Estimating long-term health risks after breast cancer radiotherapy: merging evidence from low and high doses
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34275005
PubMed Central
PMC8310522
DOI
10.1007/s00411-021-00924-8
PII: 10.1007/s00411-021-00924-8
Knihovny.cz E-resources
- Keywords
- Breast cancer radiotherapy, Heart disease, Radiation risk, Risk models, Second primary cancer,
- MeSH
- Risk Assessment MeSH
- Smoking MeSH
- Leukemia MeSH
- Humans MeSH
- Lung Neoplasms MeSH
- Breast Neoplasms radiotherapy MeSH
- Heart Diseases MeSH
- Software MeSH
- Models, Theoretical * MeSH
- Dose-Response Relationship, Radiation MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In breast cancer radiotherapy, substantial radiation exposure of organs other than the treated breast cannot be avoided, potentially inducing second primary cancer or heart disease. While distant organs and large parts of nearby ones receive doses in the mGy-Gy range, small parts of the heart, lung and bone marrow often receive doses as high as 50 Gy. Contemporary treatment planning allows for considerable flexibility in the distribution of this exposure. To optimise treatment with regards to long-term health risks, evidence-based risk estimates are required for the entire broad range of exposures. Here, we thus propose an approach that combines data from medical and epidemiological studies with different exposure conditions. Approximating cancer induction as a local process, we estimate organ cancer risks by integrating organ-specific dose-response relationships over the organ dose distributions. For highly exposed organ parts, specific high-dose risk models based on studies with medical exposure are applied. For organs or their parts receiving relatively low doses, established dose-response models based on radiation-epidemiological data are used. Joining the models in the intermediate dose range leads to a combined, in general non-linear, dose response supported by data over the whole relevant dose range. For heart diseases, a linear model consistent with high- and low-dose studies is presented. The resulting estimates of long-term health risks are largely compatible with rate ratios observed in randomised breast cancer radiotherapy trials. The risk models have been implemented in a software tool PASSOS that estimates long-term risks for individual breast cancer patients.
See more in PubMed
Berrington de Gonzalez A, Curtis RE, Gilbert E, Berg CD, Smith SA, Stovall M, Ron E. Second solid cancers after radiotherapy for breast cancer in SEER cancer registries. Br J Cancer. 2010;102(1):220–226. doi: 10.1038/sj.bjc.6605435. PubMed DOI PMC
Berrington de Gonzalez A, Gilbert E, Curtis R, Inskip P, Kleinerman R, Morton L, Rajaraman P, Little MP. Second solid cancers after radiation therapy: a systematic review of the epidemiologic studies of the radiation dose-response relationship. Int J Radiat Oncol Biol Phys. 2013;86(2):224–233. doi: 10.1016/j.ijrobp.2012.09.001. PubMed DOI PMC
Bhatia S, Robison LL, Oberlin O, Greenberg M, Bunin G, Fossati-Bellani F, Meadows AT. Breast cancer and other second neoplasms after childhood Hodgkin’s disease. N Engl J Med. 1996;334(12):745–751. doi: 10.1056/NEJM199603213341201. PubMed DOI
