Diversity, migration routes, and worldwide population genetic structure of Lecanosticta acicola, the causal agent of brown spot needle blight
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35957598
PubMed Central
PMC9562577
DOI
10.1111/mpp.13257
Knihovny.cz E-zdroje
- Klíčová slova
- Mycosphaerella dearnessii, Pinus, forest pathology, introduction pathways, invasive pathogen, mating type, microsatellites,
- MeSH
- Ascomycota * genetika MeSH
- borovice * genetika MeSH
- genetická variace MeSH
- mikrosatelitní repetice genetika MeSH
- populační genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Lecanosticta acicola is a pine needle pathogen causing brown spot needle blight that results in premature needle shedding with considerable damage described in North America, Europe, and Asia. Microsatellite and mating type markers were used to study the population genetics, migration history, and reproduction mode of the pathogen, based on a collection of 650 isolates from 27 countries and 26 hosts across the range of L. acicola. The presence of L. acicola in Georgia was confirmed in this study. Migration analyses indicate there have been several introduction events from North America into Europe. However, some of the source populations still appear to remain unknown. The populations in Croatia and western Asia appear to originate from genetically similar populations in North America. Intercontinental movement of the pathogen was reflected in an identical haplotype occurring on two continents, in North America (Canada) and Europe (Germany). Several shared haplotypes between European populations further suggests more local pathogen movement between countries. Moreover, migration analyses indicate that the populations in northern Europe originate from more established populations in central Europe. Overall, the highest genetic diversity was observed in south-eastern USA. In Europe, the highest diversity was observed in France, where the presence of both known pathogen lineages was recorded. Less than half of the observed populations contained mating types in equal proportions. Although there is evidence of some sexual reproduction taking place, the pathogen spreads predominantly asexually and through anthropogenic activity.
Austrian Research Centre for Forests Department of Forest Protection Vienna Austria
Faculty of Forestry Çankırı Karatekin University Çankırı Turkey
Forest Protection and Forest Health Section Federal Office for the Environment FOEN Bern Switzerland
GREEN IT Bioresources for Sustainability ITQB NOVA Oeiras Portugal
Institute of Botany Nature Research Centre Vilnius Lithuania
Institute of Forestry and Engineering Estonian University of Life Sciences Tartu Estonia
Institute of Forestry and Park Gardening Ukrainian National Forestry University Lviv Ukraine
Instituto Nacional de Investigação Agrária e Veterinária IP Oeiras Portugal
Kyushu Research Center Forestry and Forest Products Research Institute Kumamoto Japan
National Forestry Agency of Georgia Tbilisi Georgia
Slovenian Forestry Institute Ljubljana Slovenia
Southern Swedish Forest Research Centre Swedish University of Agricultural Sciences Alnarp Sweden
Swiss Federal Research Institute WSL Birmensdorf Switzerland
Zobrazit více v PubMed
Adamčíková, K. , Jánošíková, Z. , Adamčík, S. , Ostrovský, R. , Pastirčáková, K. , Kobza, M. et al. (2021) Host range, genetic variability, and mating types of Lecanosticta acicola in Slovakia. Scandinavian Journal of Forest Research, 36, 325–332.
Adamson, K. , Drenkhan, R. & Hanso, M. (2015) Invasive brown spot needle blight caused by Lecanosticta acicola in Estonia. Scandinavian Journal of Forest Research, 30, 587–593.
Adamson, K. , Laas, M. , Drenkhan, R. & Hanso, M. (2018a) Quarantine pathogen Lecanosticta acicola, observed at its jump from an exotic host to the native scots pine in Estonia. Baltic Forestry, 24, 36–41.
