Mechanism of drug resistance in bacteria: efflux pump modulation for designing of new antibiotic enhancers

. 2021 Oct ; 66 (5) : 727-739. [epub] 20210825

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34431062
Odkazy

PubMed 34431062
DOI 10.1007/s12223-021-00910-z
PII: 10.1007/s12223-021-00910-z
Knihovny.cz E-zdroje

Drug resistance has now become a serious concern in the domain of microbial infection. Bacteria are becoming smarter by displaying a variety of mechanisms during drug resistance. It is not only helping bacteria to adapt nicely in adverse environment but it also makes a smart system for better availability of nutritional status for microorganisms. In this domain, pathogenic bacteria are extensively studied and their mechanism for drug resistance is well explored. The common modes in bacterial resistance include degradation of antibiotics by enzymes, antibiotic target modification or inactivation by enzymatic actions, complete replacement of antibiotic targets, quorum sensing (QS) mechanism, and efflux pump-based extrusion of antibiotics. In this review, various mechanisms of drug resistance in bacteria have been highlighted with giving the importance of efflux pumps. This can be explored as a knowledge source for the management of a variety of bacterial infections, related disease and vibrant clue for next-generation drug development.

Zobrazit více v PubMed

Alby K, Miller MB (2018) Mechanisms and detection of antimicrobial resistance. In: Sarah Long, Charles Prober, and Marc Fischer (eds) Principles and practice of pediatric infectious diseases. 5th edn., 1467–1478

Aygül A (2015) The importance of efflux systems in antibiotic resistance and efflux pump inhibitors in the management of resistance. Mikrobiyol Bul 49:278–291. https://doi.org/10.5578/mb.8964 PubMed DOI

Bailo R, Bhatt A, Aínsa JA (2015) Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development. Biochem Pharmacol 96:159–167. https://doi.org/10.1016/j.bcp.2015.05.001 PubMed DOI

Ball AR, Casadei G, Samosorn S, Bremner JB, Ausubel FM, Moy TI et al (2006) Conjugating berberine to a multidrug resistance pump inhibitor creates an effective antimicrobial. ACS Chem Biol 1:594–600. https://doi.org/10.1021/cb600238x PubMed DOI

Barthelemy P, Autissier D, Gerbaud G, Courvalin P (1984) Enzymic hydrolysis of erythromycin by a strain of Escherichia coli. J Antibiot 37:1692–1696. https://doi.org/10.7164/antibiotics.37.1692 DOI

Bassler BL (2002) Small talk: cell-to-cell communication in bacteria. Cell 109:421–424. https://doi.org/10.1016/S0092-8674(02)00749-3 PubMed DOI

Baysarowich J, Koteva K, Hughes DW, Ejim L, Griffiths E, Zhang K, Junop M, Wright GD (2008) Rifamycin antibiotic resistance by ADP-ribosylation: structure and diversity of Arr. Proc Natl Acad Sci 105:4886–4891. https://doi.org/10.1073/pnas.0711939105 PubMed DOI PMC

Bhaskar BV, Babu TM, Reddy NV, Rajendra W (2016) Homology modeling, molecular dynamics, and virtual screening of NorA efflux pump inhibitors of Staphylococcus aureus. Drug Des Dev Ther 10:3237. https://doi.org/10.2147/DDDT.S113556 DOI

Bhattacharjee M, Sharma R, Yadav RP (2016) Enhancement of gentamicin sensitivity in Enterococcus faecalis using antidiabetic molecule gliclazide. MGM J Med Sci 3:53–56. https://doi.org/10.5005/jp-journals-10036-1089 DOI

Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, Bernardini A, Sanchez MB, Martinez JL (2016) Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 4:14–32. https://doi.org/10.3390/microorganisms4010014 DOI PMC

Braibant M, Guilloteau L, Zygmunt MS (2002) Functional characterization of Brucella melitensis NorMI, an efflux pump belonging to the multidrug and toxic compound extrusion family. Antimicrob Agents Chemother 46:3050–3053. https://doi.org/10.1128/AAC.46.9.3050-3053.2002 PubMed DOI PMC

Brandt C, Braun SD, Stein C, Slickers P, Ehricht R, Pletz MW, Makarewicz O (2017) In silico serine β-lactamases analysis reveals a huge potential resistome in environmental and pathogenic species. Sci Rep 7:43232. https://doi.org/10.1038/srep43232 DOI

Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211. https://doi.org/10.1128/aac.39.6.1211 PubMed DOI PMC