Blettner M, Boice JD., Jr Radiation dose and leukaemia risk: general relative risk techniques for dose-response models in a matched case-control study. Stat Med. 1991;10(10):1511–1526. doi: 10.1002/sim.4780101004. PubMed DOI
Boice JD, Jr, Preston D, Davis FG, Monson RR. Frequent chest X-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts. Radiat Res. 1991;125(2):214–222. doi: 10.2307/3577890. PubMed DOI
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492. PubMed DOI
Breast Cancer Facts and Figures 2019–2020. Atlanta: American Cancer Society, Inc. 2019. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2019-2020.pdf. Assessed 2 Mar 2021
Brenner DJ. Exploring two two-edged swords. Radiat Res. 2012;178(1):7–16. doi: 10.1667/RR3085.1. PubMed DOI PMC
Brenner AV, Preston DL, Sakata R, Sugiyama H, de Gonzalez AB, French B, Utada M, Cahoon EK, Sadakane A, Ozasa K, Grant EJ, Mabuchi K. Incidence of breast cancer in the life span study of atomic bomb survivors: 1958–2009. Radiat Res. 2018;190(4):433–444. doi: 10.1667/RR15015.1. PubMed DOI PMC
Cahoon EK, Preston DL, Pierce DA, Grant E, Brenner AV, Mabuchi K, Utada M, Ozasa K. Lung, laryngeal and other respiratory cancer incidence among Japanese atomic bomb survivors: an updated analysis from 1958 through 2009. Radiat Res. 2017;187(5):538–548. doi: 10.1667/RR14583.1. PubMed DOI PMC
Carr ZA, Kleinerman RA, Stovall M, Weinstock RM, Griem ML, Land CE. Malignant neoplasms after radiation therapy for peptic ulcer. Radiat Res. 2002;157(6):668–677. doi: 10.1667/0033-7587(2002)157[0668:MNARTF]2.0.CO;2. PubMed DOI
Carr ZA, Land CE, Kleinerman RA, Weinstock RW, Stovall M, Griem ML, Mabuchi K. Coronary heart disease after radiotherapy for peptic ulcer disease. Int J Radiat Oncol Biol Phys. 2005;61(3):842–850. doi: 10.1016/j.ijrobp.2004.07.708. PubMed DOI
Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V, Godwin J, Gray R, Hicks C, James S, MacKinnon E, McGale P, McHugh T, Peto R, Taylor C, Wang Y, Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;366(9503):2087–2106. doi: 10.1016/S0140-6736(05)67887-7. PubMed DOI
Curtis RE, Boice JD, Jr, Stovall M, Bernstein L, Holowaty E, Karjalainen S, Langmark F, Nasca PC, Schwartz AG, Schymura MJ, et al. Relationship of leukemia risk to radiation dose following cancer of the uterine corpus. J Natl Cancer Inst. 1994;86(17):1315–1324. doi: 10.1093/jnci/86.17.1315. PubMed DOI
Cutter DJ, Schaapveld M, Darby SC, Hauptmann M, van Nimwegen FA, Krol AD, Janus CP, van Leeuwen FE, Aleman BM. Risk of valvular heart disease after treatment for Hodgkin lymphoma. J Natl Cancer Inst. 2015;107(4):djv008. doi: 10.1093/jnci/djv008. PubMed DOI PMC
Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Bronnum D, Correa C, Cutter D, Gagliardi G, Gigante B, Jensen MB, Nisbet A, Peto R, Rahimi K, Taylor C, Hall P. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–998. doi: 10.1056/NEJMoa1209825. PubMed DOI
Doi K, Mieno MN, Shimada Y, Yonehara H, Yoshinaga S. Methodological extensions of meta-analysis with excess relative risk estimates: application to risk of second malignant neoplasms among childhood cancer survivors treated with radiotherapy. J Radiat Res. 2014;55(5):885–901. doi: 10.1093/jrr/rru045. PubMed DOI PMC
Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) Darby S, McGale P, Correa C, Taylor C, Arriagada R, Clarke M, Cutter D, Davies C, Ewertz M, Godwin J, Gray R, Pierce L, Whelan T, Wang Y, Peto R. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011;378(9804):1707–1716. doi: 10.1016/S0140-6736(11)61629-2. PubMed DOI PMC
Eidemüller M, Simonetto C, Kundrát P, Ulanowski A, Shemiakina E, Güthlin D, Rennau H, Remmele J, Hildebrandt G, Wolf U. Long-term health risk after breast cancer radiotherapy: overview of PASSOS methodology and software. Radiat Prot Dosimetry. 2019;183:259–263. doi: 10.1093/rpd/ncy219. PubMed DOI
Eidemüller M, Holmberg E, Lundell M, Karlsson P. Evidence for increased susceptibility to breast cancer from exposure to ionizing radiation due to a familial history of breast cancer: results from the Swedish Hemangioma Cohort. Am J Epidemiol. 2021;190(1):76–84. doi: 10.1093/aje/kwaa163. PubMed DOI PMC
Federal Health Reporting (2016) Deaths, mortality figures (from 1998). Data for year 2014. Joint service by RKI and Destatis. http://www.gbe-bund.de/. Accessed 2 Mar 2021
Ford MB, Sigurdson AJ, Petrulis ES, Ng CS, Kemp B, Cooksley C, McNeese M, Selwyn BJ, Spitz MR, Bondy ML. Effects of smoking and radiotherapy on lung carcinoma in breast carcinoma survivors. Cancer. 2003;98(7):1457–1764. doi: 10.1002/cncr.11669. PubMed DOI
Furukawa K, Preston DL, Lönn S, Funamoto S, Yonehara S, Matsuo T, Egawa H, Tokuoka S, Ozasa K, Kasagi F, Kodama K, Mabuchi K. Radiation and smoking effects on lung cancer incidence among atomic bomb survivors. Radiat Res. 2010;174(1):72–82. doi: 10.1667/RR2083.1. PubMed DOI PMC
Gilbert ES, Stovall M, Gospodarowicz M, Van Leeuwen FE, Andersson M, Glimelius B, Joensuu T, Lynch CF, Curtis RE, Holowaty E, Storm H, Pukkala E, van’t Veer MB, Fraumeni JF, Boice JD, Jr, Clarke EA, Travis LB. Lung cancer after treatment for Hodgkin’s disease: focus on radiation effects. Radiat Res. 2003;159(2):161–173. doi: 10.1667/0033-7587(2003)159[0161:LCATFH]2.0.CO;2. PubMed DOI
Grantzau T, Thomsen MS, Væth M, Overgaard J. Risk of second primary lung cancer in women after radiotherapy for breast cancer. Radiother Oncol. 2014;111(3):366–373. doi: 10.1016/j.radonc.2014.05.004. PubMed DOI
Green DM, Grigoriev YA, Nan B, Takashima JR, Norkool PA, D'Angio GJ, Breslow NE. Congestive heart failure after treatment for Wilms’ tumor: a report from the National Wilms’ tumor study group. J Clin Oncol. 2001;19(7):1926–1934. doi: 10.1200/JCO.2001.19.7.1926. PubMed DOI
Guibout C, Adjadj E, Rubino C, Shamsaldin A, Grimaud E, Hawkins M, Mathieu MC, Oberlin O, Zucker JM, Panis X, Lagrange JL, Daly-Schveitzer N, Chavaudra J, de Vathaire F. Malignant breast tumors after radiotherapy for a first cancer during childhood. J Clin Oncol. 2005;23(1):197–204. doi: 10.1200/JCO.2005.06.225. PubMed DOI
Guldner L, Haddy N, Pein F, Diallo I, Shamsaldin A, Dahan M, Lebidois J, Merlet P, Villain E, Sidi D, Sakiroglu O, Hartmann O, Leftakopoulos D, de Vathaire F. Radiation dose and long term risk of cardiac pathology following radiotherapy and anthracyclin for a childhood cancer. Radiother Oncol. 2006;81(1):47–56. doi: 10.1016/j.radonc.2006.08.020. PubMed DOI
Hancock SL, Tucker MA, Hoppe RT. Factors affecting late mortality from heart disease after treatment of Hodgkin’s disease. JAMA. 1993;270(16):1949–1955. doi: 10.1001/jama.1993.03510160067031. PubMed DOI
