c-kit2 G-quadruplex stabilized via a covalent probe: exploring G-quartet asymmetry
Language English Country England, Great Britain Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34365512
PubMed Central
PMC8421218
DOI
10.1093/nar/gkab659
PII: 6345467
Knihovny.cz E-resources
- MeSH
- Deoxyuridine chemistry MeSH
- G-Quadruplexes * MeSH
- Humans MeSH
- Models, Molecular MeSH
- Nuclear Magnetic Resonance, Biomolecular MeSH
- Promoter Regions, Genetic MeSH
- Proto-Oncogene Mas MeSH
- Proto-Oncogene Proteins c-kit genetics MeSH
- Pyrenes chemistry MeSH
- Thermodynamics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Deoxyuridine MeSH
- KIT protein, human MeSH Browser
- MAS1 protein, human MeSH Browser
- Proto-Oncogene Mas MeSH
- Proto-Oncogene Proteins c-kit MeSH
- pyrene MeSH Browser
- Pyrenes MeSH
Several sequences forming G-quadruplex are highly conserved in regulatory regions of genomes of different organisms and affect various biological processes like gene expression. Diverse G-quadruplex properties can be modulated via their interaction with small polyaromatic molecules such as pyrene. To investigate how pyrene interacts with G-rich DNAs, we incorporated deoxyuridine nucleotide(s) with a covalently attached pyrene moiety (Upy) into a model system that forms parallel G-quadruplex structures. We individually substituted terminal positions and positions in the pentaloop of the c-kit2 sequence originating from the KIT proto-oncogene with Upy and performed a detailed NMR structural study accompanied with molecular dynamic simulations. Our results showed that incorporation into the pentaloop leads to structural polymorphism and in some cases also thermal destabilization. In contrast, terminal positions were found to cause a substantial thermodynamic stabilization while preserving topology of the parent c-kit2 G-quadruplex. Thermodynamic stabilization results from π-π stacking between the polyaromatic core of the pyrene moiety and guanine nucleotides of outer G-quartets. Thanks to the prevalent overall conformation, our structures mimic the G-quadruplex found in human KIT proto-oncogene and could potentially have antiproliferative effects on cancer cells.
CEITEC Central European Institute of Technology Masaryk University Kamenice 5 CZ 62500 Brno Czechia
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 CZ 62500 Brno Czechia
EN FIST Centre of Excellence Trg OF 13 SI 1000 Ljubljana Slovenia
Slovenian NMR Centre National Institute of Chemistry Hajdrihova 19 SI 1000 Ljubljana Slovenia
See more in PubMed
Chambers V.S., Marsico G., Boutell J.M., Di Antonio M., Smith G.P., Balasubramanian S.. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015; 33:877–881. PubMed
Maizels N., Gray L.T.. The G4 genome. PLoS Genet. 2013; 9:e1003468. PubMed PMC
De Cian A., Lacroix L., Douarre C., Temime-Smaali N., Trentesaux C., Riou J.F., Mergny J.L.. Targeting telomeres and telomerase. Biochimie. 2008; 90:131–155. PubMed
Balasubramanian S., Neidle S.. G-quadruplex nucleic acids as therapeutic targets. Curr. Opin. Chem. Biol. 2009; 13:345–353. PubMed PMC
Edling C.E., Hallberg B.. c-Kit—A hematopoietic cell essential receptor tyrosine kinase. Int. J. Biochem. Cell Biol. 2007; 39:1995–1998. PubMed
Metcalfe D.D.Mast cells and mastocytosis. Blood. 2008; 112:946–956. PubMed PMC
Gregory-Bryson E., Bartlett E., Kiupel M., Hayes S., Yuzbasiyan-Gurkan V.. Canine and human gastrointestinal stromal tumors display similar mutations in c-KIT exon 11. BMC Cancer. 2010; 10:559–568. PubMed PMC
Ashman L.K., Griffith R.. Therapeutic targeting of c-KIT in cancer. Expert Opin. Investig. Drugs. 2013; 22:103–115. PubMed
Lennartsson J., Rönnstrand L.. The stem cell factor receptor/c-Kit as a drug target in cancer. Curr. Cancer Drug Targets. 2006; 6:65–75. PubMed
Fabbro D., Ruetz S., Buchdunger E., Cowan-Jacob S.W., Fendrich G., Liebetanz J., Mestan J., O’Reilly T., Traxler P., Chaudhuri B.et al. .. Protein kinases as targets for anticancer agents: from inhibitors to useful drugs. Pharmacol. Ther. 2002; 93:79–98. PubMed
Rankin S., Reszka A.P., Huppert J., Zloh M., Parkinson G.N., Todd A.K., Ladame S., Balasubramanian S., Neidle S.. Putative DNA quadruplex formation within the human c-kit oncogene. J. Am. Chem. Soc. 2005; 127:10584–10589. PubMed PMC
Yamamoto K., Tojo A., Aoki N., Shibuya M.. Characterization of the promoter region of the human c-kit proto-oncogene. Jpn. J. Cancer Res. 1993; 84:1136–1144. PubMed PMC
Neidle S.Quadruplex Nucleic Acids As Targets For Medicinal Chemistry 1st edition. 2020; Cambridge, USA: Academic Press.
