Highly Clonal Structure and Abundance of One Haplotype Characterise the Diplodia sapinea Populations in Europe and Western Asia

. 2021 Aug 04 ; 7 (8) : . [epub] 20210804

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34436173

Grantová podpora
PUT PSG136 Eesti Teadusfondi
2/0077/18 Slovak Research and Development Agency VEGA
No. CZ.02.1.01/0.0/0.0/15_003/0000453 European Regional Development Fund

Diplodia sapinea is a cosmopolitan endophyte and opportunistic pathogen having occurred on several conifer species in Europe for at least 200 years. In Europe, disease outbreaks have increased on several Pinus spp. in the last few decades. In this study, the genetic structure of the European and western Asian D. sapinea population were investigated using 13 microsatellite markers. In total, 425 isolates from 15 countries were analysed. A high clonal fraction and low genetic distance between most subpopulations was found. One single haplotype dominates the European population, being represented by 45.3% of all isolates and found in nearly all investigated countries. Three genetically distinct subpopulations were found: Central/North European, Italian and Georgian. The recently detected subpopulations of D. sapinea in northern Europe (Estonia) share several haplotypes with the German subpopulation. The northern European subpopulations (Latvia, Estonia and Finland) show relatively high genetic diversity compared to those in central Europe suggesting either that the fungus has existed in the North in an asymptomatic/endophytic mode for a long time or that it has spread recently by multiple introductions. Considerable genetic diversity was found even among isolates of a single tree as 16 isolates from a single tree resulted in lower clonal fraction index than most subpopulations in Europe, which might reflect cryptic sexual proliferation. According to currently published allelic patterns, D. sapinea most likely originates from North America or from some unsampled population in Asia or central America. In order to enable the detection of endophytic or latent infections of planting stock by D. sapinea, new species-specific PCR primers (DiSapi-F and Diplo-R) were designed. During the search for Diplodia isolates across the world for species specific primer development, we identified D. africana in California, USA, and in the Canary Islands, which are the first records of this species in North America and in Spain.

Zobrazit více v PubMed

Phillips A., Alves A., Abdollahzadeh J., Slippers B., Wingfield M., Groenewald J., Crous P. The Botryosphaeriaceae: Genera and species known from culture. Stud. Mycol. 2013;76:51–167. doi: 10.3114/sim0021. PubMed DOI PMC

Slippers B., Boissin E., Phillips A., Groenewald J., Lombard L., Wingfield M., Postma A., Burgess T., Crous P. Phylogenetic lineages in the Botryosphaeriales: A systematic and evolutionary framework. Stud. Mycol. 2013;76:31–49. doi: 10.3114/sim0020. PubMed DOI PMC

Brookhouser L.W., Peterson G.W. Infection of Austrian, Scots, and ponderosa pines by Diplodia pinea. Phytopathology. 1971;61:409–414. doi: 10.1094/Phyto-61-409. DOI

Peterson G.W. Infection, epidemiology, and control of Diplodia blight of Austrian ponderosa and Scots pines. Phytopathology. 1977;67:511–514. doi: 10.1094/Phyto-67-511. DOI

Swart W.J., Knox-Davis P.S., Wingfield M.J. Sphaeropsis sapinea, with special reference to its occurrence on Pinus spp. in South Africa. South Africa For. J. 1985;35:1–8.

Blodgett J.T., Stanosz G.R. Sphaeropsis sapinea Morphotypes Differ in Aggressiveness, but Both Infect Nonwounded Red or Jack Pines. Plant Dis. 1997;81:143–147. doi: 10.1094/PDIS.1997.81.2.143. PubMed DOI

Swart W.J., Wingfield M.J. Biology and Control of Sphaeropsis sapinea on Pinus species in South Mrica. Detail. 1991;30:40.