Henson KE, McGale P, Taylor C, Darby SC. Radiation-related mortality from heart disease and lung cancer more than 20 years after radiotherapy for breast cancer. Br J Cancer. 2013;108(1):179–182. doi: 10.1038/bjc.2012.575. PubMed DOI PMC
Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560. doi: 10.1136/bmj.327.7414.557. PubMed DOI PMC
Hooning MJ, Botma A, Aleman BM, Baaijens MH, Bartelink H, Klijn JG, Taylor CW, van Leeuwen FE. Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. J Natl Cancer Inst. 2007;99(5):365–375. doi: 10.1093/jnci/djk064. PubMed DOI
Howe GR. Lung cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy cohort study and a comparison with lung cancer mortality in the atomic bomb survivors study. Radiat Res. 1995;142(3):295–304. doi: 10.2307/3579139. PubMed DOI
Inskip PD, Stovall M, Flannery JT. Lung cancer risk and radiation dose among women treated for breast cancer. J Natl Cancer Inst. 1994;86(13):983–988. doi: 10.1093/jnci/86.13.983. PubMed DOI
Inskip PD, Robison LL, Stovall M, Smith SA, Hammond S, Mertens AC, Whitton JA, Diller L, Kenney L, Donaldson SS, Meadows AT, Neglia JP. Radiation dose and breast cancer risk in the childhood cancer survivor study. J Clin Oncol. 2009;27(24):3901–3907. doi: 10.1200/JCO.2008.20.7738. PubMed DOI PMC
Kaldor JM, Day NE, Bell J, Clarke EA, Langmark F, Karjalainen S, Band P, Pedersen D, Choi W, Blair V, et al. Lung cancer following Hodgkin’s disease: a case-control study. Int J Cancer. 1992;52(5):677–681. doi: 10.1002/ijc.2910520502. PubMed DOI
Kaufman EL, Jacobson JS, Hershman DL, Desai M, Neugut AI. Effect of breast cancer radiotherapy and cigarette smoking on risk of second primary lung cancer. J Clin Oncol. 2008;26(3):392–398. doi: 10.1200/JCO.2007.13.3033. PubMed DOI
Kundrát P, Remmele J, Rennau H, Sebb S, Simonetto C, Eidemüller M, Wolf U, Hildebrandt G. Minimum breast distance largely explains individual variability in doses to contralateral breast from breast-cancer radiotherapy. Radiother Oncol. 2019;131:186–191. doi: 10.1016/j.radonc.2018.08.022. PubMed DOI
Kundrát P, Simonetto C, Eidemüller M, Remmele J, Rennau H, Sebb S, Wolf U, Hildebrandt G. What anatomic features govern personal long-term health risks from breast cancer radiotherapy? Radiat Prot Dosimetry. 2019;186(2–3):381–385. doi: 10.1093/rpd/ncz236. PubMed DOI
Kundrát P, Remmele J, Rennau H, Sebb S, Simonetto C, Eidemüller M, Wolf U, Hildebrandt G. Inter-patient variability in doses to nearby organs in breast-cancer radiotherapy: inference from anatomic features. Radiat Prot Dosimetry. 2019;183(1–2):255–258. doi: 10.1093/rpd/ncy226. PubMed DOI
Lee AJ, Cunningham AP, Kuchenbaecker KB, Mavaddat N, Easton DF, Antoniou AC. BOADICEA breast cancer risk prediction model: updates to cancer incidences, tumour pathology and web interface. Br J Cancer. 2014;110(2):535–545. doi: 10.1038/bjc.2013.730. PubMed DOI PMC
Little MP. Comparison of the risks of cancer incidence and mortality following radiation therapy for benign and malignant disease with the cancer risks observed in the Japanese A-bomb survivors. Int J Radiat Biol. 2001;77(4):431–464. doi: 10.1080/09553000010022634. PubMed DOI