Kuryavyi V., Phan A.T., Patel D.J.. Solution structures of all parallel-stranded monomeric and dimeric G-quadruplex scaffolds of the human c-kit2 promoter. Nucleic Acids Res. 2010; 38:6757–6773. PubMed PMC
Hsu S.T., Varnai P., Bugaut A., Reszka A.P., Neidle S., Balasubramanian S.. A G-rich sequence within the c-kit oncogene promoter forms a parallel G-quadruplex having asymmetric G-tetrad dynamics. J. Am. Chem. Soc. 2009; 131:13399–13409. PubMed PMC
Wei D., Husby J., Neidle S.. Flexibility and structural conservation in a c-KIT G-quadruplex. Nucleic Acids Res. 2015; 43:629–644. PubMed PMC
Wei D., Parkinson G.N., Reszka A.P., Neidle S.. Crystal structure of a c-kit promoter quadruplex reveals the structural role of metal ions and water molecules in maintaining loop conformation. Nucleic Acids Res. 2012; 40:4691–4700. PubMed PMC
Kotar A., Rigo R., Sissi C., Plavec J.. Two-quartet kit* G-quadruplex is formed via double-stranded pre-folded structure. Nucleic Acids Res. 2019; 47:2641–2653. PubMed PMC
Phan A.T., Kuryavyi V., Burge S., Neidle S., Patel D.J.. Structure of an unprecedented G-quadruplex scaffold in the human c-kit promoter. J. Am. Chem. Soc. 2007; 129:4386–4392. PubMed PMC
Ducani C., Bernardinelli G., Högberg B., Keppler B.K., Terenzi A.. Interplay of Three G-Quadruplex Units in the KIT Promoter. J. Am. Chem. Soc. 2019; 141:10205–10213. PubMed
Rigo R., Sissi C.. Characterization of G4–G4 Crosstalk in the c-KIT Promoter Region. Biochemistry. 2017; 56:4309–4312. PubMed
Raiber E.A., Kranaster R., Lam E., Nikan M., Balasubramanian S.. A non-canonical DNA structure is a binding motif for the transcription factor SP1 in vitro. Nucleic Acids Res. 2012; 40:1499–1508. PubMed PMC
Park G.H., Plummer H.K., Krystal G.W.. Selective Sp1 binding is critical for maximal activity of the human c-kit promoter. Blood. 1998; 92:4138–4149. PubMed
Krasheninina O.A., Novopashina D.S., Apartsin E.K., Venyaminova A.G.. Recent advances in nucleic acid targeting probes and supramolecular constructs based on pyrene-modified oligonucleotides. Molecules. 2017; 22:2108. PubMed PMC
Haider S.M., Neidle S., Parkinson G.N.. A structural analysis of G-quadruplex/ligand interactions. Biochimie. 2011; 93:1239–1251. PubMed
Arola A., Vilar R.. Stabilisation of G-quadruplex DNA by small molecules. Curr. Top. Med. Chem. 2008; 8:1405–1415. PubMed
Asamitsu S., Obata S., Yu Z., Bando T., Sugiyama H.. Recent progress of targeted G-quadruplex-preferred ligands toward cancer therapy. Molecules. 2019; 24:429. PubMed PMC
Yao C., Kraatz H.-B., Steer R.P.. Photophysics of pyrene-labelled compounds of biophysical interest. Photochem. Photobiol. Sci. 2005; 4:191–199. PubMed
Østergaard M.E., Hrdlicka P.J.. Pyrene-functionalized oligonucleotides and locked nucleic acids (LNAs): Tools for fundamental research, diagnostics, and nanotechnology. Chem. Soc. Rev. 2011; 40:5771–5788. PubMed PMC
Astakhova I.K., Pasternak K., Campbell M.A., Gupta P., Wengel J.. A Locked Nucleic Acid-Based Nanocrawler: Designed and Reversible Movement Detected by Multicolor Fluorescence. J. Am. Chem. Soc. 2013; 135:2423–2426. PubMed
Kumar T.S., Myznikova A., Samokhina E., Astakhova I.K.. Rapid genotyping using pyrene−perylene locked nucleic acid complexes. Artif DNA PNA XNA. 2013; 4:58–68. PubMed PMC
Bichenkova E.V., Gbaj A., Walsh L., Savage H.E., Rogert C., Sardarian A.R., Etchells L.L., Douglas K.T.. Detection of nucleic acids in situ: novel oligonucleotide analogues for target-assembled DNA-mounted exciplexes. Org. Biomol. Chem. 2007; 5:1039–1051. PubMed
Bichenkova E.V., Sardarian A.R., Wilton A.N., Bonnet P., Bryce R.A., Douglas K.T.. Exciplex fluorescence emission from simple organic intramolecular constructs in non-polar and highly polar media as model systems for DNA-assembled exciplex detectors. Org. Biomol. Chem. 2006; 4:367–378. PubMed
Bichenkova E.V., Savage H.E., Sardarian A.R., Douglas K.T.. Target-assembled tandem oligonucleotide systems based on exciplexes for detecting DNA mismatches and single nucleotide polymorphisms. Biochem. Biophys. Res. Commun. 2005; 332:956–964. PubMed