Bihon W., Slippers B., Burgess T., Wingfield M.J., Wingfield B. Sources of Diplodia pinea endophytic infections in Pinus patula and P. radiata seedlings in South Africa. For. Pathol. 2011;41:370–375. doi: 10.1111/j.1439-0329.2010.00691.x. DOI

Drenkhan T., Voolma K., Adamson K., Sibul I. The large pine weevil Hylobius abietis (L.) as a potential vector of the pathogenic fungus Diplodia sapinea (Fr.) Fuckel. Agric. For. Èntomol. 2016;19:4–9. doi: 10.1111/afe.12173. DOI

Bußkamp J., Langer G.J., Langer E.J. Sphaeropsis sapinea and fungal endophyte diversity in twigs of Scots pine (Pinus sylvestris) in Germany. Mycol. Prog. 2020;19:985–999. doi: 10.1007/s11557-020-01617-0. DOI

Oliva J., Ridley M., Redondo M.A., Caballol M. Competitive exclusion amongst endophytes determines shoot blight severity on pine. Funct. Ecol. 2020;35:239–254. doi: 10.1111/1365-2435.13692. DOI

Stanosz G.R., Blodgett J.T., Smith D.R., Kruger E.L. Water stress and Sphaeropsis sapinea as a latent pathogen of red pine seedlings. New Phytol. 2001;149:531–538. doi: 10.1046/j.1469-8137.2001.00052.x. PubMed DOI

Flowers J., Hartman J., Vaillancourt L. Detection of Latent Sphaeropsis sapinea Infections in Austrian Pine Tissues Using Nested-Polymerase Chain Reaction. Phytopathology. 2003;93:1471–1477. doi: 10.1094/PHYTO.2003.93.12.1471. PubMed DOI

Luchi N., Capretti P., Surico G., Orlando C., Pazzagli M., Pinzani P. A Real-Time Quantitative PCR Assay for the Detection of Sphaeropsis sapinea from Inoculated Pinus nigra Shoots. J. Phytopathol. 2005;153:37–42. doi: 10.1111/j.1439-0434.2004.00924.x. DOI

Luchi N., Pratesi N., Simi L., Pazzagli M., Capretti P., Scala A., Slippers B., Pinzani P. High-Resolution Melting Analysis: A new molecular approach for the early detection of Diplodia pinea in Austrian pine. Fungal Biol. 2011;115:715–723. doi: 10.1016/j.funbio.2011.05.005. PubMed DOI

Smith D.R., Stanosz G.R. A Species-Specific PCR Assay for Detection of Diplodia pinea and D. scrobiculata in Dead Red and Jack Pines with Collar Rot Symptoms. Plant Dis. 2006;90:307–313. doi: 10.1094/PD-90-0307. PubMed DOI

Desprez-Loustau M.-L., Marçais B., Nageleisen L.-M., Piou D., Vannini A. Interactive effects of drought and pathogens in forest trees. Ann. For. Sci. 2006;63:597–612. doi: 10.1051/forest:2006040. DOI

Fabre B., Marçais B., Desprez-Loustau M., Piou D. Can the emergence of pine Diplodia shoot blight in France be explained by changes in pathogen pressure linked to climate change? Glob. Chang. Biol. 2011;17:3218–3227. doi: 10.1111/j.1365-2486.2011.02428.x. DOI

Langer G., Bressem U., Habermann M. Diplodia-Triebsterben der Kiefer und endophytischer Nachweis des Erregers Sphaeropsis sapinea. AFZ-Der Wald. 2011;11:28–31.

De Urbina E.O., Mesanza N., Aragonés A., Raposo R., Elvira-Recuenco M., Boqué R., Patten C., Aitken J., Iturritxa E. Emerging Needle Blight Diseases in Atlantic Pinus Ecosystems of Spain. Forests. 2017;8:18. doi: 10.3390/f8010018. DOI

Fries E.M. Systema Mycologicum, 2, 620. Gryphiswaldia; Lund, Sweden: Berlin, Germany: 1823.