Calvert P, Yao KS, Hamilton TC, O’Dwyer PJ (1998) Clinical studies of reversal of drug resistance based on glutathione. Chem Biol Interact 111:213–224. https://doi.org/10.1016/S0009-2797(98)00008-8 PubMed DOI

Chapman E, Bhakta S (2019) Whole-cell assays for discovering novel efflux inhibitors for use as antibiotic adjuvants. Curr Tr Biotech & Microbio 1:34–37. https://doi.org/10.32474/CTBM.2019.01.000109

Chellat MF, Raguž L, Riedl R (2016) Targeting antibiotic resistance. Angew Chem Int Ed 55:6600–6626. https://doi.org/10.1002/anie.201506818 DOI

Costa LM, de Macedo EV, Oliveira FA, Ferreira JH, Gutierrez SJ, Pelaez WJ, Lima FD, de Siqueira Júnior JP, Coutinho HD, Kaatz GW, de Freitas RM (2016) Inhibition of the NorA efflux pump of Staphylococcus aureus by synthetic riparins. J Appl Microbiol 121:1312–1322. https://doi.org/10.1111/jam.13258 PubMed DOI

Dassa E, Bouige P (2001) The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol 152:211–229. https://doi.org/10.1016/S0923-2508(01)01194-9 PubMed DOI

Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433. https://doi.org/10.1128/MMBR.00016-10 PubMed DOI PMC

De Rossi E, Branzoni M, Cantoni R, Milano A, Riccardi G, Ciferri O (1998) mmr, a Mycobacterium tuberculosis gene conferring resistance to small cationic dyes and inhibitors. J Bacteriol 180:6068–6071. https://doi.org/10.1128/JB.180.22.6068-6071.1998 PubMed DOI PMC

Doi Y, Wachino JI, Arakawa Y (2016) Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases. Infect Dis Clin m 30:523–53. https://doi.org/10.1016/j.idc.2016.02.011

Edgar R, Bibi E (1997) MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. J Bacteriol 179:2274–2280. https://doi.org/10.1128/jb.179.7.2274-2280.1997 PubMed DOI PMC

Ehmann DE, Jahić H, Ross PL, Gu RF, Hu J, Kern G et al (2012) Avibactam is a covalent, reversible, non–β-lactam β-lactamase inhibitor. Proc Natl Acad Sci 109:11663–11668. https://doi.org/10.1073/pnas.1205073109 PubMed DOI PMC

El-Nakeeb MA, Abou Shleib HM, Khalil AM, Omar HG, El-Halfawy OM (2012) Reversal of antibiotic resistance in gram-positive bacteria by the antihistaminic azelastine. APMIS 120:215–220. https://doi.org/10.1111/j.1600-0463.2011.02823.x PubMed DOI

Fiamegos YC, Kastritis PL, Exarchou V, Han H, Bonvin AM, Vervoort J et al (2011) Antimicrobial and efflux pump inhibitory activity of caffeoylquinic acids from Artemisia absinthium against gram-positive pathogenic bacteria. PLoS ONE 6:e18127. https://doi.org/10.1371/journal.pone.0018127 PubMed DOI PMC

Fishovitz J, Hermoso JA, Chang M, Mobashery S (2014) Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life 66:572–577. https://doi.org/10.1002/iub.1289 PubMed DOI PMC

Floyd JL, Smith KP, Kumar SH, Floyd JT, Varela MF (2010) LmrS is a multidrug efflux pump of the major facilitator superfamily from Staphylococcus aureus. Antimicrob Agents Chemother 54:5406–5412. https://doi.org/10.1128/AAC.00580-10 PubMed DOI PMC

Fujita M, Shiota S, Kuroda T, Hatano T, Yoshida T, Mizushima T et al (2005) Remarkable synergies between baicalein and tetracycline, and baicalein and β-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol 49:391–396. https://doi.org/10.1111/j.1348-0421.2005.tb03732.x PubMed DOI

Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275. https://doi.org/10.1128/jb.176.2.269-275.1994 PubMed DOI PMC

Fyfe C, Grossman TH, Kerstein K, Sutcliffe J (2016) Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb Perspect Med 6:a025395. https://doi.org/10.1101/cshperspect.a025395 PubMed DOI PMC

Giedraitienė A, Vitkauskienė A, Naginienė R, Pavilonis A (2011) Antibiotic resistance mechanisms of clinically important bacteria. Medicina 47:19. https://doi.org/10.3390/medicina47030019 DOI

Gill EE, Franco OL, Hancock RE (2015) Antibiotic adjuvants: diverse strategies for controlling drug-resistant pathogens. Chem Biol Drug Des 85:56–78. https://doi.org/10.1111/cbdd.12478 PubMed DOI

