Scavenging Properties of Plant-Derived Natural Biomolecule Para-Coumaric Acid in the Prevention of Oxidative Stress-Induced Diseases

. 2021 Jul 28 ; 10 (8) : . [epub] 20210728

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34439453

Para-coumaric acid (p-CA) is a plant derived secondary metabolite belonging to the phenolic compounds. It is widely distributed in the plant kingdom and found mainly in fruits, vegetables, and cereals. Various in vivo and in vitro studies have revealed its scavenging and antioxidative properties in the reduction of oxidative stress and inflammatory reactions. This evidence-based review focuses on the protective role of p-CA including its therapeutic potential. p-CA and its conjugates possesses various bioactivities such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, and anti-melanogenic properties. Due to its potent free radical scavenging activity, it can mitigate the ill effects of various diseases including arthritis, neurological disorders, and cardio-vascular diseases. Recent studies have revealed that p-CA can ameliorate the harmful effects associated with oxidative stress in the reproductive system, also by inhibiting enzymes linked with erectile function.

Zobrazit více v PubMed

Jain C., Khatana S., Vijayvergia R. Bioactivity of secondary metabolites of various plants: A review. Int. J. Pharm. Sci. Res. 2019;10:494–504.

Hussein R.A., El-Anssary A.A. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. Herb. Med. 2019;1:11–30. doi: 10.5772/intechopen.76139. DOI

Pei K., Ou J., Huang J., Ou S. p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016;96:2952–2962. doi: 10.1002/jsfa.7578. PubMed DOI

El-Seedi H.R., El-Said A.M.A., Khalifa S.A.M., Göransson U., Bohlin L., Borg-Karlson A.-K., Verpoorte R. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J. Agric. Food Chem. 2012;60:10877–10895. doi: 10.1021/jf301807g. PubMed DOI

Herrmann K.M., Weaver L.M. The shikimate pathway. Annu. Rev. Plant. Biol. 1999;50:473–503. doi: 10.1146/annurev.arplant.50.1.473. PubMed DOI

Kort R., Vonk H., Xu X., Hoff W.D., Crielaard W., Hellingwerf K.J. Evidence for trans-cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow protein. FEBS Lett. 1996;382:73–78. doi: 10.1016/0014-5793(96)00149-4. PubMed DOI

Tanase C., Coșarcă S., Muntean D.L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules. 2019;24:1182. doi: 10.3390/molecules24061182. PubMed DOI PMC

Alamed J., Chaiyasit W., McClements D., Decker E.A. Relationships between free radical scavenging and antioxidant activity in foods. J. Agric. Food Chem. 2009;57:2969–2976. doi: 10.1021/jf803436c. PubMed DOI

Barros L., Dueñas M., Ferreira I.C., Baptista P., Santos-Buelga C. Phenolic acids determination by HPLC–DAD–ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem. Toxicol. 2009;47:1076–1079. doi: 10.1016/j.fct.2009.01.039. PubMed DOI

Krishna N.A.V., Nadeem M.D., Saradhi M.P., Mahendran B., Bharathi S. Cumulative activity of the p-coumaric acid and syringaldehyde for antimicrobial activity of different microbial strains. Euro J. Exp. Biol. 2014;4:40–43.

Hole A.S., Grimmer S., Jensen M.R., Sahlstrøm S. Synergistic and suppressive effects of dietary phenolic acids and other phytochemicals from cereal extracts on nuclear factor kappa B activity. Food Chem. 2012;133:969–977. doi: 10.1016/j.foodchem.2012.02.017. DOI

Sun R.C., Sun X.F., Zhang S.H. Quantitative determination of hydroxycinnamic acids in wheat, rice, rye, and barley straws, maizestems, oil palm frond fiber, and fast-growing poplar wood. J. Agric. Food Chem. 2001;49:5122–5129. doi: 10.1021/jf010500r. PubMed DOI

Xu F., Sun R.C., Sun J.X., Liu C.F., He H.B., Fan J.S. Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse. Anal. Chim. Acta. 2005;552:207–217. doi: 10.1016/j.aca.2005.07.037. DOI

Navaneethan D., Rasool M.K. An experimental study to investigate the impact of p-coumaric acid, a common dietary polyphenol, on cadmium chloride-induced renal toxicity. Food Funct. 2014;5:2438–2445. doi: 10.1039/C4FO00346B. PubMed DOI

