Anti-Fn14 Antibody-Conjugated Nanoparticles Display Membrane TWEAK-Like Agonism
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
813871
Horizon 2020
PubMed
34371763
PubMed Central
PMC8308961
DOI
10.3390/pharmaceutics13071072
PII: pharmaceutics13071072
Knihovny.cz E-zdroje
- Klíčová slova
- Fn14, anti-TNFRSF receptor (TNFR) antibodies, drug-delivery, nanoparticles, surface modification,
- Publikační typ
- časopisecké články MeSH
Conventional bivalent IgG antibodies targeting a subgroup of receptors of the TNF superfamily (TNFSF) including fibroblast growth factor-inducible 14 (anti-Fn14) typically display no or only very limited agonistic activity on their own and can only trigger receptor signaling by crosslinking or when bound to Fcγ receptors (FcγR). Both result in proximity of multiple antibody-bound TNFRSF receptor (TNFR) molecules, which enables engagement of TNFR-associated signaling pathways. Here, we have linked anti-Fn14 antibodies to gold nanoparticles to mimic the "activating" effect of plasma membrane-presented FcγR-anchored anti-Fn14 antibodies. We functionalized gold nanoparticles with poly-ethylene glycol (PEG) linkers and then coupled antibodies to the PEG surface of the nanoparticles. We found that Fn14 binding of the anti-Fn14 antibodies PDL192 and 5B6 is preserved upon attachment to the nanoparticles. More importantly, the gold nanoparticle-presented anti-Fn14 antibody molecules displayed strong agonistic activity. Our results suggest that conjugation of monoclonal anti-TNFR antibodies to gold nanoparticles can be exploited to uncover their latent agonism, e.g., for immunotherapeutic applications.
Zobrazit více v PubMed
Bodmer J.-L., Schneider P., Tschopp J. The molecular architecture of the TNF superfamily. Trends Biochem. Sci. 2002;27:19–26. doi: 10.1016/S0968-0004(01)01995-8. PubMed DOI
Wajant H. Principles of antibody-mediated TNF receptor activation. Cell Death Differ. 2015;22:1727–1741. doi: 10.1038/cdd.2015.109. PubMed DOI PMC
Kelley S.K., Harris L.A., Xie D., Deforge L., Totpal K., Bussiere J., Fox J.A. Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: Characterization of in vivo efficacy, pharmacokinetics, and safety. J. Pharmacol. Exp. Ther. 2001;299:31–38. PubMed
Beutler B.A., Milsark I.W., Cerami A. Cachectin/tumor necrosis factor: Production, distribution, and metabolic fate in vivo. J. Immunol. 1985;135:3972–3977. PubMed
Medler J., Nelke J., Weisenberger D., Steinfatt T., Rothaug M., Berr S., Hünig T., Beilhack A., Wajant H. TNFRSF receptor-specific antibody fusion proteins with targeting controlled FcγR-independent agonistic activity. Cell Death Dis. 2019;10 doi: 10.1038/s41419-019-1456-x. PubMed DOI PMC
De Bruyn M., Bremer E., Helfrich W. Antibody-based fusion proteins to target death receptors in cancer. Cancer Lett. 2013;332:175–183. doi: 10.1016/j.canlet.2010.11.006. PubMed DOI
Fay F., McLaughlin K.M., Small D.M., Fennell D.A., Johnston P.G., Longley D.B., Scott C.J. Conatumumab (AMG 655) coated nanoparticles for targeted pro-apoptotic drug delivery. Biomaterials. 2011;32:8645–8653. doi: 10.1016/j.biomaterials.2011.07.065. PubMed DOI