Adamson, K. , Mullett, M.S. , Solheim, H. , Barnes, I. , Müller, M.M. , Hantula, J. et al. (2018b) Looking for relationships between the populations of Dothistroma septosporum in northern Europe and Asia. Fungal Genetics and Biology, 110, 15–25. PubMed
Adamson, K. , Laas, M. , Blumenstein, K. , Busskamp, J. , Langer, G.J. , Klavina, D. et al. (2021) Highly clonal structure and abundance of one haplotype characterize the Diplodia sapinea populations in Europe and Western Asia. Journal of Fungi, 7, 634. PubMed PMC
Barnes, I. , Wingfield, M.J. , Carbone, I. , Kirisits, T. & Wingfield, B.D. (2014) Population structure and diversity of an invasive pine needle pathogen reflects anthropogenic activity. Ecology and Evolution, 4, 3642–3661. PubMed PMC
Barnes, I. , van der Nest, A. , Mullett, M.S. , Crous, P.W. , Drenkhan, R. , Musolin, D.L. et al. (2016) Neotypification of Dothistroma septosporum and epitypification of D. pini, causal agents of Dothistroma needle blight of pine. Forest Pathology, 46, 388–407.
Carbone, I. & Kohn, L.M. (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91, 553–556.
Cech, T.L. & Krehan, H. (2008) Lecanosticta‐Krankheit der Kiefer erstmals im Wald nachgewiesen. Forstschutz Aktuell, 45, 4–5.
Cleary, M. , Laas, M. , Oskay, F. & Drenkhan, R. (2019) First report of Lecanosticta acicola on non‐native Pinus mugo in southern Sweden. Forest Pathology, 49, e12507.
Cornuet, J.‐M. , Ravigné, V. & Estoup, A. (2010) Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinformatics, 11, 401. PubMed PMC
Cornuet, J. , Pudlo, P. , Veyssier, J. , Dehne‐Garcia, A. , Gautier, M. , Leblois, R. et al. (2014) DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics, 30, 1187–1189. PubMed
de Thümen, F. (1878) Fungorum americanorum triginta species novae. Flora, 61, 177–184.
Drenkhan, R. & Hanso, M. (2009) Recent invasion of foliage fungi of pines (Pinus spp.) to the northern Baltics. Forestry Studies, 51, 49–64.
Drenkhan, R. , Hantula, J. , Vuorinen, M. , Jankovský, L. & Müller, M.M. (2013) Genetic diversity of Dothistroma septosporum in Estonia, Finland and Czech Republic. European Journal of Plant Pathology, 136, 71–85.
Drenkhan, R. , Adamson, K. , Jürimaa, K. & Hanso, M. (2014a) Dothistroma septosporum on firs (Abies spp.) in the northern Baltics. Forest Pathology, 44, 250–254.
Drenkhan, R. , Sander, H. & Hanso, M. (2014b) Introduction of Mandshurian ash (Fraxinus mandshurica Rupr.) to Estonia: is it related to the current epidemic on European ash (F. excelsior L.)? European Journal of Forest Research, 133, 769–781.
Drenkhan, R. , Ganley, B. , Martin‐Garcia, J. , Vahalík, P. , Adamson, K. , Adamčíková, K. et al. (2020) Global geographic distribution and host range of Fusarium circinatum, the causal agent of pine pitch canker. Forests, 11, 724.
EPPO . (2012) Mycosphaerella dearnessii detected again in Lithuania. EPPO reporting service no. 11. Num. Article: 2012/240. Available at: https://gd.eppo.int/reporting/article‐2446 [Accessed 7 September 2021].
EPPO . (2015) Outbreak of Lecanosticta acicola in Tyrol, Austria. EPPO reporting service no. 10. Num. Article: 2015/192. Available at: https://gd.eppo.int/reporting/article‐5139 [Accessed 7 September 2021].
EPPO . (2018) New data on quarantine pests and pests of the EPPO alert list. EPPO reporting service no. 11. Num. Article: 2018/212. Available at: https://gd.eppo.int/reporting/article‐6406 [Accessed 7 September 2021].
EPPO . (2022) Lecanosticta acicola (SCIRAC). EPPO Global Database. Available at: https://gd.eppo.int/taxon/SCIRAC [Accessed 7 September 2021]
European Commission, Directorate‐General for Health and Food Safety . (2019) Commission Implementing Regulation (EU) 2019/2072 of 28 November 2019 establishing uniform conditions for the implementation of Regulation (EU) 2016/2031 of the European Parliament and the Council, as regards protective measures against pests of plants, and repealing Commission Regulation (EC) No 690/2008 and amending Commission Implementing Regulation (EU) 2018/2019. Official Journal of the European Union, 319, 1 Available at: https://eur‐lex.europa.eu/legal‐content/EN/TXT/?uri=celex%3A32019R2072 [Accessed 7 September 2021]
Evanno, G. , Regnault, S. & Goudet, J. (2005) Detecting the number of clusters of individuals using the software structure. A simulation study. Molecular Ecology, 14, 2611–2620. PubMed
Evans, H.C. (1984) The genus Mycosphaerella and its anamorphs Cercoseptoria, Dothistroma and Lecanosticta on pines. Mycological Papers, 153, 1–103.