Zang L.Y., Cosma G., Gardner H., Shi X., Castranova V., Vallyathan V. Effect of antioxidant protection by p-coumaric acid on low-density lipoproteincholesterol oxidation. Am. J. Physiol. Cell Physiol. 2000;279:C954–C960. doi: 10.1152/ajpcell.2000.279.4.C954. PubMed DOI

Luceri C., Giannini L., Lodovici M., Antonucci E., Abbate R., Masini E., Dolara P. p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. Br. J. Nutr. 2007;97:458–463. doi: 10.1017/S0007114507657882. PubMed DOI

Pakrashi A., Pakrasi P. Antifertility efficacy of the plant Aristolochia indica Linn on mouse. Contraception. 1979;20:49–54. doi: 10.1016/0010-7824(79)90043-X. PubMed DOI

Chowdhury M., Kabir S.N., Pal A.K., Pakrashi A. Modulation of luteinizing hormone receptors: Effect of an inhibitor of prolactin secretion, p-coumaric acid. J. Endocrinol. 1983;98:307–311. doi: 10.1677/joe.0.0980307. PubMed DOI

Pakrashi A., Kabir S., Ray H. 3-(4-Hydroxy phenyl)-2-propenoic acid—A reproductive inhibitor in male rat. Contraception. 1981;23:677–686. doi: 10.1016/S0010-7824(81)80010-8. PubMed DOI

Nishi K., Ramakrishnan S., Gunasekaran V.P., Parkash K., Ramakrishnan A., Vijayakumar N., Ganeshan M. Protective effects of p-coumaric acid on ethanol induced male reproductive toxicity. Life Sci. 2018;209:1–8. doi: 10.1016/j.lfs.2018.07.045. PubMed DOI

Oyeleye S.I., Adefegha S.A., Dada F.A., Okeke B.M., Oboh G. Effect of p-coumaric acid on the erectogenic enzyme activities and non-protein thiol level in thepenile tissue of normal and doxorubicin-induced oxidative stress male rat. Andrologia. 2019;51:e13281. doi: 10.1111/and.13281. PubMed DOI

Kesari K.K., Dhasmana A., Shandilya S., Prabhakar N., Shaukat A., Dou J., Rosenholm J.M., Vuorinen T., Ruokolainen J. Plant-derived natural biomolecule picein attenuates menadione induced oxidative stress on neuro blastoma cell mitochondria. Antioxidants. 2020;9:552. doi: 10.3390/antiox9060552. PubMed DOI PMC

Lou Z., Wang H., Rao S., Sun J., Ma C., Li J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control. 2012;25:550–554. doi: 10.1016/j.foodcont.2011.11.022. DOI

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2:1231. doi: 10.3390/nu2121231. PubMed DOI PMC

Rodrigo R., Miranda A., Vergara L. Modulation of endogenous antioxidant system by wine polyphenols in human disease. Clin. Chim. Acta. 2011;412:410–424. doi: 10.1016/j.cca.2010.11.034. PubMed DOI

Teixeira J.C.S., Gaspar A., Garrido E.M., Garrido J., Borges F. Hydroxycinnamic acid antioxidants: An electrochemical overview. BioMed Res. Int. 2013;2013:251754. doi: 10.1155/2013/251754. PubMed DOI PMC

Ferguson L.R., Zhu S.-T., Harris P.J. Antioxidant and antigenotoxic effects of plant cell wall hydroxycinnamic acids in cultured HT-29 cells. Mol. Nutr. Food Res. 2005;49:585–593. doi: 10.1002/mnfr.200500014. PubMed DOI

Gani A., Wani S.M., Masoodi F.A., Hameed G. Whole-grain cereal bioactive compounds and their health benefits: A review. J. Food Process. Technol. 2012;3:146–156. doi: 10.4172/2157-7110.1000146. DOI

Roy A.J., Prince P.S.M. Preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats. Food Chem. Toxicol. 2013;60:348–354. doi: 10.1016/j.fct.2013.04.052. PubMed DOI

Lee S.J., Mun G.I., An S.M., Boo Y.C. Evidence for the association of peroxidases with the antioxidant effect of p-coumaric acid in endothelial cells exposed to high glucose plus arachidonic acid. BMB Rep. 2009;42:561–567. doi: 10.5483/BMBRep.2009.42.9.561. PubMed DOI

Seok J.K., Kwak J.Y., Seo H.H., Suh H.J., Boo Y.C. Effects of Bambusae caulis in Taeniam extract on the UVB-induced cell death, oxidative stress and matrix metalloproteinase 1 expression in keratinocytes. J. Soc. Cosmet. Sci. Korea. 2015;41:9–20. doi: 10.15230/scsk.2015.41.1.9. DOI

