 36:715–722 DOI
Pyle MM, Adams RP (1989) In situ preservation of DNA in plant specimens. Taxon 38:576–581 DOI
Harris SA (1993) DNA analysis of tropical plant species: an assessment of different drying methods. Plant Syst Evol 188:57–64
Bakker FT (2017) Herbarium genomics: skimming and plastomics from archival specimens. Webbia 72:35–45 DOI
Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715 PubMed DOI
Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Ann Rev Genet 38:645–679 PubMed DOI
Hofreiter M, Jaenicke V, Serre D, von Haeseler A, Pääbo S (2001) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 29:4793–4799 PubMed DOI PMC
Gilbert MTP, Hansen AJ, Willerslev E, Rudbeck L, Barnes I, Lynnerup N, Cooper A (2003) Distribution patterns of postmortem damage in human mitochondrial DNA. Am J Hum Genet 72:48–61 PubMed DOI
Stiller M, Green RE, Ronan M, Simons JF, Du L, He W, Egholm M, Rothberg JM, Keates SG, Ovodov ND et al (2006) Patterns of nucleotide misincorporations during enzymatic amplification and direct large-scale sequencing of ancient DNA. Proc Natl Acad Sci U S A 103:13578–13584 PubMed DOI PMC
Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer Academic Publishers, Dordrecht, pp 1–8
Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15
Ribeiro RA, Lovato MB (2007) Comparative analysis of different DNA extraction protocols in fresh and herbarium specimens of the genus Dalbergia. Genet Mol Res 6:173–187 PubMed
Agostini G, Lüdtke R, Echeverrigaray S, de Souz-Chies TT (2011) Genomic DNA extraction from herbarium samples of Cunila D. Royen ex L. (Lamiaceae) and Polygala L. (Polygalaceae). Conservation Genet Resour 3:37–39 DOI
Wittzell H (1999) Chloroplast DNA variation and reticulate evolution in sexual and apomictic sections of dandelions. Mol Ecol 8:2023–2035 PubMed DOI
Ristaino JB, Groves CT, Parra GR (2001) PCR amplification of the Irish potato famine pathogen from historic specimens. Nature 411(6838):695–697 PubMed DOI
Drábková L, Kirschner J, Vlček Č (2002) Historical herbarium specimens in molecular taxonomy of the Juncaceae: a comparison of DNA extraction and amplification protocols. Plant Mol Biol Rep 20(2):161–175 DOI
De Castro O, Menale B (2004) PCR amplification of Michele Tenore’s historical specimens and facility to utilize an alternative approach to resolve taxonomic problems. Taxon 53:147–151 DOI
Jankowiak K, Buczkowska K, Szweykowska-Kulinska Z (2005) Successful extraction of DNA from 100-year-old herbarium specimens of the liverwort Bazzania trilobata. Taxon 54:335–336 DOI
Asif MJ, Cannon CH (2005) DNA extraction from processed wood: a case study for identification of an endangered timber species (Gonystylus bancanus). Plant Mol Biol Rep 23(2):185–192 DOI
Erkens RHJ, Cross H, Maas JW, Hoenselaar K, Chatrou LW (2008) Assessment of age and greenness of herbarium specimens as predictors for successful extraction and amplification of DNA. Blumea 53:407–428 DOI
Lister DL, Bower MA, Howe CJ, Jones MK (2008) Extraction and amplification of nuclear DNA from herbarium specimens of emmer wheat: a method for assessing DNA preservation by maximum amplicon length recovery. Taxon 57:254–258
Andreasen K, Manktelow M, Razafimandimbison SG (2009) Successful DNA amplification of a more than 200-year-old herbarium specimen: recovering genetic material from the Linnaean era. Taxon 58:959–962 DOI
Poczai P, Taller J, Szabo I (2009) Molecular genetic study of a historical Solanum (Solanaceae) herbarium specimen collected by Paulus Kitaibel in the 18th century. Acta Bot Hung 51:337–346 DOI
Sohrabi M, Myllis L, Soili S (2010) Successful DNA sequencing of a 75 year-old herbarium specimen of Aspicilia aschabadensis (J. Steiner) Mereschk. Lichenologist 42:626–628 DOI
Walters C, Reilley AA, Reeves PA, Baszczak J, Richards CM (2006) The utility of aged seeds in DNA banks. Seed Sci Res 16:169–178 DOI
Csaikl UM, Bastion H, Brettschneider R, Gauch S, Metr A, Schauerte M, Schulz F, Sperisen C, Vornam B, Ziegenhagen B (1998) Comparative analysis of different DNA extraction protocols: a fast, universal maxi-preparation of high quality plant DNA for genetic evaluation and phylogenetic studies. Plant Mol Biol Rep 16:69–86 DOI
Lambertini C, Frydenberg J, Gustafsson MHG, Brix H (2008) Herbarium specimens as a source of DNA for AFLP fingerprinting of Phragmites (Poaceae): possibilities and limitations. Plant Syst Evol 272:224–231 DOI
Shepherd LD, McLay TGB (2011) Two micro-scale protocols for the isolation of DNA from polysaccharide-rich plant tissue. J Plant Res 124:311–314 PubMed DOI
Cota-Sánchez JH, Remarchuk K, Ubayasena K (2006) Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Mol Biol Rep 24:161–167 DOI
Cubero OF, Crespo A, Fatehi J, Bridge PD (1999) DNA extraction and PCR amplification method suitable for fresh, herbarium- stored, lichenized, and other fungi. Plant Syst Evol 216:243–249 DOI
Ivanova NV, Dewaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002 DOI
Dentinger BTM, Margaritescu S, Moncalvo J-M (2010) Rapid and reliable high-throughput methods of DNA extraction for use in barcoding and molecular systematics of mushrooms. Mol Ecol 10:628–633 DOI
Hoarau G, Coyer JA, Stam TW, Olsen JL (2007) A fast and inexpensive DNA extraction/purification protocol for brown macroalgae. Mol Ecol Notes 7:191–193 DOI
Malenica N, Šimon S, Besendorfer V, Malecić E, Kontić JK, Pejić I (2011) Whole genome amplification and microsatellite genotyping of herbarium DNA revealed the identity of an ancient grapevine cultivar. Naturwissenschaften 98:763–772 PubMed DOI
Gutaker RM, Reiter E, Furtwangler A, Schuenemann VJ, Burbano HA (2017) Extraction of ultrashort DNA molecules from herbarium specimens. BioTechniques 62:76–79 PubMed DOI
Kistler L (2012) Ancient DNA extraction from plants. Methods Mol Biol 840:71–79 PubMed DOI
Dabney J, Knapp M, Glocke I, Gansauge MT, Weihmann A, Nickel B, Valdiosera C, Garcia N et al (2013) Complete mitochondrial genome sequence of a middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci U S A 110:15758–15763 PubMed DOI PMC
Vasan S, Zhang X, Zhang X, Kapurniotu A, Bernhagen J, Teichberg S, Basgen J, Wagle D et al (1996) An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 382:275–278 PubMed DOI
Poinar HN, Hofreiter M, Spaulding WG, Martin PS, Stankiewicz BA, Bland H, Evershed RP, Possnert G, Paabo S (1998) Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281:402–406 PubMed DOI