Gupta S, Tyagi S, Almeida DV, Maiga MC, Ammerman NC, Bishai WR (2013) Acceleration of tuberculosis treatment by adjunctive therapy with verapamil as an efflux inhibitor. Am J Respir Crit Care Med 188:600–607. https://doi.org/10.1164/rccm.201304-0650OC PubMed DOI PMC

Hall BG, Barlow M (2005) Revised Ambler classification of β-lactamases. J Antimicrob Chemother 55:1050–1051. https://doi.org/10.1093/jac/dki130 PubMed DOI

Hancock RE (1997) Peptide antibiotics. Lancet 349:418–422. https://doi.org/10.1016/S0140-6736(97)80051-7 PubMed DOI

Hooper DC (2002) Target modification as a mechanism of antimicrobial resistance. In: Richard G. Wax, Kim Lewis, Abigail A. Salyers and Harry Taber (eds) Bacterial resistance to antimicrobials, 2nd edn., 161–192

Joshi P, Singh S, Wani A, Sharma S, Jain SK, Singh B et al (2014) Osthol and curcumin as inhibitors of human Pgp and multidrug efflux pumps of Staphylococcus aureus: reversing the resistance against frontline antibacterial drugs. MedChemComm 5:1540–1547. https://doi.org/10.1039/C4MD00196F DOI

Kabra R, Chauhan N, Kumar A, Ingale P, Singh S (2019) Efflux pumps and antimicrobial resistance: paradoxical components in systems genomics. Prog Biophys Mol Biol 141:15–24. https://doi.org/10.1016/j.pbiomolbio.2018.07.008 PubMed DOI

Kaiser D, Losick R (1993) How and why bacteria talk to each other. Cell 73:873–885. https://doi.org/10.1016/0092-8674(93)90268-U PubMed DOI

Kalia VC, Patel SK, Kang YC, Lee JK (2019) Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 37:68–90. https://doi.org/10.1016/j.biotechadv.2018.11.006 PubMed DOI

Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140. https://doi.org/10.3109/1040841X.2010.532479 PubMed DOI

Kalia VC, Raju SC, Purohit HJ (2011) Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and-lactonase. The Open Microbiology Journal 5:1. https://doi.org/10.2174/1874285801105010001 PubMed DOI PMC

Khan IA, Mirza ZM, Kumar A, Verma V, Qazi GN (2006) Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob Agents Chemother 50:810–812. https://doi.org/10.1128/AAC.50.2.810-812.2006 PubMed DOI PMC

Klyachko KA, Schuldiner S, Neyfakh AA (1997) Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter Bmr. J Bacteriol 179:2189–2193. https://doi.org/10.1128/jb.179.7.2189-2193.1997 PubMed DOI PMC

Kumar S, Varela MF (2013) Molecular mechanisms of bacterial resistance to antimicrobial agents. In: Mendez-Vilas (ed) Microbial pathogens and strategies for combating them: science, technology and education, pp 522–534

Larsen EM, Johnson RJ (2019) Microbial esterases and ester prodrugs: an unlikely marriage for combating antibiotic resistance. Drug Dev Res 80:33–47. https://doi.org/10.1002/ddr.21468 PubMed DOI

Lekshmi M, Ammini P, Kumar S, Varela MF (2017) The food production environment and the development of antimicrobial resistance in human pathogen of animal origin. Microorganisms 5:1–15. https://doi.org/10.3390/microorganisms5010011 DOI

Lim D, Strynadka NC (2002) Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Mol Biol 9:870. https://doi.org/10.1038/nsb858 DOI

Locher KP (2016) Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol 23:487–493. https://doi.org/10.1038/nsmb.3216 PubMed DOI

Lopatkin AJ, Meredith HR, Srimani JK, Pfeiffer C, Durrett R, You L (2017) Persistence and reversal of plasmid-mediated antibiotic resistance. Nat Commun 8:1. https://doi.org/10.1038/s41467-017-01532-1 DOI

Machado D, Lecorche E, Mougari F, Cambau E, Viveiros M (2018) Insights on Mycobacterium leprae efflux pumps and their implications in drug resistance and virulence. Front Microbiol 9:3072. https://doi.org/10.3389/fmicb.2018.03072 PubMed DOI PMC

Mahizan NA, Yang SK, Moo CL, Song AA, Chong CM, Chong CW, Abushelaibi A, Lim SH, Lai KS (2019) Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 24:2631. https://doi.org/10.3390/molecules24142631 DOI PMC

