Scavenging Properties of Plant-Derived Natural Biomolecule Para-Coumaric Acid in the Prevention of Oxidative Stress-Induced Diseases
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34439453
PubMed Central
PMC8388950
DOI
10.3390/antiox10081205
PII: antiox10081205
Knihovny.cz E-zdroje
- Klíčová slova
- ROS, anti-cancer, anti-diabetic, anti-inflammatory, anti-melanogenic, antioxidant, disease, oxidative stress, para-coumaric acid,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Para-coumaric acid (p-CA) is a plant derived secondary metabolite belonging to the phenolic compounds. It is widely distributed in the plant kingdom and found mainly in fruits, vegetables, and cereals. Various in vivo and in vitro studies have revealed its scavenging and antioxidative properties in the reduction of oxidative stress and inflammatory reactions. This evidence-based review focuses on the protective role of p-CA including its therapeutic potential. p-CA and its conjugates possesses various bioactivities such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, and anti-melanogenic properties. Due to its potent free radical scavenging activity, it can mitigate the ill effects of various diseases including arthritis, neurological disorders, and cardio-vascular diseases. Recent studies have revealed that p-CA can ameliorate the harmful effects associated with oxidative stress in the reproductive system, also by inhibiting enzymes linked with erectile function.
Department of Applied Physics School of Science Aalto University 00076 Espoo Finland
Department of Botany University of Calcutta Kolkata 700019 India
Department of Life Science and Bioinformatics Assam University Silchar 788011 India
Department of Pharmaceutical Sciences Assam University Silchar 788011 India
Zobrazit více v PubMed
Jain C., Khatana S., Vijayvergia R. Bioactivity of secondary metabolites of various plants: A review. Int. J. Pharm. Sci. Res. 2019;10:494–504.
Hussein R.A., El-Anssary A.A. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. Herb. Med. 2019;1:11–30. doi: 10.5772/intechopen.76139. DOI
Pei K., Ou J., Huang J., Ou S. p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016;96:2952–2962. doi: 10.1002/jsfa.7578. PubMed DOI
El-Seedi H.R., El-Said A.M.A., Khalifa S.A.M., Göransson U., Bohlin L., Borg-Karlson A.-K., Verpoorte R. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J. Agric. Food Chem. 2012;60:10877–10895. doi: 10.1021/jf301807g. PubMed DOI
Herrmann K.M., Weaver L.M. The shikimate pathway. Annu. Rev. Plant. Biol. 1999;50:473–503. doi: 10.1146/annurev.arplant.50.1.473. PubMed DOI
Kort R., Vonk H., Xu X., Hoff W.D., Crielaard W., Hellingwerf K.J. Evidence for trans-cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow protein. FEBS Lett. 1996;382:73–78. doi: 10.1016/0014-5793(96)00149-4. PubMed DOI
Tanase C., Coșarcă S., Muntean D.L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules. 2019;24:1182. doi: 10.3390/molecules24061182. PubMed DOI PMC
Alamed J., Chaiyasit W., McClements D., Decker E.A. Relationships between free radical scavenging and antioxidant activity in foods. J. Agric. Food Chem. 2009;57:2969–2976. doi: 10.1021/jf803436c. PubMed DOI
Barros L., Dueñas M., Ferreira I.C., Baptista P., Santos-Buelga C. Phenolic acids determination by HPLC–DAD–ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem. Toxicol. 2009;47:1076–1079. doi: 10.1016/j.fct.2009.01.039. PubMed DOI
Krishna N.A.V., Nadeem M.D., Saradhi M.P., Mahendran B., Bharathi S. Cumulative activity of the p-coumaric acid and syringaldehyde for antimicrobial activity of different microbial strains. Euro J. Exp. Biol. 2014;4:40–43.