Little MP, Kleinerman RA, Stovall M, Smith SA, Mabuchi K. Analysis of dose response for circulatory disease after radiotherapy for benign disease. Int J Radiat Oncol Biol Phys. 2012;84(5):1101–1109. doi: 10.1016/j.ijrobp.2012.01.053. PubMed DOI PMC
Mattsson A, Rudén BI, Hall P, Wilking N, Rutqvist LE. Radiation-induced breast cancer: long-term follow-up of radiation therapy for benign breast disease. J Natl Cancer Inst. 1993;85(20):1679–1685. doi: 10.1093/jnci/85.20.1679. PubMed DOI
Mattsson A, Hall P, Rudén BI, Rutqvist LE. Incidence of primary malignancies other than breast cancer among women treated with radiation therapy for benign breast disease. Radiat Res. 1997;148(2):152–160. doi: 10.2307/3579572. PubMed DOI
Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, Donaldson SS, Green DM, Sklar CA, Robison LL, Leisenring WM. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606. doi: 10.1136/bmj.b4606. PubMed DOI PMC
NCRP (2011) Second primary cancers and cardiovascular disease after radiation therapy. NCRP Report No. 170. National Council on Radiation Protection and Measurements, Bethesda, Maryland
Neugut AI, Murray T, Santos J, Amols H, Hayes MK, Flannery JT, Robinson E. Increased risk of lung cancer after breast cancer radiation therapy in cigarette smokers. Cancer. 1994;73(6):1615–1620. doi: 10.1002/1097-0142(19940315)73:6<1615::AID-CNCR2820730612>3.0.CO;2-6. PubMed DOI
PASSOS (2021) Personalised assessment of late health risks after exposure to ionising radiation and guidance for radiation applications in medicine. https://passos.helmholtz-muenchen.de. Accessed 2 Mar 2021
Preston DL, Mattsson A, Holmberg E, Shore R, Hildreth NG, Boice JD., Jr Radiation effects on breast cancer risk: a pooled analysis of eight cohorts. Radiat Res. 2002;158(2):220–235. doi: 10.1667/0033-7587(2002)158[0220:REOBCR]2.0.CO;2. PubMed DOI
Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 2007;168(1):1–64. doi: 10.1667/RR0763.1. PubMed DOI
RKI (2013) German Centre for Cancer Registry Data. Database Query with estimates for cancer incidence, prevalence and survival in Germany, based on data of the population based cancer registries. Robert Koch Institute. https://www.krebsdaten.de/database. Accessed 2 Mar 2021
Sachs RK, Brenner DJ. Solid tumor risks after high doses of ionizing radiation. Proc Natl Acad Sci USA. 2005;102(37):13040–13045. doi: 10.1073/pnas.0506648102. PubMed DOI PMC
Schneider U. Mechanistic model of radiation-induced cancer after fractionated radiotherapy using the linear-quadratic formula. Med Phys. 2009;36(4):1138–1143. doi: 10.1118/1.3089792. PubMed DOI
Schneider U, Walsh L. Cancer risk estimates from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy. Radiat Environ Biophys. 2008;47(2):253–263. doi: 10.1007/s00411-007-0151-y. PubMed DOI
Schneider U, Walsh L. Age at exposure and attained age variations of cancer risk in the Japanese A-bomb and radiotherapy cohorts. Med Phys. 2015;42(8):4755–4761. doi: 10.1118/1.4927062. PubMed DOI
Schneider U, Besserer J, Mack A. Hypofractionated radiotherapy has the potential for second cancer reduction. Theor Biol Med Model. 2010;7:4. doi: 10.1186/1742-4682-7-4. PubMed DOI PMC
Schneider U, Ernst M, Hartmann M. The dose-response relationship for cardiovascular disease is not necessarily linear. Radiat Oncol. 2017;12(1):74. doi: 10.1186/s13014-017-0811-2. PubMed DOI PMC