Yang J., Huang X., Liu B., Cheng X., Yin P., Luo F., Zhuang G., Cheng L., Chen L., Hu R., et al. Preparation and functional studies of hydroxyethyl chitosan nanoparticles loaded with anti-human death receptor 5 single-chain antibody. OncoTargets Ther. 2014;7:779–787. doi: 10.2147/OTT.S59872. PubMed DOI PMC
Zhang T., Chen P., Sun Y., Xing Y., Yang Y., Dong Y., Xu L., Yang Z., Liu D. A new strategy improves assembly efficiency of DNA mono-modified gold nanoparticles. Chem. Commun. 2011;47:5774–5776. doi: 10.1039/c1cc11337b. PubMed DOI
El-Sayed I.H., Huang X., El-Sayed M.A. Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer. Nano Lett. 2005;5:829–834. doi: 10.1021/nl050074e. PubMed DOI
You C.-C., Arvizo R.R., Rotello V.M. Regulation of alpha-chymotrypsin activity on the surface of substrate-functionalized gold nanoparticles. Chem. Commun. 2006:2905–2907. doi: 10.1039/B605508G. PubMed DOI
Yeh Y.-C., Creran B., Rotello V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale. 2011;4:1871–1880. doi: 10.1039/C1NR11188D. PubMed DOI PMC
Kimling J., Maier M., Okenve B., Kotaidis V., Ballot H., Plech A. Turkevich Method for Gold Nanoparticle Synthesis Revisited. J. Phys. Chem. B. 2006;110:15700–15707. doi: 10.1021/jp061667w. PubMed DOI
Culp P.A., Choi D., Zhang Y., Yin J., Seto P., Ybarra S.E., Su M., Sho M., Steinle R., Wong M.H., et al. Antibodies to TWEAK Receptor Inhibit Human Tumor Growth through Dual Mechanisms. Clin. Cancer Res. 2010;16:497–508. doi: 10.1158/1078-0432.CCR-09-1929. PubMed DOI
Salzmann S., Seher A., Trebing J., Weisenberger D., Rosenthal A., Siegmund D., Wajant H. Fibroblast growth factor inducible (Fn14)-specific antibodies concomitantly display signaling path-way-specific agonistic and antagonistic activity. J. Biol. Chem. 2013;288:13455–13466. doi: 10.1074/jbc.M112.435917. PubMed DOI PMC
Trebing J., Lang I., Chopra M., Salzmann S., Moshir M., Silence K., Riedel S.S., Siegmund D., Beilhack A., Otto C., et al. A novel llama antibody targeting Fn14 exhibits anti-metastatic activity in vivo. mAbs. 2013;6:297–308. doi: 10.4161/mabs.26709. PubMed DOI PMC
Lang I., Füllsack S., Wyzgol A., Fick A., Trebing J., Arana J.A.C., Schäfer V., Weisenberger D., Wajant H. Binding Studies of TNF Receptor Superfamily (TNFRSF) Receptors on Intact Cells. J. Biol. Chem. 2016;291:5022–5037. doi: 10.1074/jbc.M115.683946. PubMed DOI PMC
Wyzgol A., Müller-Sienerth N., Fick A., Munkel S., Grigoleit G.U., Pfizenmaier K., Wajant H. Trimer Stabilization, Oligomerization, and Antibody-Mediated Cell Surface Immobilization Improve the Activity of Soluble Trimers of CD27L, CD40L, 41BBL, and Glucocorticoid-Induced TNF Receptor Ligand. J. Immunol. 2009;183:1851–1861. doi: 10.4049/jimmunol.0802597. PubMed DOI
Berg D., Lehne M., Müller N., Siegmund D., Münkel S., Sebald W., Pfizenmaier K., Wajant H. Enforced covalent trimerization increases the activity of the TNF ligand family members TRAIL and CD95L. Cell Death Differ. 2007;14:2021–2034. doi: 10.1038/sj.cdd.4402213. PubMed DOI
Frens G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973;241:20–22. doi: 10.1038/physci241020a0. DOI
Haiss W., Thanh N.T.K., Aveyard J., Fernig D. Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Anal. Chem. 2007;79:4215–4221. doi: 10.1021/ac0702084. PubMed DOI