Peng J., Zheng T.-T., Liang Y., Duan L.-F., Zhang Y.-D., Wang L.-J., He G.-M., Xiao H.-T. p-Coumaric acid protects human lens epithelial cells against oxidative stress-induced apoptosis by MAPK signaling. Oxidative Med. Cell. Longev. 2018;2018:8549052. doi: 10.1155/2018/8549052. PubMed DOI PMC

Guglielmi F., Luceri C., Giovannelli L., Dolara P., Lodovici M. Effect of 4-coumaric and 3,4-dihydroxybenzoic acid on oxidative DNA damage in rat colonic mucosa. Br. J. Nutr. 2003;89:581–587. doi: 10.1079/BJN2003849. PubMed DOI

Garrait G., Jarrige J.F., Blanquet S., Beyssac E., Cardot J.M., Alric M. Gastrointestinal absorption and urinary excretion of trans-cinnamic and p-coumaric acids in rats. J. Agric. Food Chem. 2006;54:2944–2950. doi: 10.1021/jf053169a. PubMed DOI

Žilić S., Šukalović V.H.-T., Dodig D., Maksimović V., Maksimović M., Basić Z. Antioxidant activity of small grain cereals caused by phenolics and lipid soluble antioxidants. J. Cereal Sci. 2011;54:417–424. doi: 10.1016/j.jcs.2011.08.006. DOI

Shen Y., Song X., Li L., Sun J., Jaiswal Y., Huang J., Guan Y. Protective effects of p-coumaric acid against oxidant and hy-perlipidemia-an in vitro and in vivo evaluation. Biomed. Pharmacother. 2019;111:579–587. doi: 10.1016/j.biopha.2018.12.074. PubMed DOI

Sakamula R., Thong-asa W. Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries. Metab. Brain Dis. 2018;33:765–773. doi: 10.1007/s11011-018-0185-7. PubMed DOI

Akdemir F.N.E., Albayrak M., Çalik M., Bayir Y., Gülçin I. The protective effects of p-coumaric acid on acute liver and kidney damages induced by cisplatin. Biomedicines. 2017;5:18. doi: 10.3390/biomedicines5020018. PubMed DOI PMC

Zhang L.-J., Huang H.-T., Huang S.-Y., Lin Z.-H., Shen C.-C., Tsai W.-J., Kuo Y.-H. Antioxidant and anti-inflammatory phenolic glycosides from Clematis tashiroi. J. Nat. Prod. 2015;78:1586–1592. doi: 10.1021/acs.jnatprod.5b00154. PubMed DOI

Pragasam S.J., Venkatesan V., Rasool M. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation. 2013;36:169–176. doi: 10.1007/s10753-012-9532-8. PubMed DOI

Zhao Y., Liu J., Liu C., Zeng X., Zhao X.L.A.J. Anti-inflammatory effects of p-coumaric acid in LPS-stimulated RAW264.7 cells: Involvement of NF-κB and MAPKs pathways. J. Med. Chem. 2016;6:327–330. doi: 10.4172/2161-0444.1000365. DOI

Sabitha R., Nishi K., Gunasekaran V.P., Annamalai G., Agilan B., Ganeshan M. p-Coumaric acid ameliorates ethanol–induced kidney injury by inhibiting inflammatory cytokine production and NF–κB signaling in rats. Asian Pac. J. Trop. Med. 2019;9:188.

Urfalioğlu A., Yazar F.M., Bilal B., Tolun F.İ., Öksüz H., Boran Ö.F., Gözen Ö. The effect of p-coumaric acid and ellagic acid on the liver and lungs in a rat model of sepsis. Asian Biomed. 2017;11:217–225.

Janicke B., Onning G., Oredsson S.M. Differential effects of ferulic acid and p-coumaric acid on S phase distribution and length of S phase in the human colonic cell line Caco-2. J. Agric. Food Chem. 2005;53:6658–6665. doi: 10.1021/jf050489l. PubMed DOI

Bouzaiene N.N., Jaziri S.K., Kovacic H., Chekir-Ghedira L., Ghedira K., Luis J. The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro. Eur. J. Pharmacol. 2015;766:99–105. doi: 10.1016/j.ejphar.2015.09.044. PubMed DOI

Shailasree S., Venkataramana M., Niranjana S.R., Prakash H.S. Cytotoxic effect of p-coumaric acid on inducing apoptosis and autophagy. Mol. Neurobiol. 2015;51:119–130. doi: 10.1007/s12035-014-8700-2. PubMed DOI