Schneider U, Walsh L, Newhauser W. Tumour size can have an impact on the outcomes of epidemiological studies on second cancers after radiotherapy. Radiat Environ Biophys. 2018;57(4):311–319. doi: 10.1007/s00411-018-0753-6. PubMed DOI
Schöllnberger H, Eidemüller M, Cullings HM, Simonetto C, Neff F, Kaiser JC. Dose-responses for mortality from cerebrovascular and heart diseases in atomic bomb survivors: 1950–2003. Radiat Environ Biophys. 2018;57(1):17–29. doi: 10.1007/s00411-017-0722-5. PubMed DOI PMC
Shimizu Y, Kodama K, Nishi N, Kasagi F, Suyama A, Soda M, Grant EJ, Sugiyama H, Sakata R, Moriwaki H, Hayashi M, Konda M, Shore RE. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003. BMJ. 2010;340:b5349. doi: 10.1136/bmj.b5349. PubMed DOI PMC
Shuryak I, Hahnfeldt P, Hlatky L, Sachs RK, Brenner DJ. A new view of radiation-induced cancer: integrating short- and long-term processes. Part I: approach. Radiat Environ Biophys. 2009;48(3):263–274. doi: 10.1007/s00411-009-0230-3. PubMed DOI PMC
Shuryak I, Hahnfeldt P, Hlatky L, Sachs RK, Brenner DJ. A new view of radiation-induced cancer: integrating short- and long-term processes. Part II: second cancer risk estimation. Radiat Environ Biophys. 2009;48(3):275–286. doi: 10.1007/s00411-009-0231-2. PubMed DOI PMC
Simonetto C, Rennau H, Remmele J, Sebb S, Kundrát P, Eidemüller M, Wolf U, Hildebrandt G. Exposure of remote organs and associated cancer risks from tangential and multi-field breast cancer radiotherapy. Strahlenther Onkol. 2019;195(1):32–42. doi: 10.1007/s00066-018-1384-1. PubMed DOI
Simonetto C, Eidemüller M, Gaasch A, Pazos M, Schönecker S, Reitz D, Kääb S, Braun M, Harbeck N, Niyazi M, Belka C, Corradini S. Does deep inspiration breath-hold prolong life? Individual risk estimates of ischaemic heart disease after breast cancer radiotherapy. Radiother Oncol. 2019;131:202–207. doi: 10.1016/j.radonc.2018.07.024. PubMed DOI
Storm HH, Andersson M, Boice JD, Jr, Blettner M, Stovall M, Mouridsen HT, Dombernowsky P, Rose C, Jacobsen A, Pedersen M. Adjuvant radiotherapy and risk of contralateral breast cancer. J Natl Cancer Inst. 1992;84(16):1245–1250. doi: 10.1093/jnci/84.16.1245. PubMed DOI
Stovall M, Smith SA, Langholz BM, Boice JD, Jr, Shore RE, Andersson M, Buchholz TA, Capanu M, Bernstein L, Lynch CF, Malone KE, Anton-Culver H, Haile RW, Rosenstein BS, Reiner AS, Thomas DC, Bernstein JL, Women’s Environmental, Cancer, and Radiation Epidemiology Study Collaborative Group Dose to the contralateral breast from radiotherapy and risk of second primary breast cancer in the WECARE study. Int J Radiat Oncol Biol Phys. 2008;72(4):1021–1030. doi: 10.1016/j.ijrobp.2008.02.040. PubMed DOI PMC
Taylor C, Correa C, Duane FK, Aznar MC, Anderson SJ, Bergh J, Dodwell D, Ewertz M, Gray R, Jagsi R, Pierce L, Pritchard KI, Swain S, Wang Z, Wang Y, Whelan T, Peto R, McGale P, Early Breast Cancer Trialists’ Collaborative Group Estimating the risks of breast cancer radiotherapy: evidence from modern radiation doses to the lungs and heart and from previous randomized trials. J Clin Oncol. 2017;35(15):1641–1649. doi: 10.1200/JCO.2016.72.0722. PubMed DOI PMC
