Nerve-associated Schwann cell precursors contribute extracutaneous melanocytes to the heart, inner ear, supraorbital locations and brain meninges
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34274976
PubMed Central
PMC8316242
DOI
10.1007/s00018-021-03885-9
PII: 10.1007/s00018-021-03885-9
Knihovny.cz E-zdroje
- Klíčová slova
- Endothelin 3 and endothelin receptor B, Extracutaneous pigment cell, Glial precursor, Hypopigmentation-associated deafness, Peripheral nerves, Targeted recruitment,
- MeSH
- buněčný rodokmen fyziologie MeSH
- embryonální vývoj fyziologie MeSH
- melanocyty metabolismus fyziologie MeSH
- meningy metabolismus fyziologie MeSH
- mozek metabolismus fyziologie MeSH
- myši MeSH
- nervový systém metabolismus patofyziologie MeSH
- obojživelníci metabolismus fyziologie MeSH
- receptor endotelinu B metabolismus MeSH
- ryby metabolismus fyziologie MeSH
- Schwannovy buňky metabolismus fyziologie MeSH
- srdce fyziologie MeSH
- těhotenství MeSH
- vnitřní ucho metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- receptor endotelinu B MeSH
Melanocytes are pigmented cells residing mostly in the skin and hair follicles of vertebrates, where they contribute to colouration and protection against UV-B radiation. However, the spectrum of their functions reaches far beyond that. For instance, these pigment-producing cells are found inside the inner ear, where they contribute to the hearing function, and in the heart, where they are involved in the electrical conductivity and support the stiffness of cardiac valves. The embryonic origin of such extracutaneous melanocytes is not clear. We took advantage of lineage-tracing experiments combined with 3D visualizations and gene knockout strategies to address this long-standing question. We revealed that Schwann cell precursors are recruited from the local innervation during embryonic development and give rise to extracutaneous melanocytes in the heart, brain meninges, inner ear, and other locations. In embryos with a knockout of the EdnrB receptor, a condition imitating Waardenburg syndrome, we observed only nerve-associated melanoblasts, which failed to detach from the nerves and to enter the inner ear. Finally, we looked into the evolutionary aspects of extracutaneous melanocytes and found that pigment cells are associated mainly with nerves and blood vessels in amphibians and fish. This new knowledge of the nerve-dependent origin of extracutaneous pigment cells might be directly relevant to the formation of extracutaneous melanoma in humans.
Central European Institute of Technology BUT Brno Czech Republic
Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
Department of Histology and Embryology Masaryk University Brno Czech Republic
Department of Neuroimmunology Center for Brain Research Medical University Vienna Vienna Austria
Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
Zobrazit více v PubMed
Boissy Raymond. The pigmentary system: Physiology and Pathophysiology. 2006.
Mochizuki M, Sugita S, Kamoi K. Immunological homeostasis of the eye. Prog Retin Eye Res. 2013;33:10–27. doi: 10.1016/j.preteyeres.2012.10.002. PubMed DOI
Nishimura EK, et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature. 2002;416(6883):854–860. doi: 10.1038/416854a. PubMed DOI
Goding CR. Melanocytes: the new Black. Int J Biochem Cell Biol. 2007;39(2):275–279. doi: 10.1016/j.biocel.2006.10.003. PubMed DOI
Costin GE, Hearing VJ. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 2007;21(4):976–994. doi: 10.1096/fj.06-6649rev. PubMed DOI
Mort RL, Jackson IJ, Patton EE. The melanocyte lineage in development and disease. Development. 2015;142(4):620–632. doi: 10.1242/dev.106567. PubMed DOI PMC