Ensslen P., Wagenknecht H.-A.. One-dimensional multichromophor arrays based on DNA: from self-assembly to light-harvesting. Acc. Chem. Res. 2015; 48:2724–2733. PubMed
Teo Y.N., Kool E.T.. DNA-multichromophore systems. Chem. Rev. 2012; 112:4221–4245. PubMed PMC
Filichev V.V., Pedersen E.B.. Stable and selective formation of hoogsteen-type triplexes and duplexes using twisted intercalating nucleic acids (TINA) prepared via postsynthetic sonogashira solid-phase coupling reactions. J. Am. Chem. Soc. 2005; 127:14849–14858. PubMed
Hrdlicka P.J., Kumar T.S., Wengel J.. Targeting of mixed sequence double-stranded DNA using pyrene-functionalized 2′-amino-α-L-LNA. Chem. Commun. 2005; 34:4279–4281. PubMed
Nakamura M., Fukunaga Y., Sasa K., Ohtoshi Y., Kanaori K., Hayashi H., Nakano H., Yamana K.. Pyrene is highly emissive when attached to the RNA duplex but not to the DNA duplex: the structural basis of this difference. Nucleic Acids Res. 2005; 33:5887–5895. PubMed PMC
Lou C., Dallmann A., Marafini P., Gao R., Brown T.. Enhanced H-bonding and π-stacking in DNA: a potent duplex-stabilizing and mismatch sensing nucleobase analogue. Chem. Sci. 2014; 5:3836–3844.
Crescenzo A.D., Ettorre V., Fontana A.. Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J. Nanotechnol. 2014; 5:1675–1690. PubMed PMC
Lemek T., Mazurkiewicz J., Stobinski L., Lin H.M., Tomasik P.. Non-covalent functionalization of multi-walled carbon nanotubes with organic aromatic compounds. J. Nanosci. Nanotechnol. 2007; 7:3081–3088. PubMed
Kovačič M., Podbevšek P., Tateishi-Karimata H., Takahashi S., Sugimoto N., Plavec J.. Thrombin binding aptamer G-quadruplex stabilized by pyrene-modified nucleotides. Nucleic Acids Res. 2020; 48:3975–3986. PubMed PMC
Takahashi S., Kim K.T., Podbevšek P., Plavec J., Kim B.H., Sugimoto N.. Recovery of the formation and function of oxidized G-quadruplexes by a pyrene-modified guanine Tract. J. Am. Chem. Soc. 2018; 140:5774–5783. PubMed
Cogoi S., Zorzet S., Rapozzi V., Géci I., Pedersen E.B., Xodo L.E.. MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice. Nucleic Acids Res. 2013; 41:4049–4064. PubMed PMC
Breslauer K.J.Extracting thermodynamic data from equilibrium melting curves for oligonucleotide order-disorder transitions. Methods in Enzymology, Energetics of Biological Macromolecules. 1995; 259:Cambridge, USA: Academic Press; 221–242. PubMed
Lee W., Tonelli M., Markley J.L.. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics. 2015; 31:1325–1327. PubMed PMC
Zgarbová M., Šponer J., Otyepka M., Cheatham T.E., Galindo-Murillo R., Jurečka P.. Refinement of the sugar–phosphate backbone torsion beta for AMBER force fields improves the description of Z- and B-DNA. J. Chem. Theory Comput. 2015; 11:5723–5736. PubMed
Pérez A., Marchán I., Svozil D., Sponer J., Cheatham T.E., Laughton C.A., Orozco M.. Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys. J. 2007; 92:3817–3829. PubMed PMC
Krepl M., Zgarbová M., Stadlbauer P., Otyepka M., Banáš P., Koča J., Cheatham T.E., Jurečka P., Šponer J.. Reference simulations of noncanonical nucleic acids with different χ variants of the AMBER force field: quadruplex DNA, quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 2012; 8:2506–2520. PubMed PMC
Zgarbová M., Luque F.J., Šponer J., Cheatham T.E., Otyepka M., Jurečka P.. Toward improved description of DNA backbone: revisiting epsilon and zeta torsion force field parameters. J. Chem. Theory Comput. 2013; 9:2339–2354. PubMed PMC
Comer J., Gumbart J.C., Hénin J., Lelièvre T., Pohorille A., Chipot C.. The adaptive biasing force method: everything you always wanted to know but were afraid to ask. J. Phys. Chem. B. 2015; 119:1129–1151. PubMed PMC
Minoukadeh K., Chipot C., Lelièvre T.. Potential of mean force calculations: a multiple-walker adaptive biasing force approach. J. Chem. Theory Comput. 2010; 6:1008–1017.