Min S.J., Lim J.Y., Kim H.R., Kim S.J., Kim Y. Sasaquel paertensis leaf extract inhibits colon cancer by regulating cancer cell stemness in vitro and in vivo. Int. J. Mol. Sci. 2015;16:9976–9997. doi: 10.3390/ijms16059976. PubMed DOI PMC

Radwan M.M., Badawy A., Zayed R., Hassanin H., El Sohly M.A., Ahmed S.A. Cytotoxic flavone glycosides from Sola-num elaeagnifolium. Med. Chem. Res. 2015;24:1326–1330. doi: 10.1007/s00044-014-1219-2. DOI

Kong C.-S., Jeong C.-H., Choi J.-S., Kim K.-J., Jeong J.-W. Antiangiogenic effects of p-coumaric acid in human endothelial cells. Phytother. Res. 2012;27:317–323. doi: 10.1002/ptr.4718. PubMed DOI

Amalan V., Vijayakumar N., Ramakrishnan A. p-Coumaric acid regulates blood glucose and antioxidant levels in strep-tozotocin induced diabetic rats. J. Chem. Pharm. Res. 2015;7:831–839.

Amalan V., Vijayakumar N., Indumathi D., Ramakrishnan A. Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: In vivo approach. Biomed. Pharmacother. 2016;84:230–236. doi: 10.1016/j.biopha.2016.09.039. PubMed DOI

Zabad O.M., Samra Y.A., Eissa L.A. p-Coumaric acid alleviates experimental diabetic nephropathy through modulation of toll like receptor-4 in rats. Life Sci. 2019;238:116965. doi: 10.1016/j.lfs.2019.116965. PubMed DOI

Adisakwattana S., Sookkongwaree K., Roengsumran S., Petsom A., Ngamrojnavanich N., Chavasiri W., Deesamer S., Yibchok-Anun S. Structure–activity relationships of trans-cinnamic acid derivatives on α-glucosidase inhibition. Bioorg. Med. Chem. Lett. 2004;14:2893–2896. doi: 10.1016/j.bmcl.2004.03.037. PubMed DOI

Yoon S.-A., Kang S.-I., Shin H.-S., Kang S.-W., Kim J.-H., Ko H.-C., Kim S.-J. p-Coumaric acid modulates glucose and lipid metabolism via AMP-activated protein kinase in L6 skeletal muscle cells. Biochem. Biophys. Res. Commun. 2013;432:553–557. doi: 10.1016/j.bbrc.2013.02.067. PubMed DOI

Lima L.C., Buss G.D., Ishii-Iwamoto E.L., Salgueiro-Pagadigorria C., Comar J.F., Bracht A., Constantin J. Metabolic effects of p-coumaric acid in the perfused rat liver. J. Biochem. Mol. Toxic. 2006;20:18–26. doi: 10.1002/jbt.20114. PubMed DOI

An S.M., Lee S.I., Choi S.W., Moon S.W., Boo Y.C. p-Coumaric acid, a constituent of Sasa quelpaertensis Nakai, inhibits cellular melanogenesis stimulated by α-melanocyte stimulating hormone. Br. J. Dermatol. 2008;159:292–299. doi: 10.1111/j.1365-2133.2008.08653.x. PubMed DOI

An S.M., Koh J.-S., Boo Y.C. p -Coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB. Phytother. Res. 2010;24:1175–1180. doi: 10.1002/ptr.3095. PubMed DOI

Boo Y.C. p-Coumaric acid as an active ingredient in cosmetics: A review focusing on its antimelanogenic effects. Antioxidants. 2019;8:275. doi: 10.3390/antiox8080275. PubMed DOI PMC

Lim J.-Y., Ishiguro K., Kubo I. Tyrosinase inhibitory p-coumaric acid from ginseng leaves. Phytother. Res. 1999;13:371–375. doi: 10.1002/(SICI)1099-1573(199908/09)13:5<371::AID-PTR453>3.0.CO;2-L. PubMed DOI

An S.M., Lee S.J., Koh J.S., Park K., Boo Y.C. Effects of plant extract-containing creams on UV radiation-induced inflammatory responses in mice. J. Soc. Cosmet. Sci. Korea. 2010;36:271–280.