Hole A.S., Grimmer S., Jensen M.R., Sahlstrøm S. Synergistic and suppressive effects of dietary phenolic acids and other phytochemicals from cereal extracts on nuclear factor kappa B activity. Food Chem. 2012;133:969–977. doi: 10.1016/j.foodchem.2012.02.017. DOI
Sun R.C., Sun X.F., Zhang S.H. Quantitative determination of hydroxycinnamic acids in wheat, rice, rye, and barley straws, maizestems, oil palm frond fiber, and fast-growing poplar wood. J. Agric. Food Chem. 2001;49:5122–5129. doi: 10.1021/jf010500r. PubMed DOI
Xu F., Sun R.C., Sun J.X., Liu C.F., He H.B., Fan J.S. Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse. Anal. Chim. Acta. 2005;552:207–217. doi: 10.1016/j.aca.2005.07.037. DOI
Navaneethan D., Rasool M.K. An experimental study to investigate the impact of p-coumaric acid, a common dietary polyphenol, on cadmium chloride-induced renal toxicity. Food Funct. 2014;5:2438–2445. doi: 10.1039/C4FO00346B. PubMed DOI
Zang L.Y., Cosma G., Gardner H., Shi X., Castranova V., Vallyathan V. Effect of antioxidant protection by p-coumaric acid on low-density lipoproteincholesterol oxidation. Am. J. Physiol. Cell Physiol. 2000;279:C954–C960. doi: 10.1152/ajpcell.2000.279.4.C954. PubMed DOI
Luceri C., Giannini L., Lodovici M., Antonucci E., Abbate R., Masini E., Dolara P. p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. Br. J. Nutr. 2007;97:458–463. doi: 10.1017/S0007114507657882. PubMed DOI
Pakrashi A., Pakrasi P. Antifertility efficacy of the plant Aristolochia indica Linn on mouse. Contraception. 1979;20:49–54. doi: 10.1016/0010-7824(79)90043-X. PubMed DOI
Chowdhury M., Kabir S.N., Pal A.K., Pakrashi A. Modulation of luteinizing hormone receptors: Effect of an inhibitor of prolactin secretion, p-coumaric acid. J. Endocrinol. 1983;98:307–311. doi: 10.1677/joe.0.0980307. PubMed DOI
Pakrashi A., Kabir S., Ray H. 3-(4-Hydroxy phenyl)-2-propenoic acid—A reproductive inhibitor in male rat. Contraception. 1981;23:677–686. doi: 10.1016/S0010-7824(81)80010-8. PubMed DOI
Nishi K., Ramakrishnan S., Gunasekaran V.P., Parkash K., Ramakrishnan A., Vijayakumar N., Ganeshan M. Protective effects of p-coumaric acid on ethanol induced male reproductive toxicity. Life Sci. 2018;209:1–8. doi: 10.1016/j.lfs.2018.07.045. PubMed DOI
Oyeleye S.I., Adefegha S.A., Dada F.A., Okeke B.M., Oboh G. Effect of p-coumaric acid on the erectogenic enzyme activities and non-protein thiol level in thepenile tissue of normal and doxorubicin-induced oxidative stress male rat. Andrologia. 2019;51:e13281. doi: 10.1111/and.13281. PubMed DOI
Kesari K.K., Dhasmana A., Shandilya S., Prabhakar N., Shaukat A., Dou J., Rosenholm J.M., Vuorinen T., Ruokolainen J. Plant-derived natural biomolecule picein attenuates menadione induced oxidative stress on neuro blastoma cell mitochondria. Antioxidants. 2020;9:552. doi: 10.3390/antiox9060552. PubMed DOI PMC
Lou Z., Wang H., Rao S., Sun J., Ma C., Li J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control. 2012;25:550–554. doi: 10.1016/j.foodcont.2011.11.022. DOI
Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2:1231. doi: 10.3390/nu2121231. PubMed DOI PMC
Rodrigo R., Miranda A., Vergara L. Modulation of endogenous antioxidant system by wine polyphenols in human disease. Clin. Chim. Acta. 2011;412:410–424. doi: 10.1016/j.cca.2010.11.034. PubMed DOI
Teixeira J.C.S., Gaspar A., Garrido E.M., Garrido J., Borges F. Hydroxycinnamic acid antioxidants: An electrochemical overview. BioMed Res. Int. 2013;2013:251754. doi: 10.1155/2013/251754. PubMed DOI PMC
Ferguson L.R., Zhu S.-T., Harris P.J. Antioxidant and antigenotoxic effects of plant cell wall hydroxycinnamic acids in cultured HT-29 cells. Mol. Nutr. Food Res. 2005;49:585–593. doi: 10.1002/mnfr.200500014. PubMed DOI