Oliva J., Boberg J., Stenlid J. First report of Sphaeropsis sapinea on Scots pine (Pinus sylvestris) and Austrian pine (P. nigra) in Sweden. New Dis. Rep. 2013;27:23. doi: 10.5197/j.2044-0588.2013.027.023. DOI

Adamson K., Klavina D., Drenkhan R., Gaitnieks T., Hanso M. Diplodia sapinea is colonizing the native Scots pine (Pinus sylvestris) in the northern Baltics. Eur. J. Plant Pathol. 2015;143:343–350. doi: 10.1007/s10658-015-0686-8. DOI

Brodde L., Adamson K., Camarero J.J., Castaño C., Drenkhan R., Lehtijärvi A., Luchi N., Migliorini D., Sánchez-Miranda A., Stenlid J., et al. Diplodia Tip Blight on Its Way to the North: Drivers of Disease Emergence in Northern Europe. Front. Plant Sci. 2019;9:1818. doi: 10.3389/fpls.2018.01818. PubMed DOI PMC

Hanso M., Drenkhan R. Diplodia pinea is a new pathogen on Austrian pine (Pinus nigra) in Estonia. Plant Pathol. 2009;58:797. doi: 10.1111/j.1365-3059.2009.02082.x. DOI

Müller M.M., Hantula J., Wingfield M., Drenkhan R. Diplodia sapinea found on Scots pine in Finland. For. Pathol. 2019;49:e12483. doi: 10.1111/efp.12483. DOI

Burgess T., Wingfield M.J. Quarantine is important in restricting the spread of exotic seed-borne tree pathogens in the Southern hemisphere. Intern. For. Rev. 2002;4:56–65.

Wingfield M.J., Slippers B., Roux J., Wingfield B.D. Worldwide movement of exotic forest fungi, especially in the tropics and the southern hemisphere: This article examines the impact of fungal pathogens introduced in plantation forestry. Bioscience. 2001;51:134–140. doi: 10.1641/0006-3568(2001)051[0134:WMOEFF]2.0.CO;2. DOI

Adamson K., Drenkhan R., Hanso M. Invasive brown spot needle blight caused by Lecanosticta acicola in Estonia. Scand. J. For. Res. 2015;30:587–593. doi: 10.1080/02827581.2015.1041550. DOI

Drenkhan R., Riit T., Adamson K., Hanso M. The earliest samples of Hymenoscyphus albidus vs. H. fraxineus in Estonian mycological herbaria. Mycol. Prog. 2016;15:835–844. doi: 10.1007/s11557-016-1209-5. DOI

Hanso M., Drenkhan R. First observations of Mycosphaerella pini Estonia. Plant Pathol. 2008;57:1177. doi: 10.1111/j.1365-3059.2008.01912.x. DOI

Jürisoo L., Adamson K., Padari A., Drenkhan R. Health of elms and Dutch elm disease in Estonia. Eur. J. Plant Pathol. 2019;154:823–841. doi: 10.1007/s10658-019-01707-0. DOI

Lutter R., Drenkhan R., Tullus A., Jürimaa K., Tullus T., Tullus H. First record of Entoleuca mammata in hybrid aspen plantations in hemiboreal Estonia and stand–environmental factors affecting its prevalence. Eur. J. For. Res. 2019;138:263–274. doi: 10.1007/s10342-019-01165-7. DOI

Mullett M.S., Adamson K., Bragança H., Bulgakov T., Georgieva M., Henriques J., Jürisoo L., Laas M., Drenkhan R. New country and regional records of the pine needle blight pathogens Lecanosticta acicola, Dothistroma septosporum and Dothistroma pini. For. Pathol. 2018;48:e12440. doi: 10.1111/efp.12440. DOI

Bihon W., Burgess T., Slippers B., Wingfield M.J., Wingfield B. Distribution of Diplodia pinea and its genotypic diversity within asymptomatic Pinus patula trees. Australas. Plant Pathol. 2011;40:540–548. doi: 10.1007/s13313-011-0060-z. DOI

Bihon W., Burgess T., Slippers B., Wingfield M.J., Wingfield B.D. High levels of genetic diversity and cryptic recombination is widespread in introduced Diplodia pinea populations. Australas. Plant Pathol. 2012;41:41–46. doi: 10.1007/s13313-011-0086-2. DOI

Bihon W., Wingfield M.J., Slippers B., Duong T., Wingfield B. MAT gene idiomorphs suggest a heterothallic sexual cycle in a predominantly asexual and important pine pathogen. Fungal Genet. Biol. 2014;62:55–61. doi: 10.1016/j.fgb.2013.10.013. PubMed DOI