Miyamura Y, et al. Regulation of human skin pigmentation and responses to ultraviolet radiation. Pigment Cell Res. 2007;20(1):2–13. doi: 10.1111/j.1600-0749.2006.00358.x. PubMed DOI
Gudjohnsen SA, et al. Meningeal melanocytes in the mouse: distribution and dependence on Mitf. Front Neuroanat. 2015;9:149. doi: 10.3389/fnana.2015.00149. PubMed DOI PMC
Tachibana M. Sound needs sound melanocytes to be heard. Pigment Cell Res. 1999;12(6):344–354. doi: 10.1111/j.1600-0749.1999.tb00518.x. PubMed DOI
Brito FC, Kos L. Timeline and distribution of melanocyte precursors in the mouse heart. Pigment Cell Melanoma Res. 2008;21(4):464–470. doi: 10.1111/j.1755-148X.2008.00459.x. PubMed DOI
Yajima I, Larue L. The location of heart melanocytes is specified and the level of pigmentation in the heart may correlate with coat color. Pigment Cell Melanoma Res. 2008;21(4):471–476. doi: 10.1111/j.1755-148X.2008.00483.x. PubMed DOI
Balani K, et al. Melanocyte pigmentation stiffens murine cardiac tricuspid valve leaflet. J R Soc Interface. 2009;6(40):1097–1102. doi: 10.1098/rsif.2009.0174. PubMed DOI PMC
Hwang H, et al. Cardiac melanocytes influence atrial reactive oxygen species involved with electrical and structural remodeling in mice. Physiol Rep. 2015;3(9):e12559. doi: 10.14814/phy2.12559. PubMed DOI PMC
Levin MD, et al. Melanocyte-like cells in the heart and pulmonary veins contribute to atrial arrhythmia triggers. J Clin Invest. 2009;119(11):3420–3436. PubMed PMC
Steel KP, Barkway C. Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development. 1989;107(3):453–463. doi: 10.1242/dev.107.3.453. PubMed DOI
Motohashi H, et al. Dysgenesis of melanocytes and cochlear dysfunction in mutant microphthalmia (mi) mice. Hear Res. 1994;80(1):10–20. doi: 10.1016/0378-5955(94)90003-5. PubMed DOI
Tassabehji M, Newton VE, Read AP. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet. 1994;8(3):251–255. doi: 10.1038/ng1194-251. PubMed DOI
Amiel J, et al. Mutation of the MITF gene in albinism-deafness syndrome (Tietz syndrome) Clin Dysmorphol. 1998;7(1):17–20. doi: 10.1097/00019605-199801000-00003. PubMed DOI
Fang W, Yang P. Vogt-koyanagi-harada syndrome. Curr Eye Res. 2008;33(7):517–523. doi: 10.1080/02713680802233968. PubMed DOI
Gupta Monica, et al. Alezzandrini syndrome. BMJ Case Report. 2011 doi: 10.1136/bcr.04.2011.4052. PubMed DOI PMC
Andrade A, Pithon M. Alezzandrini syndrome: report of a sixth clinical case. Dermatology. 2011;222(1):8–9. doi: 10.1159/000321714. PubMed DOI
Gross A, et al. Autosomal-recessive neural crest syndrome with albinism, black lock, cell migration disorder of the neurocytes of the gut, and deafness: ABCD syndrome. Am J Med Genet. 1995;56(3):322–326. doi: 10.1002/ajmg.1320560322. PubMed DOI
Yamaguchi Y, Hearing VJ. Melanocytes and their diseases. Cold Spring Harb Perspect Med. 2014;4(5):a017046. doi: 10.1101/cshperspect.a017046. PubMed DOI PMC
Murillo-Cuesta S, et al. Melanin precursors prevent premature age-related and noise-induced hearing loss in albino mice. Pigment Cell Melanoma Res. 2010;23(1):72–83. doi: 10.1111/j.1755-148X.2009.00646.x. PubMed DOI
Bartels S, et al. Noise-induced hearing loss: the effect of melanin in the stria vascularis. Hear Res. 2001;154(1–2):116–123. doi: 10.1016/S0378-5955(01)00213-1. PubMed DOI
Conlee JW, et al. Effects of aging on normal hearing loss and noise-induced threshold shift in albino and pigmented guinea pigs. Acta Otolaryngol. 1988;106(1–2):64–70. doi: 10.3109/00016488809107372. PubMed DOI