Falush, D. , Stephens, M. & Pritchard, J.K. (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567–1587. PubMed PMC
Fisher, M.C. , Henk, D.A. , Briggs, C.J. , Brownstein, J.S. , Madoff, L.C. , McCraw, S.L. et al. (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature, 484, 186–194. PubMed PMC
Gardes, M. & Bruns, T.D. (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118. PubMed
Georgieva, M. (2020) Spread of the invasive pathogen Lecanosticta acicola on species of Pinus in Bulgaria. Silva Balcanica, 21, 83–89.
Ghelardini, L. , Luchi, N. , Pecori, F. , Pepori, A.L. , Danti, R. , Rocca, G.D. et al. (2017) Ecology of invasive forest pathogens. Biological Invasions, 19, 3183–3200.
Golovchenko, L.A. , Dishuk, N.G. , Panteleev, S.V. & Baranov, Y.U. (2020) [A new invasive species, Mycosphaerella dearnessii, in Belarus]. Proceedings of the National Academy of Sciences of Belarus. Biological Series, 65, 98–105 [In Russian].
Hanso, M. & Drenkhan, R. (2009) Diplodia pinea is a new pathogen on Austrian pine (Pinus nigra) in Estonia. Plant Pathology, 58, 797.
Hanso, M. & Drenkhan, R. (2013) Simple visualization of climate change for improving the public perception in forest pathology. Forestry Studies, 58, 37–45.
Huang, Z.Y. , Smalley, E.B. & Guries, R.P. (1995) Differentiation of Mycosphaerella dearnessii by cultural characters and RAPD analysis. Phytopathology, 85, 522–527.
Ioos, R. , Fabre, B. , Saurat, C. , Fourrier, C. , Frey, P. & Marcais, B. (2010) Development, comparison, and validation of real‐time and conventional PCR tools for the detection of the fungal pathogens causing brown spot and red band needle blights of pine. Phytopathology, 100, 105–114. PubMed
Jankovský, L. , Palovčíková, D. , Dvořák, M. & Tomšovský, M. (2009) Records of brown spot needle blight related to Lecanosticta acicola in the Czech Republic. Plant Protection Science, 45, 16–18.
Janoušek, J. , Krumböck, S. , Kirisits, T. , Bradshaw, R.E. , Barnes, I. , Jankovský, L. et al. (2014) Development of microsatellite and mating type markers for the pine needle pathogen Lecanosticta acicola . Australasian Plant Pathology, 43, 161–165.
Janoušek, J. , Wingfield, M.J. , Monsivais, J.G.M. , Jankovský, L. , Stauffer, C. , Konečný, A. et al. (2016) Genetic analyses suggest separate introductions of the pine pathogen Lecanosticta acicola into Europe. Phytopathology, 106, 1413–1425. PubMed
Jürisoo, L. , Selikhovkin, A.V. , Padari, A. , Shevchenko, S.V. , Shcherbakova, L.N. , Popovichev, B.G. et al. (2021) The extensive damage to elms by Dutch elm disease agents and their hybrids in northwestern Russia. Urban Forestry and Urban Greening, 63, 127214.
Kais, A.G. (1971) Dispersal of Scirrhia acicola spores in southern Mississippi. Plant Disease Reporter, 55, 309–311.
Kais, A.G. (1972) Variation between southern and northern isolates of Scirrhia acicola . Phytopathology, 62, 768.