Gani A., Wani S.M., Masoodi F.A., Hameed G. Whole-grain cereal bioactive compounds and their health benefits: A review. J. Food Process. Technol. 2012;3:146–156. doi: 10.4172/2157-7110.1000146. DOI
Roy A.J., Prince P.S.M. Preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats. Food Chem. Toxicol. 2013;60:348–354. doi: 10.1016/j.fct.2013.04.052. PubMed DOI
Lee S.J., Mun G.I., An S.M., Boo Y.C. Evidence for the association of peroxidases with the antioxidant effect of p-coumaric acid in endothelial cells exposed to high glucose plus arachidonic acid. BMB Rep. 2009;42:561–567. doi: 10.5483/BMBRep.2009.42.9.561. PubMed DOI
Seok J.K., Kwak J.Y., Seo H.H., Suh H.J., Boo Y.C. Effects of Bambusae caulis in Taeniam extract on the UVB-induced cell death, oxidative stress and matrix metalloproteinase 1 expression in keratinocytes. J. Soc. Cosmet. Sci. Korea. 2015;41:9–20. doi: 10.15230/scsk.2015.41.1.9. DOI
Peng J., Zheng T.-T., Liang Y., Duan L.-F., Zhang Y.-D., Wang L.-J., He G.-M., Xiao H.-T. p-Coumaric acid protects human lens epithelial cells against oxidative stress-induced apoptosis by MAPK signaling. Oxidative Med. Cell. Longev. 2018;2018:8549052. doi: 10.1155/2018/8549052. PubMed DOI PMC
Guglielmi F., Luceri C., Giovannelli L., Dolara P., Lodovici M. Effect of 4-coumaric and 3,4-dihydroxybenzoic acid on oxidative DNA damage in rat colonic mucosa. Br. J. Nutr. 2003;89:581–587. doi: 10.1079/BJN2003849. PubMed DOI
Garrait G., Jarrige J.F., Blanquet S., Beyssac E., Cardot J.M., Alric M. Gastrointestinal absorption and urinary excretion of trans-cinnamic and p-coumaric acids in rats. J. Agric. Food Chem. 2006;54:2944–2950. doi: 10.1021/jf053169a. PubMed DOI
Žilić S., Šukalović V.H.-T., Dodig D., Maksimović V., Maksimović M., Basić Z. Antioxidant activity of small grain cereals caused by phenolics and lipid soluble antioxidants. J. Cereal Sci. 2011;54:417–424. doi: 10.1016/j.jcs.2011.08.006. DOI
Shen Y., Song X., Li L., Sun J., Jaiswal Y., Huang J., Guan Y. Protective effects of p-coumaric acid against oxidant and hy-perlipidemia-an in vitro and in vivo evaluation. Biomed. Pharmacother. 2019;111:579–587. doi: 10.1016/j.biopha.2018.12.074. PubMed DOI
Sakamula R., Thong-asa W. Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries. Metab. Brain Dis. 2018;33:765–773. doi: 10.1007/s11011-018-0185-7. PubMed DOI
Akdemir F.N.E., Albayrak M., Çalik M., Bayir Y., Gülçin I. The protective effects of p-coumaric acid on acute liver and kidney damages induced by cisplatin. Biomedicines. 2017;5:18. doi: 10.3390/biomedicines5020018. PubMed DOI PMC
Zhang L.-J., Huang H.-T., Huang S.-Y., Lin Z.-H., Shen C.-C., Tsai W.-J., Kuo Y.-H. Antioxidant and anti-inflammatory phenolic glycosides from Clematis tashiroi. J. Nat. Prod. 2015;78:1586–1592. doi: 10.1021/acs.jnatprod.5b00154. PubMed DOI
Pragasam S.J., Venkatesan V., Rasool M. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation. 2013;36:169–176. doi: 10.1007/s10753-012-9532-8. PubMed DOI
Zhao Y., Liu J., Liu C., Zeng X., Zhao X.L.A.J. Anti-inflammatory effects of p-coumaric acid in LPS-stimulated RAW264.7 cells: Involvement of NF-κB and MAPKs pathways. J. Med. Chem. 2016;6:327–330. doi: 10.4172/2161-0444.1000365. DOI
Sabitha R., Nishi K., Gunasekaran V.P., Annamalai G., Agilan B., Ganeshan M. p-Coumaric acid ameliorates ethanol–induced kidney injury by inhibiting inflammatory cytokine production and NF–κB signaling in rats. Asian Pac. J. Trop. Med. 2019;9:188.
Urfalioğlu A., Yazar F.M., Bilal B., Tolun F.İ., Öksüz H., Boran Ö.F., Gözen Ö. The effect of p-coumaric acid and ellagic acid on the liver and lungs in a rat model of sepsis. Asian Biomed. 2017;11:217–225.