Hayashi H, et al. Comparison of the quantity of cochlear melanin in young and old C57BL/6 mice. Arch Otolaryngol Head Neck Surg. 2007;133(2):151–154. doi: 10.1001/archotol.133.2.151. PubMed DOI
Price ER, Fisher DE. Sensorineural deafness and pigmentation genes: melanocytes and the Mitf transcriptional network. Neuron. 2001;30(1):15–18. doi: 10.1016/S0896-6273(01)00259-8. PubMed DOI
Le Poole IC, et al. A novel, antigen-presenting function of melanocytes and its possible relationship to hypopigmentary disorders. J Immunol. 1993;151(12):7284–7292. doi: 10.4049/jimmunol.151.12.7284. PubMed DOI
Plonka PM, et al. What are melanocytes really doing all day long…? Exp Dermatol. 2009;18(9):799–819. doi: 10.1111/j.1600-0625.2009.00912.x. PubMed DOI PMC
Gasque P, Jaffar-Bandjee MC. The immunology and inflammatory responses of human melanocytes in infectious diseases. J Infect. 2015;71(4):413–421. doi: 10.1016/j.jinf.2015.06.006. PubMed DOI
Adameyko I, et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell. 2009;139(2):366–379. doi: 10.1016/j.cell.2009.07.049. PubMed DOI
Budi EH, Patterson LB, Parichy DM. Post-embryonic nerve-associated precursors to adult pigment cells: genetic requirements and dynamics of morphogenesis and differentiation. PLoS Genet. 2011;7(5):e1002044. doi: 10.1371/journal.pgen.1002044. PubMed DOI PMC
Nitzan E, et al. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3. Proc Natl Acad Sci USA. 2013;110(31):12709–12714. doi: 10.1073/pnas.1306287110. PubMed DOI PMC
Sherman L, et al. Basic fibroblast growth factor (bFGF) acts intracellularly to cause the transdifferentiation of avian neural crest-derived Schwann cell precursors into melanocytes. Development. 1993;118(4):1313–1326. doi: 10.1242/dev.118.4.1313. PubMed DOI
Dooley CM, et al. On the embryonic origin of adult melanophores: the role of ErbB and Kit signalling in establishing melanophore stem cells in zebrafish. Development. 2013;140(5):1003–1013. doi: 10.1242/dev.087007. PubMed DOI
Watanabe A, et al. Epistatic relationship between Waardenburg syndrome genes MITF and PAX3. Nat Genet. 1998;18(3):283–286. doi: 10.1038/ng0398-283. PubMed DOI
Potterf SB, et al. Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet. 2000;107(1):1–6. doi: 10.1007/s004390000328. PubMed DOI
Hodgkinson CA, et al. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-Helix-Loop-Helix-Zipper Protein. Cell. 1993;74(2):395–404. doi: 10.1016/0092-8674(93)90429-T. PubMed DOI
Baynash AG, et al. Interaction of Endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell. 1994;79(7):1277–1285. doi: 10.1016/0092-8674(94)90018-3. PubMed DOI
Hosoda K, et al. Targeted and natural (Piebald-Lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell. 1994;79(7):1267–1276. doi: 10.1016/0092-8674(94)90017-5. PubMed DOI
Hou L, Panthier JJ, Arnheiter H. Signaling and transcriptional regulation in the neural crest-derived melanocyte lineage: interactions between KIT and MITF. Development. 2000;127(24):5379–5389. doi: 10.1242/dev.127.24.5379. PubMed DOI
Copeland NG, et al. Mast-cell growth-factor maps near the steel locus on mouse chromosome-10 and is deleted in a number of steel alleles. Cell. 1990;63(1):175–183. doi: 10.1016/0092-8674(90)90298-S. PubMed DOI
Tremblay P, Kessel M, Gruss P. A transgenic neuroanatomical marker identifies cranial neural crest deficiencies associated with the Pax3 mutant splotch. Dev Biol. 1995;171(2):317–329. doi: 10.1006/dbio.1995.1284. PubMed DOI
Adameyko I, et al. Sox2 and Mitf cross-regulatory interactions consolidate progenitor and melanocyte lineages in the cranial neural crest. Development. 2012;139(2):397–410. doi: 10.1242/dev.065581. PubMed DOI PMC