Travis LB, Andersson M, Gospodarowicz M, van Leeuwen FE, Bergfeldt K, Lynch CF, Curtis RE, Kohler BA, Wiklund T, Storm H, Holowaty E, Hall P, Pukkala E, Sleijfer DT, Clarke EA, Boice JD, Jr, Stovall M, Gilbert E. Treatment-associated leukemia following testicular cancer. J Natl Cancer Inst. 2000;92(14):1165–1171. doi: 10.1093/jnci/92.14.1165. PubMed DOI
Travis LB, Gospodarowicz M, Curtis RE, Clarke EA, Andersson M, Glimelius B, Joensuu T, Lynch CF, van Leeuwen FE, Holowaty E, Storm H, Glimelius I, Pukkala E, Stovall M, Fraumeni JF, Jr, Boice JD, Jr, Gilbert E. Lung cancer following chemotherapy and radiotherapy for Hodgkin’s disease. J Natl Cancer Inst. 2002;94(3):182–192. doi: 10.1093/jnci/94.3.182. PubMed DOI
Travis LB, Hill DA, Dores GM, Gospodarowicz M, van Leeuwen FE, Holowaty E, Glimelius B, Andersson M, Wiklund T, Lynch CF, Van't Veer MB, Glimelius I, Storm H, Pukkala E, Stovall M, Curtis R, Boice JD, Jr, Gilbert E. Breast cancer following radiotherapy and chemotherapy among young women with Hodgkin disease. JAMA. 2003;290(4):465–475. doi: 10.1001/jama.290.4.465. PubMed DOI
Tukenova M, Guibout C, Oberlin O, Doyon F, Mousannif A, Haddy N, Guérin S, Pacquement H, Aouba A, Hawkins M, Winter D, Bourhis J, Lefkopoulos D, Diallo I, de Vathaire F. Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J Clin Oncol. 2010;28(8):1308–1315. doi: 10.1200/JCO.2008.20.2267. PubMed DOI
Ulanowski A, Shemiakina E, Güthlin D, Becker J, Preston D, Apostoaei AI, Hoffman FO, Jacob P, Kaiser JC, Eidemüller M. ProZES: the methodology and software tool for assessment of assigned share of radiation in probability of cancer occurrence. Radiat Environ Biophys. 2020;59(4):601–629. doi: 10.1007/s00411-020-00866-7. PubMed DOI PMC
van der Pal HJ, van Dalen EC, van Delden E, van Dijk IW, Kok WE, Geskus RB, Sieswerda E, Oldenburger F, Koning CC, van Leeuwen FE, Caron HN, Kremer LC. High risk of symptomatic cardiac events in childhood cancer survivors. J Clin Oncol. 2012;30(13):1429–1437. doi: 10.1200/JCO.2010.33.4730. PubMed DOI
van Leeuwen FE, Klokman WJ, Stovall M, Dahler EC, van’t Veer MB, Noordijk EM, Crommelin MA, Aleman BM, Broeks A, Gospodarowicz M, Travis LB, Russell NS. Roles of radiation dose, chemotherapy, and hormonal factors in breast cancer following Hodgkin’s disease. J Natl Cancer Inst. 2003;95(13):971–980. doi: 10.1093/jnci/95.13.971. PubMed DOI
van Nimwegen FA, Schaapveld M, Cutter DJ, Janus CP, Krol AD, Hauptmann M, Kooijman K, Roesink J, van der Maazen R, Darby SC, Aleman BM, van Leeuwen FE. Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma. J Clin Oncol. 2016;34(3):235–243. doi: 10.1200/JCO.2015.63.4444. PubMed DOI
Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36:1–48. doi: 10.18637/jss.v036.i03. DOI
Weiss HA, Darby SC, Doll R. Cancer mortality following X-ray treatment for ankylosing spondylitis. Int J Cancer. 1994;59(3):327–338. doi: 10.1002/ijc.2910590307. PubMed DOI
Weiss HA, Darby SC, Fearn T, Doll R. Leukemia mortality after X-ray treatment for ankylosing spondylitis. Radiat Res. 1995;142(1):1–11. doi: 10.2307/3578960. PubMed DOI
Zablotska LB, Little MP, Cornett RJ. Potential increased risk of ischemic heart disease mortality with significant dose fractionation in the Canadian fluoroscopy cohort study. Am J Epidemiol. 2014;179(1):120–131. doi: 10.1093/aje/kwt244. PubMed DOI PMC