Janicke B., Onning G., Oredsson S.M. Differential effects of ferulic acid and p-coumaric acid on S phase distribution and length of S phase in the human colonic cell line Caco-2. J. Agric. Food Chem. 2005;53:6658–6665. doi: 10.1021/jf050489l. PubMed DOI
Bouzaiene N.N., Jaziri S.K., Kovacic H., Chekir-Ghedira L., Ghedira K., Luis J. The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro. Eur. J. Pharmacol. 2015;766:99–105. doi: 10.1016/j.ejphar.2015.09.044. PubMed DOI
Shailasree S., Venkataramana M., Niranjana S.R., Prakash H.S. Cytotoxic effect of p-coumaric acid on inducing apoptosis and autophagy. Mol. Neurobiol. 2015;51:119–130. doi: 10.1007/s12035-014-8700-2. PubMed DOI
Min S.J., Lim J.Y., Kim H.R., Kim S.J., Kim Y. Sasaquel paertensis leaf extract inhibits colon cancer by regulating cancer cell stemness in vitro and in vivo. Int. J. Mol. Sci. 2015;16:9976–9997. doi: 10.3390/ijms16059976. PubMed DOI PMC
Radwan M.M., Badawy A., Zayed R., Hassanin H., El Sohly M.A., Ahmed S.A. Cytotoxic flavone glycosides from Sola-num elaeagnifolium. Med. Chem. Res. 2015;24:1326–1330. doi: 10.1007/s00044-014-1219-2. DOI
Kong C.-S., Jeong C.-H., Choi J.-S., Kim K.-J., Jeong J.-W. Antiangiogenic effects of p-coumaric acid in human endothelial cells. Phytother. Res. 2012;27:317–323. doi: 10.1002/ptr.4718. PubMed DOI
Amalan V., Vijayakumar N., Ramakrishnan A. p-Coumaric acid regulates blood glucose and antioxidant levels in strep-tozotocin induced diabetic rats. J. Chem. Pharm. Res. 2015;7:831–839.
Amalan V., Vijayakumar N., Indumathi D., Ramakrishnan A. Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: In vivo approach. Biomed. Pharmacother. 2016;84:230–236. doi: 10.1016/j.biopha.2016.09.039. PubMed DOI
Zabad O.M., Samra Y.A., Eissa L.A. p-Coumaric acid alleviates experimental diabetic nephropathy through modulation of toll like receptor-4 in rats. Life Sci. 2019;238:116965. doi: 10.1016/j.lfs.2019.116965. PubMed DOI
Adisakwattana S., Sookkongwaree K., Roengsumran S., Petsom A., Ngamrojnavanich N., Chavasiri W., Deesamer S., Yibchok-Anun S. Structure–activity relationships of trans-cinnamic acid derivatives on α-glucosidase inhibition. Bioorg. Med. Chem. Lett. 2004;14:2893–2896. doi: 10.1016/j.bmcl.2004.03.037. PubMed DOI
Yoon S.-A., Kang S.-I., Shin H.-S., Kang S.-W., Kim J.-H., Ko H.-C., Kim S.-J. p-Coumaric acid modulates glucose and lipid metabolism via AMP-activated protein kinase in L6 skeletal muscle cells. Biochem. Biophys. Res. Commun. 2013;432:553–557. doi: 10.1016/j.bbrc.2013.02.067. PubMed DOI
Lima L.C., Buss G.D., Ishii-Iwamoto E.L., Salgueiro-Pagadigorria C., Comar J.F., Bracht A., Constantin J. Metabolic effects of p-coumaric acid in the perfused rat liver. J. Biochem. Mol. Toxic. 2006;20:18–26. doi: 10.1002/jbt.20114. PubMed DOI
An S.M., Lee S.I., Choi S.W., Moon S.W., Boo Y.C. p-Coumaric acid, a constituent of Sasa quelpaertensis Nakai, inhibits cellular melanogenesis stimulated by α-melanocyte stimulating hormone. Br. J. Dermatol. 2008;159:292–299. doi: 10.1111/j.1365-2133.2008.08653.x. PubMed DOI
An S.M., Koh J.-S., Boo Y.C. p -Coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB. Phytother. Res. 2010;24:1175–1180. doi: 10.1002/ptr.3095. PubMed DOI
Boo Y.C. p-Coumaric acid as an active ingredient in cosmetics: A review focusing on its antimelanogenic effects. Antioxidants. 2019;8:275. doi: 10.3390/antiox8080275. PubMed DOI PMC
Lim J.-Y., Ishiguro K., Kubo I. Tyrosinase inhibitory p-coumaric acid from ginseng leaves. Phytother. Res. 1999;13:371–375. doi: 10.1002/(SICI)1099-1573(199908/09)13:5<371::AID-PTR453>3.0.CO;2-L. PubMed DOI
An S.M., Lee S.J., Koh J.S., Park K., Boo Y.C. Effects of plant extract-containing creams on UV radiation-induced inflammatory responses in mice. J. Soc. Cosmet. Sci. Korea. 2010;36:271–280.