McDonald B.A., Linde C. Pathogen populationgenetics, Evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 2002;40:349–379. doi: 10.1146/annurev.phyto.40.120501.101443. PubMed DOI

De Wet J., Wingfield M.J., Coutinho T., Wingfield B. Characterization of Sphaeropsis sapinea Isolates from South Africa, Mexico, and Indonesia. Plant Dis. 2000;84:151–156. doi: 10.1094/PDIS.2000.84.2.151. PubMed DOI

Smith D.R., Stanosz G.R. Confirmation of two distinct populations of Sphaeropsis sapinea in the north central United States using RAPDs. Phytopathology. 1995;85:699–704. doi: 10.1094/Phyto-85-699. DOI

Hausner G., Reid J., Hopkin A., Davis C. Variation in culture and rDNA among isolates of Sphaeropsis sapinea from Ontario and Manitoba. Can. J. Plant Pathol. 1999;21:256–264. doi: 10.1080/07060669909501188. DOI

Burgess T., Wingfield B.D., Wingfield M.J. Comparison of genotypic diversity in native and introduced populations of Sphaeropsis sapinea isolated from Pinus radiata. Mycol. Res. 2001;105:1331–1339. doi: 10.1017/S0953756201005056. DOI

Manzanos T., Aragonés A., Iturritxa E. Genotypic diversity and distribution of Sphaeropsis sapinea within Pinus radiata trees from northern Spain. For. Pathol. 2019;49:e12550. doi: 10.1111/efp.12550. DOI

Smith H., Wingfield M.J., De Wet J., Coutinho T. Genotypic Diversity of Sphaeropsis sapinea from South Africa and Northern Sumatra. Plant Dis. 2000;84:139–142. doi: 10.1094/PDIS.2000.84.2.139. PubMed DOI

Bihon W., Slippers B., Burgess T., Wingfield M.J., Wingfield B. Diverse sources of infection and cryptic recombination revealed in South African Diplodia pinea populations. Fungal Biol. 2012;116:112–120. doi: 10.1016/j.funbio.2011.10.006. PubMed DOI

Burgess T., Wingfield M.J., Wingfield B. Simple Sequence Repeat Markers Distinguish among Morphotypes of Sphaeropsis sapinea. Appl. Environ. Microbiol. 2001;67:354–362. doi: 10.1128/AEM.67.1.354-362.2001. PubMed DOI PMC

Burgess T.I., Wingfield M.J., Wingfield B.D. Global distribution of Diplodia pinea genotypes revealed using simple sequence repeat (SSR) markers. Australas. Plant Pathol. 2004;33:513–519. doi: 10.1071/AP04067. DOI

Zlatkovic M., Wingfield M.J., Jami F., Slippers B. Genetic uniformity characterizes the invasive spread of Neofusicoccum parvum and Diplodia sapinea in the Western Balkans. For. Pathol. 2019;49:e12491. doi: 10.1111/efp.12491. DOI

Caudullo G., Welk E., San-Miguel-Ayanz J. Chorological data for the main European woody species. Data Brief. 2020;12:662–666. doi: 10.1016/j.dib.2017.05.007. PubMed DOI PMC

Mullett M., Barnes I. 22p [(accessed on 30 July 2021)];Dothistroma Isolation and Molecular Identification Methods. 2012 Available online: https://www.forestresearch.gov.uk/documents/305/DIAROD_052012_Isolation_and_indentification_97fNCCI.pdf.

Keriö S., Terhonen E., LeBoldus J.M. Safe DNA-extraction Protocol Suitable for Studying Tree-fungus Interactions. Bio-Protocol. 2020;10:e3634. doi: 10.21769/BioProtoc.3634. PubMed DOI PMC

Gardes M., Bruns T.D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993;2:113–118. doi: 10.1111/j.1365-294X.1993.tb00005.x. PubMed DOI

White T.J., Bruns T.D., Lee S., Taylor J. PCR Protocols: A Guide to Methods and Applications: Part Three—Genetics and Evolution. Academic Press; London, UK: 1990. pp. 315–322. Chapter 38, Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics.