Song K., An S.M., Kim M., Koh J.-S., Boo Y.C. Comparison of the antimelanogenic effects of p-coumaric acid and its methyl ester and their skin permeabilities. J. Dermatol. Sci. 2011;63:17–22. doi: 10.1016/j.jdermsci.2011.03.012. PubMed DOI

Reagan-Shaw S., Nihal M., Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–661. doi: 10.1096/fj.07-9574LSF. PubMed DOI

Kheiry M., Dianat M., Badavi M., Mard S.A., Bayati V. Does p-coumaric acid improve cardiac injury following LPS-induced lung inflammation through miRNA-146a activity? Avicenna J. Phytomed. 2020;10:50–57. PubMed PMC

Zhu H., Liang Q.-H., Xiong X.-G., Wang Y., Zhang Z.-H., Sun M.-J., Lu X., Wu D. Anti-inflammatory effects of p-coumaric acid, a natural compound of Oldenlandiadiffusa, on arthritis model rats. Evid. Based Complement. Altern. Med. 2018:5198594. doi: 10.1155/2018/5198594. PubMed DOI PMC

Jaganathan S.K., Supriyanto E., Mandal M. Events associated with apoptotic effect of p-coumaric acid in HCT-15 colon cancer cells. World J. Gastroenterol. 2013;19:7726–7734. doi: 10.3748/wjg.v19.i43.7726. PubMed DOI PMC

Kumar S., Pandey A.K. Free radicals: Health implications and their mitigation by herbals. Br. J. Med. Med. Res. 2015;7:438–457. doi: 10.9734/BJMMR/2015/16284. DOI

Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V., Squadrito F., Altavilla D., Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763. PubMed DOI PMC

Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI

Halliwell B., Gutteridge J.M. Free Radicals in Biology and Medicine. Oxford University Press; Oxford, UK: 2015.

Hansen J.M., Go Y.-M., Jones D.P. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu. Rev. Pharmacol. Toxicol. 2006;46:215–234. doi: 10.1146/annurev.pharmtox.46.120604.141122. PubMed DOI

Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204–7218. doi: 10.18632/oncotarget.23208. PubMed DOI PMC

Medzhitov R. Inflammation 2010: New adventures of an old flame. Cell. 2010;140:771–776. doi: 10.1016/j.cell.2010.03.006. PubMed DOI

Sikora E., Scapagnini G., Barbagallo M. Curcumin, inflammation, ageing and age-related diseases. Immun. Ageing. 2010;7:14. doi: 10.1186/1742-4933-7-1. PubMed DOI PMC

Sesti G. Phathophysiology of insulin resistance. Best Pract. Res. Clin. Endocrinol. Metab. 2006;20:665–679. doi: 10.1016/j.beem.2006.09.007. PubMed DOI

Bhattarai G., Min C.-K., Jeon Y., Bashyal R., Poudel S.B., Kook S., Lee J. Oral supplementation with p -coumaric acid protects mice against diabetes-associated spontaneous destruction of periodontal tissue. J. Periodontal Res. 2019;54:690–701. doi: 10.1111/jre.12678. PubMed DOI

Abdel-Moneim A., Yousef A.I., El-Twab S.M.A., Reheim E.S.A., Ashour M.B. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats. Metab. Brain Dis. 2017;32:1279–1286. doi: 10.1007/s11011-017-0039-8. PubMed DOI

Leto D., Saltiel A. Regulation of glucose transport by insulin: Traffic control of GLUT4. Nat. Rev. Mol. Cell Biol. 2012;13:383–396. doi: 10.1038/nrm3351. PubMed DOI

Brenner M., Hearing V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008;84:539–549. doi: 10.1111/j.1751-1097.2007.00226.x. PubMed DOI PMC

Slominski A., Tobin D., Shibahara S., Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 2004;84:1155–1228. doi: 10.1152/physrev.00044.2003. PubMed DOI

Gilchrest B.A., Eller M.S. DNA photodamage stimulates melanogenesis and other photoprotective responses. J. Investig. Dermatol. Symp. Proc. 1999;4:35–40. doi: 10.1038/sj.jidsp.5640178. PubMed DOI

Garcia-Borron J.C., Sanchez M.C.O. Biosynthesis of melanin. In: Borovansky J., Riley P.A., editors. Melanins and Melanosomes: Biosynthesis, Structure, Physiological and Pathological Functions. Wiley-VCH; Weinheim, Germany: 2011. p. 88.

De Smet P.A.G.M. The role of plant-derived drugs and herbal medicines in healthcare. Drugs. 1997;54:801–840. doi: 10.2165/00003495-199754060-00003. PubMed DOI

Boz H. p-Coumaric acid in cereals: Presence, antioxidant and antimicrobial effects. Int. J. Food Sci. Technol. 2015;50:2323–2328. doi: 10.1111/ijfs.12898. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...