Kamvar, Z.N. , Tabima, J.F. & Grünwald, N.J. (2014) Poppr: a R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2, e281. PubMed PMC
Kaur, A. & Hermann, P. (2021) Pruunvöötaud Lecanosticta acicola (Thüm.) Syd. Tallinna Botaanikaaias [Lecanosticta acicola (Thüm.) Syd. in Tallinn Botanic Garden]. In: Metspalu, L. (Ed.) Eesti Taimekaitse 100. Tartu: Eesti Maaülikool, pp. 28–31.
Kizikelashvili, O.G. (1987) [The main fungal diseases of Pinus pityusa and measures for their control]. Lesnoe Khozyaĭstvo, 12, 55–57.
Konečný, A. , Estoup, A. , Duplantier, J.M. , Bryja, J. , Bâ, K. , Galan, M. et al. (2013) Invasion genetics of the introduced black rat (Rattus rattus) in Senegal, West Africa. Molecular Ecology, 22, 286–300. PubMed
Kopelman, N.M. , Mayzel, J. , Jakobsson, M. , Rosenberg, N.A. & Mayrose, I. (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15, 1179–1191. PubMed PMC
Kumar, S. , Stecher, G. , Li, M. , Knyaz, C. & Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. PubMed PMC
Laas, M. , Adamson, K. & Drenkhan, R. (2019) A look into the genetic diversity of Lecanosticta acicola in northern Europe. Fungal Biology, 123, 773–782. PubMed
Langella, O. (2002) Populations 1.2.31. Population genetic software. CNRS, France. Available at: http://bioinformatics.org/~tryphon/populations/ [Accessed 7 September 2021].
Markovskaja, S. , Kacergius, A. & Treigiene, A. (2011) Occurrence of new alien pathogenic fungus Mycosphaerella dearnessii in Lithuania. Botanica Lithuanica, 17, 29–37.
Matsiakh, I. , Doğmus‐Lehtijarvi, T.H. , Kramarets, V. , Aday Kaya, A.G. , Oskay, F. , Drenkhan, R. et al. (2018) Dothistroma spp. in western Ukraine and Georgia. Forest Pathology, 48, e12409.
McDonald, B.A. & Linde, C. (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379. PubMed
McDonald, B.A. & McDermott, J.M. (1993) Population genetics of plant pathogenic fungi. Bioscience, 43, 311–319.
Mesanza, N. , Hernández, M. , Raposo, R. & Iturritxa, E. (2021) First report of Mycosphaerella dearnessii Rostrup, teleomorph of Lecanosticta acicola (Thüm.) Syd., in Europe. Plant Health Progress, 22, 565–566.
Milatović, I. (1976) Needle cast of pines caused by fungi Schirrhia pini Funk et Parker and Schirrhia acicola (Dearn.) Siggers in Yugoslavia. Poljoprivredna Znanstvena Smotra. Agriculturae Conspectus Scientificus, 39, 511–513.
Molofsky, J. , Keller, S.R. , Lavergne, S. , Kaproth, M.A. & Eppinga, M.B. (2014) Human‐aided admixture may fuel ecosystem transformation during biological invasions: theoretical and experimental evidence. Ecology and Evolution, 4, 899–910. PubMed PMC
Mullett, M.S. & Barnes, I. (2012) Dothistroma isolation and molecular identification methods. 22 pp. Available at: https://www.forestresearch.gov.uk/documents/305/DIAROD_052012_Isolation_and_indentification_97fNCCI.pdf [Accessed 7 September 2021].
Mullett, M.S. , Adamson, K. , Bragança, H. , Bulgakov, T. , Georgieva, M. , Henriques, J. et al. (2018) New country and regional records of the pine needle blight pathogens Lecanosticta acicola, Dothistroma septosporum and Dothistroma pini . Forest Pathology, 48, e12440.
Nei, M. (1972) Genetic distance between populations. The American Naturalist, 106, 283–292.