Drenkhan R., Adamson K., Jürimaa K., Hanso M. Dothistroma septosporumon firs (Abiesspp.) in the northern Baltics. For. Pathol. 2014;44:250–254. doi: 10.1111/efp.12110. DOI

Hall T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Volume 41. Information Retrieval Ltd.; London, UK: 1999. pp. 95–98. (Nucleic Acids Symposium Series).

Peakall R., Smouse P.E. genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 2006;6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x. PubMed DOI PMC

Zhan J., Pettway R., McDonald B. The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genet. Biol. 2003;38:286–297. doi: 10.1016/S1087-1845(02)00538-8. PubMed DOI

Szpiech Z.A., Jakobsson M., Rosenberg N. ADZE: A rarefaction approach for counting alleles private to combinations of populations. Bioinformatics. 2008;24:2498–2504. doi: 10.1093/bioinformatics/btn478. PubMed DOI PMC

Kivelä M., Arnaud-Haond S., Saramäki J. Eden etworks: A user-friendly software to build and analyse networks in biogeography, ecology and population genetics. Mol. Ecol. Res. 2015;15:117–122. doi: 10.1111/1755-0998.12290. PubMed DOI

Nei M. Genetic Distance between Populations. Am. Nat. 1972;106:283–292. doi: 10.1086/282771. DOI

Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;89:583–590. doi: 10.1093/genetics/89.3.583. PubMed DOI PMC

Falush D., Stephens M., Pritchard J.K. Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. Genetics. 2003;164:1567–1587. doi: 10.1093/genetics/164.4.1567. PubMed DOI PMC

Pritchard J.K., Stephens M., Donnelly P. Inference of Population Structure Using Multilocus Genotype Data. Genetics. 2000;155:945–959. doi: 10.1093/genetics/155.2.945. PubMed DOI PMC

Pritchard J.K., Wen W., Falush D. Documentation for STRUCTURE Software: Version 2.3. University of Chicago, Department of Human Genetics; Chicago, IL, USA: 2010.

Kopelman N.M., Mayzel J., Jakobsson M., Rosenberg N., Mayrose I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015;15:1179–1191. doi: 10.1111/1755-0998.12387. PubMed DOI PMC

Tedersoo L., Bahram M., Põlme S., Kõljalg U., Yorou N.S., Wijesundera R., Ruiz L.V., Vasco-Palacios A.M., Thu P.Q., Suija A., et al. Global diversity and geography of soil fungi. Science. 2014;346:1256688. doi: 10.1126/science.1256688. PubMed DOI

Adamson K., Mullett M., Solheim H., Barnes I., Müller M.M., Hantula J., Vuorinen M., Kacergius A., Markovskaja S., Musolin D.L., et al. Looking for relationships between the populations of Dothistroma septosporum in northern Europe and Asia. Fungal Genet. Biol. 2018;110:15–25. doi: 10.1016/j.fgb.2017.12.001. PubMed DOI

Drenkhan R., Hantula J., Vuorinen M., Jankovský L., Müller M.M. Genetic diversity of Dothistroma septosporum in Estonia, Finland and Czech Republic. Eur. J. Plant Pathol. 2013;136:71–85. doi: 10.1007/s10658-012-0139-6. DOI

Drenkhan R., Hanso M. Recent invasion of foliage fungi of pines (Pinus spp.) to the Northern Baltics. For. Stud. 2009;51:49–64. doi: 10.2478/v10132-011-0077-7. DOI

Sutton B.C. The Coelomycetes. Fungi Imperfecti with Pycnidia, Acervuli and Stromata; Commonwealth Mycological Institute. [(accessed on 16 June 2021)];1980 Available online: https://www.cabdirect.org/?target=%2fcabdirect%2fabstract%2f19801366283.

McDonald B., McDermott J.M. Population Genetics of Plant Pathogenic Fungi. Bioscience. 1993;43:311–319. doi: 10.2307/1312063. DOI

Lundquist J.E. A History of Five Forest Diseases in South Africa. South Afr. For. J. 1987;140:51–59. doi: 10.1080/00382167.1987.9630070. DOI

Terhonen E.-L., Babalola J., Kasanen R., Jalkanen R., Blumenstein K. Sphaeropsis sapinea found as symptomless endophyte in Finland. Silva Fenn. 2021;55 doi: 10.14214/sf.10420. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...