Markley JL, Wencewicz TA (2018) Tetracycline-Inactivating Enzymes. Front Microbiol 9:1058. https://doi.org/10.3389/fmicb.2018.01058 PubMed DOI

McArthur AG, Wright GD (2015) Bioinformatics of antimicrobial resistance in the age of molecular epidemiology. Curr Opin Microbiol 27:45–50. https://doi.org/10.1016/j.mib.2015.07.004 PubMed DOI

McMurry L, Petrucci RE, Levy SB (1980) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci 77:3974–3977. https://doi.org/10.1073/pnas.77.7.3974 PubMed DOI PMC

Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. https://doi.org/10.1146/annurev.micro.55.1.165 PubMed DOI

Morar M, Pengelly K, Koteva K, Wright GD (2012) Mechanism and diversity of the erythromycin esterase family of enzymes. Biochemistry 51:1740–1751. https://doi.org/10.1021/bi201790u PubMed DOI

JM Munita CA Arias (2016) Mechanisms of antibiotic resistance. Microbiol Spectr Chapter 17 https://doi.org/10.1128/9781555819286.ch17

Neyfakh AA, Bidnenko VE, Chen LB (1991) Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. Proc Natl Acad Sci 88:4781–4785. https://doi.org/10.1073/pnas.88.11.4781 PubMed DOI PMC

Neyfakh AA, Borsch CM, Kaatz GW (1993) Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrob Agents Chemother 37:128–129. https://doi.org/10.1128/AAC.37.1.128 PubMed DOI PMC

Oluwatuyi M, Kaatz GW, Gibbons S (2004) Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry 65:3249–3254. https://doi.org/10.1016/j.phytochem.2004.10.009 PubMed DOI

Pal R, Fatima Z, Hameed S (2014) Efflux pumps in drug resistance of Mycobacterium tuberculosis: a panoramic view. Int J Curr Microbiol Appl Sci 3:528–546

Pasca MR, Guglierame P, De Rossi E, Zara F, Riccardi G (2005) mmpL7 gene of Mycobacterium tuberculosis is responsible for isoniazid efflux in Mycobacterium smegmatis. Antimicrob Agents Chemother 49:4775–4777. https://doi.org/10.1128/AAC.49.11.4775-4777.2005 PubMed DOI PMC

Pereda-Miranda R, Kaatz GW, Gibbons S (2006) Polyacylated oligosaccharides from medicinal Mexican morning glory species as antibacterials and inhibitors of multidrug resistance in Staphylococcus aureus. J Nat Prod 69:406–409. https://doi.org/10.1021/np050227d PubMed DOI

Piddock LJ (2006) Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19:382–402. https://doi.org/10.1128/CMR.19.2.382-402.2006 PubMed DOI PMC

Pohl PC, Klafke GM, Carvalho DD, Martins JR, Daffre S, da Silva Vaz Jr I, et al (2011) ABC transporter efflux pumps: a defense mechanism against ivermectin in Rhipicephalus (Boophilus) microplus. Int J Parasitol 41:1323–1333. https://doi.org/10.1016/j.ijpara.2011.08.004 DOI

Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A et al (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18:41–58. https://doi.org/10.1038/nrd.2018.168 PubMed DOI

Rehm B (2001) Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genes and protein classification. Appl Microbiol Biotechnol 57:579–592. https://doi.org/10.1007/s00253-001-0844-0 PubMed DOI

Rife CL, Pharris RE, Newcomer ME, Armstrong RN (2002) Crystal structure of a genomically encoded fosfomycin resistance protein (FosA) at 1.19 Å resolution by MAD phasing off the L-III edge of Tl+. J Am Chem Soc 124:11001–11003. https://doi.org/10.1021/ja026879v PubMed DOI

Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203. https://doi.org/10.1016/j.femsle.2005.02.034 PubMed DOI

Sabir N, Ikram A, Zaman G, Satti L, Gardezi A, Ahmed A et al (2017) Bacterial biofilm-based catheter-associated urinary tract infections: causative pathogens and antibiotic resistance. Am J Infect Control 45:1101–1105. https://doi.org/10.1016/j.ajic.2017.05.009 PubMed DOI

Samosorn S, Tanwirat B, Muhamad N, Casadei G, Tomkiewicz D, Lewis K et al (2009) Antibacterial activity of berberine-NorA pump inhibitor hybrids with a methylene ether linking group. Bioorg Med Chem 17:3866–3872. https://doi.org/10.1016/j.bmc.2009.04.028 PubMed DOI PMC