Hou L, Arnheiter H, Pavan WJ. Interspecies difference in the regulation of melanocyte development by SOX10 and MITF. Proc Natl Acad Sci USA. 2006;103(24):9081–9085. doi: 10.1073/pnas.0603114103. PubMed DOI PMC
Reid K, et al. Multiple roles for endothelin in melanocyte development: regulation of progenitor number and stimulation of differentiation. Development. 1996;122(12):3911–3919. doi: 10.1242/dev.122.12.3911. PubMed DOI
Furlan A, Adameyko I. Schwann cell precursor: a neural crest cell in disguise? Dev Biol. 2018;444(Suppl 1):S25–S35. doi: 10.1016/j.ydbio.2018.02.008. PubMed DOI
Kaucka M, Adameyko I. Non-canonical functions of the peripheral nerve. Exp Cell Res. 2014;321(1):17–24. doi: 10.1016/j.yexcr.2013.10.004. PubMed DOI
Adameyko I, Lallemend F. Glial versus melanocyte cell fate choice: Schwann cell precursors as a cellular origin of melanocytes. Cell Mol Life Sci. 2010;67(18):3037–3055. doi: 10.1007/s00018-010-0390-y. PubMed DOI PMC
Hussein MR. Extracutaneous malignant melanomas. Cancer Invest. 2008;26(5):516–534. doi: 10.1080/07357900701781762. PubMed DOI
Flores-Sarnat L. Neurocutaneous melanocytosis. Handb Clin Neurol. 2013;111:369–388. doi: 10.1016/B978-0-444-52891-9.00042-7. PubMed DOI
Xie M, et al. Schwann cell precursors contribute to skeletal formation during embryonic development in mice and zebrafish. Proc Natl Acad Sci USA. 2019;116(30):15068–15073. doi: 10.1073/pnas.1900038116. PubMed DOI PMC
Dyachuk V, et al. Neurodevelopment. Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science. 2014;345(6192):82–87. doi: 10.1126/science.1253281. PubMed DOI
Furlan A, et al. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science. 2017;357(6346):eaal3753. doi: 10.1126/science.aal3753. PubMed DOI PMC
Kaukua N, et al. Glial origin of mesenchymal stem cells in a tooth model system. Nature. 2014;513(7519):551–554. doi: 10.1038/nature13536. PubMed DOI
Urtatiz O, et al. GNAQ(Q209L) expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system. Pigment Cell Melanoma Res. 2020;33(1):96–111. doi: 10.1111/pcmr.12843. PubMed DOI
Bonnamour G, Soret R, Pilon N. Dhh-expressing Schwann cell precursors contribute to skin and cochlear melanocytes, but not to vestibular melanocytes. Pigment Cell Melanoma Res. 2020;34:648–654. doi: 10.1111/pcmr.12938. PubMed DOI
Druckenbrod NR, Epstein ML. Age-dependent changes in the gut environment restrict the invasion of the hindgut by enteric neural progenitors. Development. 2009;136(18):3195–3203. doi: 10.1242/dev.031302. PubMed DOI
Druckenbrod NR, et al. Targeting of endothelin receptor-B to the neural crest. Genesis. 2008;46(8):396–400. doi: 10.1002/dvg.20415. PubMed DOI PMC
Rizvi TA, et al. A novel cytokine pathway suppresses glial cell melanogenesis after injury to adult nerve. J Neurosci. 2002;22(22):9831–9840. doi: 10.1523/JNEUROSCI.22-22-09831.2002. PubMed DOI PMC
Srinivas S, et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol. 2001;1:4. doi: 10.1186/1471-213X-1-4. PubMed DOI PMC
Joven A, Kirkham M, Simon A. Husbandry of Spanish ribbed newts (Pleurodeles waltl) Methods Mol Biol. 2015;1290:47–70. doi: 10.1007/978-1-4939-2495-0_4. PubMed DOI
Joven A, et al. Cellular basis of brain maturation and acquisition of complex behaviors in salamanders. Development. 2018;145(1):dev160051. PubMed
Liu H, et al. Organ of corti and stria vascularis: is there an interdependence for survival? PLoS ONE. 2016;11(12):e0168953. doi: 10.1371/journal.pone.0168953. PubMed DOI PMC
Levin MD, et al. Melanocyte-like cells in the heart and pulmonary veins contribute to atrial arrhythmia triggers. J Clin Investig. 2009;119(11):3420–3436. PubMed PMC