Grabarek Z., Gergely J. Zero-length crosslinking procedure with the use of active esters. Anal. Biochem. 1990;185:131–135. doi: 10.1016/0003-2697(90)90267-D. PubMed DOI
Nakajima N., Ikada Y. Mechanism of Amide Formation by Carbodiimide for Bioconjugation in Aqueous Media. Bioconjug. Chem. 1995;6:123–130. doi: 10.1021/bc00031a015. PubMed DOI
Staros J.V., Wright R.W., Swingle D.M. Enhancement by N-hydroxysulfosuccinimide of water-soluble car-bodiimide-mediated coupling reactions. Anal. Biochem. 1986;156:220–222. doi: 10.1016/0003-2697(86)90176-4. PubMed DOI
Roos C., Wicovsky A., Müller N., Salzmann S., Rosenthal T., Kalthoff H., Trauzold A., Seher A., Henkler F., Kneitz C., et al. Soluble and Transmembrane TNF-Like Weak Inducer of Apoptosis Differentially Activate the Classical and Noncanonical NF-κB Pathway. J. Immunol. 2010;185:1593–1605. doi: 10.4049/jimmunol.0903555. PubMed DOI
Füllsack S., Rosenthal A., Wajant H., Siegmund D. Redundant and receptor-specific activities of TRADD, RIPK1 and FADD in death receptor signaling. Cell Death Dis. 2019;10:122. doi: 10.1038/s41419-019-1396-5. PubMed DOI PMC
Feoktistova M., Geserick P., Leverkus M. Crystal Violet Assay for Determining Viability of Cultured Cells. Cold Spring Harb. Protoc. 2016;2016:087379. doi: 10.1101/pdb.prot087379. PubMed DOI
Amendola V., Pilot R., Frasconi M., Marago O.M., Iatì M.A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter. 2017;29:203002. doi: 10.1088/1361-648X/aa60f3. PubMed DOI
Oliveira J., Prado A.R., Keijok W.J., Ribeiro M.R.N., Pontes M., Nogueira B., Guimarães M.C. A helpful method for controlled synthesis of monodisperse gold nanoparticles through response surface modeling. Arab. J. Chem. 2020;13:216–226. doi: 10.1016/j.arabjc.2017.04.003. DOI
Khlebtsov B.N., Khlebtsov N.G. On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J. 2011;73:118–127. doi: 10.1134/S1061933X11010078. DOI
Wajant H. The TWEAK-Fn14 system as a potential drug target. Br. J. Pharmacol. 2013;170:748–764. doi: 10.1111/bph.12337. PubMed DOI PMC
Kums J., Nelke J., Rüth B., Schäfer V., Siegmund D., Wajant H. Quantitative analysis of cell surface antigen-antibody interaction using Gaussia princeps Luciferase antibody fusion proteins. mAbs. 2017;9:506–520. doi: 10.1080/19420862.2016.1274844. PubMed DOI PMC
Grabinger T., Bode K.J., Demgenski J., Seitz C., Delgado M.E., Kostadinova F., Reinhold C., Etemadi N., Wilhelm S., Schweinlin M., et al. Inhibitor of Apoptosis Protein-1 Regulates Tumor Necrosis Factor–Mediated Destruction of Intestinal Epithelial Cells. Gastroenterology. 2017;152:867–879. doi: 10.1053/j.gastro.2016.11.019. PubMed DOI
Wicovsky A., Salzmann S., Roos C., Ehrenschwender M., Rosenthal T., Siegmund D., Henkler F., Gohlke F., Kneitz C., Wajant H. TNF-like weak inducer of apoptosis inhibits proinflammatory TNF receptor-1 signaling. Cell Death Differ. 2009;16:1445–1459. doi: 10.1038/cdd.2009.80. PubMed DOI
Jazayeri M.H., Amani H., Pourfatollah A.A., Pazoki-Toroudi H., Sedighimoghaddam B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens. Bio Sens. Res. 2016;9:17–22. doi: 10.1016/j.sbsr.2016.04.002. DOI
Bartczak D., Kanaras A.G. Preparation of Peptide-Functionalized Gold Nanoparticles Using One Pot EDC/Sulfo-NHS Coupling. Langmuir. 2011;27:10119–10123. doi: 10.1021/la2022177. PubMed DOI