Mones L., Bernstein N., Csányi G.. Exploration, sampling, and reconstruction of free energy surfaces with Gaussian process regression. J. Chem. Theory Comput. 2016; 12:5100–5110. PubMed
Bouchal T., Durník I., Illík V., Réblová K., Kulhánek P.. Importance of base-pair opening for mismatch recognition. Nucleic Acids Res. 2020; 48:11322–11334. PubMed PMC
Humphrey W., Dalke A., Schulten K.. VMD: visual molecular dynamics. J. Mol. Graph. 1996; 14:33–38. PubMed
Fonville J.M., Swart M., Vokáčová Z., Sychrovský V., Šponer J.E., Šponer J., Hilbers C.W., Bickelhaupt F.M., Wijmenga S.S.. Chemical shifts in nucleic acids studied by density functional theory calculations and comparison with experiment. Chem. Eur. J. 2012; 18:12372–12387. PubMed
Fernando H., Reszka A.P., Huppert J., Ladame S., Rankin S., Venkitaraman A.R., Neidle S., Balasubramanian S.. A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene. Biochemistry. 2006; 45:7854–7860. PubMed PMC
Hou J.-Q., Tan J.-H., Wang X.-X., Chen S.-B., Huang S.-Y., Yan J.-W., Chen S.-H., Ou T.-M., Luo H.-B., Li D.et al. .. Impact of planarity of unfused aromatic molecules on G-quadruplex binding: Learning from isaindigotone derivatives. Org. Biomol. Chem. 2011; 9:6422–6436. PubMed
Ma Y.-Y., Yu S., He X.-J., Xu Y., Wu F., Xia Y.-J., Guo K., Wang H.-J., Ye Z.-Y., Zhang W.et al. .. Involvement of c-KIT mutation in the development of gastrointestinal stromal tumors through proliferation promotion and apoptosis inhibition. Onco Targets Ther. 2014; 7:637–643. PubMed PMC
Yamanoi K., Higuchi K., Kishimoto H., Nishida Y., Nakamura M., Sudoh M., Hirota S.. Multiple gastrointestinal stromal tumors with novel germline c-kit gene mutation, K642T, at exon 13. Hum. Pathol. 2014; 45:884–888. PubMed
Boldrini L., Ursino S., Gisfredi S., Faviana P., Donati V., Camacci T., Lucchi M., Mussi A., Basolo F., Pingitore R.et al. .. Expression and mutational status of c-kit in small-cell lung cancer: prognostic relevance. Clin. Cancer Res. 2004; 10:4101–4108. PubMed
Meng D., Carvajal R.D.. KIT as an oncogenic driver in melanoma: an update on clinical development. Am. J. Clin. Dermatol. 2019; 20:315–323. PubMed
Sakabe T., Azumi J., Haruki T., Umekita Y., Nakamura H., Shiota G.. CD117 expression is a predictive marker for poor prognosis in patients with non-small cell lung cancer. Oncol. Lett. 2017; 13:3703–3708. PubMed PMC
Kee D., Zalcberg J.R.. Current and emerging strategies for the management of imatinib-refractory advanced gastrointestinal stromal tumors. Ther. Adv. Med. Oncol. 2012; 4:255–270. PubMed PMC
Safe S., Abdelrahim M.. Sp transcription factor family and its role in cancer. Eur. J. Cancer. 2005; 41:2438–2448. PubMed