Nilsson Skold H, Svensson PA, Zejlon C. The capacity for internal colour change is related to body transparency in fishes. Pigment Cell Melanoma Res. 2010;23(2):292–295. doi: 10.1111/j.1755-148X.2010.00674.x. PubMed DOI
Kastriti ME, et al. Schwann cell precursors generate the majority of chromaffin cells in zuckerkandl organ and some sympathetic neurons in paraganglia. Front Mol Neurosci. 2019;12:6. doi: 10.3389/fnmol.2019.00006. PubMed DOI PMC
Green SA, Uy BR, Bronner ME. Ancient evolutionary origin of vertebrate enteric neurons from trunk-derived neural crest. Nature. 2017;544(7648):88–91. doi: 10.1038/nature21679. PubMed DOI PMC
Zdebik AA, Wangemann P, Jentsch TJ. Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology (Bethesda) 2009;24:307–316. PubMed PMC
Barozzi S, et al. Audiovestibular disorders as autoimmune reaction in patients with melanoma. Med Hypotheses. 2015;85(3):336–338. doi: 10.1016/j.mehy.2015.06.009. PubMed DOI
Masuda M, et al. Connexin 26 distribution in gap junctions between melanocytes in the human vestibular dark cell area. Anat Rec. 2001;262(2):137–146. doi: 10.1002/1097-0185(20010201)262:2<137::AID-AR1018>3.0.CO;2-2. PubMed DOI
Sanchez Hanke M, et al. In vitro isolation and cell culture of vestibular inner ear melanocytes. Audiol Neurootol. 2005;10(4):191–200. doi: 10.1159/000084840. PubMed DOI
Nordlund JJ, Boissy RE, Hearing VJ, King RA, Oetting WS, Ortonne J-P. The pigmentary system. 2. Hoboken: Blackwell Publishing Inc.; 2006.
Franco-Belussi L, et al. Visceral pigmentation in three species of the Genus Scinax (Anura: Hylidae): distinct morphological pattern. Anat Rec Adv Integr Anat Evol Biol. 2012;295(2):298–306. doi: 10.1002/ar.21524. PubMed DOI
Singh AP, Schach U, Nusslein-Volhard C. Proliferation, dispersal and patterned aggregation of iridophores in the skin prefigure striped colouration of zebrafish. Nat Cell Biol. 2014;16(6):607–614. doi: 10.1038/ncb2955. PubMed DOI
Wang J, et al. Accumulation of melanin in the peritoneum causes black abdomens in broilers. Poult Sci. 2014;93(3):742–746. doi: 10.3382/ps.2013-03433. PubMed DOI
Shinomiya A, et al. Mutation of the endothelin receptor B2 gene suppresses hyperpigmentation of internal organs (Fibromelanosis) in Silky chickens. Genes Genet Syst. 2012;87(6):405–405.
Shinomiya A, et al. Gene duplication of endothelin 3 is closely correlated with the hyperpigmentation of the internal organs (Fibromelanosis) in silky chickens. Genetics. 2012;190(2):627–U536. doi: 10.1534/genetics.111.136705. PubMed DOI PMC
Faraco CD, et al. Hyperpigmentation in the Silkie fowl correlates with abnormal migration of fate-restricted melanoblasts and loss of environmental barrier molecules. Dev Dyn. 2001;220(3):212–225. doi: 10.1002/1097-0177(20010301)220:3<212::AID-DVDY1105>3.0.CO;2-9. PubMed DOI
Matsushima Y, et al. A mouse model of Waardenburg syndrome type 4 with a new spontaneous mutation of the endothelin-B receptor gene. Mamm Genome. 2002;13(1):30–35. doi: 10.1007/s00335-001-3038-2. PubMed DOI
Brennan A, et al. Endothelins control the timing of Schwann cell generation in vitro and in vivo. Dev Biol. 2000;227(2):545–557. doi: 10.1006/dbio.2000.9887. PubMed DOI
Hakami RM, et al. Genetic evidence does not support direct regulation of EDNRB by SOX10 in migratory neural crest and the melanocyte lineage. Mech Dev. 2006;123(2):124–134. doi: 10.1016/j.mod.2005.11.004. PubMed DOI PMC
Lecoin L, et al. Cloning and characterization of a novel endothelin receptor subtype in the avian class. Proc Natl Acad Sci USA. 1998;95(6):3024–3029. doi: 10.1073/pnas.95.6.3024. PubMed DOI PMC