Nei, M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590. PubMed PMC
Nei, M. , Tajima, F. & Tateno, Y. (1983) Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution, 19, 153–170. PubMed
van der Nest, A. , Wingfield, M.J. , Janoušek, J. & Barnes, I. (2019a) Lecanosticta acicola: a growing threat to expanding global pine forests and plantations. Molecular Plant Pathology, 20, 1327–1364. PubMed PMC
van der Nest, A. , Wingfield, M.J. , Ortiz, P.C. & Barnes, I. (2019b) Biodiversity of Lecanosticta pine needle blight pathogens suggests a Mesoamerican Centre of origin. IMA Fungus, 10, 2. PubMed PMC
O'Donnell, K. , Kistler, H.C. , Cigelnik, E. & Ploetz, R.C. (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 95, 2044–2049. PubMed PMC
Ortíz de Urbina, E. , Mesanza, N. , Aragonés, A. , Raposo, R. , Elvira‐Recuenco, M. , Boqué, R. et al. (2017) Emerging needle blight diseases in Atlantic Pinus ecosystems of Spain. Forests, 8, 18.
Oskay, F. , Laas, M. , Mullett, M.S. , Lehtijärvi, A. , Doğmuş‐Lehtijärvi, H.T. , Woodward, S. et al. (2020) First report of Lecanosticta acicola on pine and non‐pine hosts in Turkey. Forest Pathology, 50, e12654.
Peakall, R. & Smouse, P.E. (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research ‐ an update. Bioinformatics, 28, 2537–2539. PubMed PMC
Phelps, W.R. , Kais, A.G. & Nicholls, T.H. (1978) Brown‐spot needle blight of pines. Forest Insect & Disease Leaflet 44. Broomall, PA, USA: U.S. Department of Agriculture, Forest Service.
Pritchard, J.K. , Stephens, M. & Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945–959. PubMed PMC
Pritchard, J.K. , Wen, W. & Falush, D. (2010) Documentation for STRUCTURE software: version 2.3. Chicago, IL, USA: University of Chicago, Department of Human Genetics.
Raitelaitytė, K. , Markovskaja, S. , Paulauskas, A. , Hsiang, T. & Oszako, T. (2020) First molecular detection of Lecanosticta acicola from Poland on Pinus mugo . Forest Pathology, 50, e12589.
Sadiković, D. , Piškur, B. , Barnes, I. , Hauptman, T. , Diminić, D. , Wingfield, M.J. et al. (2019) Genetic diversity of the pine pathogen Lecanosticta acicola in Slovenia and Croatia. Plant Pathology, 68, 1120–1131.
Saitou, N. & Nei, M. (1987) The neighbor‐joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425. PubMed
Siggers, P.V. (1939) Phytopathological note. Phytopathology, 29, 1076–1077.
Siggers, P.V. (1944) The brown spot needle blight of pine seedlings. U.S. Department of Agriculture. Technical Bulletin, 870, 1–36.
Sinclair, W.A. & Lyon, H.H. (2005) Diseases of trees and shrubs, 2nd edition. Ithaca: Cornell University Press, p. 680.
Skilling, D.D. & Nicholls, T.H. (1974) Brown spot needle disease ‐ biology and control in Scotch pine plantations. US Department of Agriculture. Forest Service Research Paper, NC‐109, 1–19.
Stamenova, S. , Ivanova, I. & Georgieva, M. (2018) [A new established quarantine pest in a result of official observations during the monitoring of quarantine pests on forest species]. Plant Protection, 5, 1–4.
Szpiech, Z.A. , Jakobsson, M. & Rosenberg, N.A. (2008) ADZE: a rarefaction approach for counting alleles private to combinations on populations. Bioinformatics, 24, 2498–2504. PubMed PMC
Takezaki, N. , Nei, M. & Tamura, K. (2010) POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with windows Interface. Molecular Biology and Evolution, 27, 747–752. PubMed PMC
Theron, C.A. , Marincowitz, S. , Rodas, C.A. , Wingfield, M.J. & Barnes, I. (2022) Lecanosticta pharomachri and its newly discovered sexual state causing a serious needle disease of Pinus spp. in Colombia. Plant Disease, 106, 1935–1943. 10.1094/PDIS-08-21-1759-RE PubMed DOI
White, T.J. , Bruns, T.D. , Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A. , Gelfand, D.H. , Sninsky, J.J. & White, T.J. (Eds.) PCR protocols: a guide to methods and applications. San Diego: Academic Press, pp. 315–322.
Zhan, J. , Pettway, R.E. & McDonald, B.A. (2003) The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genetics and Biology, 38, 286–297. PubMed