Sharkey LK, Edwards TA, O’Neill AJ (2016) ABC-F proteins mediate antibiotic resistance through ribosomal protection. Mbio 7:e01975-e2015. https://doi.org/10.1128/mBio.01975-15 PubMed DOI PMC

Sharma M, Manoharlal R, Shukla S, Puri N, Prasad T, Ambudkar SV et al (2009) Curcumin modulates efflux mediated by yeast ABC multidrug transporters and is synergistic with antifungals. Antimicrob Agents Chemother 53:3256–3265. https://doi.org/10.1128/AAC.01497-08 PubMed DOI PMC

Sharma M, Prasad R (2011) The quorum-sensing molecule farnesol is a modulator of drug efflux mediated by ABC multidrug transporters and synergizes with drugs in Candida albicans. Antimicrob Agents Chemother 55:4834–4843. https://doi.org/10.1128/AAC.00344-11 PubMed DOI PMC

Silva J (1996) Mechanisms of antibiotic resistance. Curr Ther Res 57:30–35. https://doi.org/10.1016/S0011-393X(96)80095-6 DOI

Spratt BG (1994) Resistance to antibiotics mediated by target alterations. Science 264:388–393. https://doi.org/10.1126/science.8153626 PubMed DOI

Stavri M, Piddock LJ, Gibbons S (2007) Bacterial efflux pump inhibitors from natural sources. J Antimicrob Chemother 59:1247–1260. https://doi.org/10.1093/jac/dkl460 PubMed DOI

Steinkey R, Moat J, Gannon V, Zovoilis A, Laing C (2020) Artificial intelligence in public health: application of artificial intelligence to the in silico assessment of antimicrobial resistance and risks to human and animal health presented by priority enteric bacterial pathogens. Can Commun Dis Rep 46:180–185. https://doi.org/10.14745/ccdr.v46i06a05

Stewart DJ, Raaphorst GP, Yau J, Beaubien AR (1996) Active vs. passive resistance, dose-response relationships, high dose chemotherapy, and resistance modulation: a hypothesis. Invest New Drugs 14:115–130. https://doi.org/10.1007/BF00210782 PubMed DOI

Su W, Kumar V, Ding Y, Ero R, Serra A, Lee BS et al (2018) Ribosome protection by antibiotic resistance ATP-binding cassette protein. Proc Natl Acad Sci 115:5157–5162. https://doi.org/10.1073/pnas.1803313115 PubMed DOI PMC

Wachino JI, Arakawa Y (2012) Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Drug Resist Updat 15:133–148. https://doi.org/10.1016/j.drup.2012.05.001 PubMed DOI

Wang Y, Liu B, Grenier D, Yi L (2019) Regulatory mechanisms of the LuxS/AI-2 system and bacterial resistance. Antimicrob Agents Chemother 63:e01186-e1219. https://doi.org/10.1128/AAC.01186-19 PubMed DOI PMC

Wang Y, Venter H, Ma S (2016) Efflux pump inhibitors: a novel approach to combat efflux-mediated drug resistance in bacteria. Curr Drug Targets 17:702–719. https://doi.org/10.2174/1389450116666151001103948 PubMed DOI

Whittle G, Shoemaker NB, Salyers AA (2002) The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell Mol Life Sci 59:2044–2054. https://doi.org/10.1007/s000180200004 PubMed DOI

Wilson DN (2014) Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 12:35–48. https://doi.org/10.1038/nrmicro3155 PubMed DOI

Wright GD (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 57:1451–1470. https://doi.org/10.1016/j.addr.2005.04.002 PubMed DOI

Wright GD (2010) Q&A: Antibiotic resistance: where does it come from and what can we do about it? BMC Biol 8:123. https://doi.org/10.1186/1741-7007-8-123 PubMed DOI PMC

Yang W, Moore IF, Koteva KP, Bareich DC, Hughes DW, Wright GD (2004) TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem 279:52346–52352. https://doi.org/10.1074/jbc.M409573200 PubMed DOI

Yerushalmi H, Lebendiker M, Schuldiner S (1995) EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. J Biol Chem 270:6856–6863. https://doi.org/10.1074/jbc.270.12.6856 PubMed DOI

Zgurskaya HI (2009) Multicomponent drug efflux complexes: architecture and mechanism of assembly. Future Microbiol 4:919–932. https://doi.org/10.2217/fmb.09.62 PubMed DOI

Zhao X, Yu Z, Ding T (2020) Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms 8:425. https://doi.org/10.3390/microorganisms8030425 DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...