Pla P, et al. Ednrb2 orients cell migration towards the dorsolateral neural crest pathway and promotes melanocyte differentiation. Pigment Cell Res. 2005;18(3):181–187. doi: 10.1111/j.1600-0749.2005.00230.x. PubMed DOI
Shin MK, et al. The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature. 1999;402(6761):496–501. doi: 10.1038/990040. PubMed DOI
Bergeron KF, et al. Upregulation of the Nr2f1-A830082K12Rik gene pair in murine neural crest cells results in a complex phenotype reminiscent of Waardenburg syndrome type 4. Dis Model Mech. 2016;9(11):1283–1293. PubMed PMC
Scott JF, Gerstenblith MR. Melanoma of unknown primary. In: Scott JF, Gerstenblith MR, editors. Noncutaneous melanoma. Brisbane: Codon Publications; 2018. PubMed
Rodriguez FJ, et al. Pathology of peripheral nerve sheath tumors: diagnostic overview and update on selected diagnostic problems. Acta Neuropathol. 2012;123(3):295–319. doi: 10.1007/s00401-012-0954-z. PubMed DOI PMC
Rahimi-Movaghar V, Karimi M. Meningeal melanocytoma of the brain and oculodermal melanocytosis (nevus of Ota): case report and literature review. Surg Neurol. 2003;59(3):200–210. doi: 10.1016/S0090-3019(02)01052-2. PubMed DOI
Kuriakose R, et al. Right atrial metastatic melanoma with unknown primaries. Case Rep Cardiol. 2015;2015:483520. PubMed PMC
Robin J, et al. Primary melanoma of the heart: case report of an association with coronary stenosis. Eur J Cardiothorac Surg. 1996;10(7):593–594. doi: 10.1016/S1010-7940(96)80431-3. PubMed DOI
Allcutt D, et al. Primary leptomeningeal melanoma: an unusually aggressive tumor in childhood. Neurosurgery. 1993;32(5):721–729. doi: 10.1227/00006123-199305000-00004. PubMed DOI
Hayward RD. Malignant melanoma and the central nervous system. A guide for classification based on the clinical findings. J Neurol Neurosurg Psychiatry. 1976;39(6):526–530. doi: 10.1136/jnnp.39.6.526. PubMed DOI PMC
Weiss SW, Langloss JM, Enzinger FM. Value of S-100 protein in the diagnosis of soft tissue tumors with particular reference to benign and malignant Schwann cell tumors. Lab Invest. 1983;49(3):299–308. PubMed
Kawahara E, et al. Expression of glial fibrillary acidic protein (GFAP) in peripheral nerve sheath tumors. A comparative study of immunoreactivity of GFAP, vimentin, S-100 protein, and neurofilament in 38 schwannomas and 18 neurofibromas. Am J Surg Pathol. 1988;12(2):115–120. doi: 10.1097/00000478-198802000-00004. PubMed DOI
Murali R, et al. Melanotic schwannoma mimicking metastatic pigmented melanoma: a pitfall in cytological diagnosis. Pathology. 2010;42(3):287–289. doi: 10.3109/00313021003631262. PubMed DOI
Arvanitis LD. Melanotic schwannoma: a case with strong CD34 expression, with histogenetic implications. Pathol Res Pract. 2010;206(10):716–719. doi: 10.1016/j.prp.2010.02.011. PubMed DOI
Boyle JL, et al. Tyrosinase expression in malignant melanoma, desmoplastic melanoma, and peripheral nerve tumors. Arch Pathol Lab Med. 2002;126(7):816–822. doi: 10.5858/2002-126-0816-TEIMMD. PubMed DOI
Van Raamsdonk CD, Deo M. Links between Schwann cells and melanocytes in development and disease. Pigment Cell Melanoma Res. 2013;26(5):634–645. doi: 10.1111/pcmr.12134. PubMed DOI
McClatchey AI. Neurofibromatosis. Annu Rev Pathol. 2007;2:191–216. doi: 10.1146/annurev.pathol.2.010506.091940. PubMed DOI
De Schepper S, et al. Pigment cell-related manifestations in neurofibromatosis type 1: an overview. Pigment Cell Res. 2005;18(1):13–24. doi: 10.1111/j.1600-0749.2004.00206.x. PubMed DOI
Fetsch JF, Michal M, Miettinen M. Pigmented (melanotic) neurofibroma: a clinicopathologic and immunohistochemical analysis of 19 lesions from 17 patients. Am J Surg Pathol. 2000;24(3):331–343. doi: 10.1097/00000478-200003000-00001. PubMed DOI