Song K., An S.M., Kim M., Koh J.-S., Boo Y.C. Comparison of the antimelanogenic effects of p-coumaric acid and its methyl ester and their skin permeabilities. J. Dermatol. Sci. 2011;63:17–22. doi: 10.1016/j.jdermsci.2011.03.012. PubMed DOI
Reagan-Shaw S., Nihal M., Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–661. doi: 10.1096/fj.07-9574LSF. PubMed DOI
Kheiry M., Dianat M., Badavi M., Mard S.A., Bayati V. Does p-coumaric acid improve cardiac injury following LPS-induced lung inflammation through miRNA-146a activity? Avicenna J. Phytomed. 2020;10:50–57. PubMed PMC
Zhu H., Liang Q.-H., Xiong X.-G., Wang Y., Zhang Z.-H., Sun M.-J., Lu X., Wu D. Anti-inflammatory effects of p-coumaric acid, a natural compound of Oldenlandiadiffusa, on arthritis model rats. Evid. Based Complement. Altern. Med. 2018:5198594. doi: 10.1155/2018/5198594. PubMed DOI PMC
Jaganathan S.K., Supriyanto E., Mandal M. Events associated with apoptotic effect of p-coumaric acid in HCT-15 colon cancer cells. World J. Gastroenterol. 2013;19:7726–7734. doi: 10.3748/wjg.v19.i43.7726. PubMed DOI PMC
Kumar S., Pandey A.K. Free radicals: Health implications and their mitigation by herbals. Br. J. Med. Med. Res. 2015;7:438–457. doi: 10.9734/BJMMR/2015/16284. DOI
Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V., Squadrito F., Altavilla D., Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763. PubMed DOI PMC
Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI
Halliwell B., Gutteridge J.M. Free Radicals in Biology and Medicine. Oxford University Press; Oxford, UK: 2015.
Hansen J.M., Go Y.-M., Jones D.P. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu. Rev. Pharmacol. Toxicol. 2006;46:215–234. doi: 10.1146/annurev.pharmtox.46.120604.141122. PubMed DOI
Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204–7218. doi: 10.18632/oncotarget.23208. PubMed DOI PMC
Medzhitov R. Inflammation 2010: New adventures of an old flame. Cell. 2010;140:771–776. doi: 10.1016/j.cell.2010.03.006. PubMed DOI
Sikora E., Scapagnini G., Barbagallo M. Curcumin, inflammation, ageing and age-related diseases. Immun. Ageing. 2010;7:14. doi: 10.1186/1742-4933-7-1. PubMed DOI PMC
Sesti G. Phathophysiology of insulin resistance. Best Pract. Res. Clin. Endocrinol. Metab. 2006;20:665–679. doi: 10.1016/j.beem.2006.09.007. PubMed DOI
Bhattarai G., Min C.-K., Jeon Y., Bashyal R., Poudel S.B., Kook S., Lee J. Oral supplementation with p -coumaric acid protects mice against diabetes-associated spontaneous destruction of periodontal tissue. J. Periodontal Res. 2019;54:690–701. doi: 10.1111/jre.12678. PubMed DOI
Abdel-Moneim A., Yousef A.I., El-Twab S.M.A., Reheim E.S.A., Ashour M.B. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats. Metab. Brain Dis. 2017;32:1279–1286. doi: 10.1007/s11011-017-0039-8. PubMed DOI
Leto D., Saltiel A. Regulation of glucose transport by insulin: Traffic control of GLUT4. Nat. Rev. Mol. Cell Biol. 2012;13:383–396. doi: 10.1038/nrm3351. PubMed DOI
Brenner M., Hearing V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008;84:539–549. doi: 10.1111/j.1751-1097.2007.00226.x. PubMed DOI PMC
Slominski A., Tobin D., Shibahara S., Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 2004;84:1155–1228. doi: 10.1152/physrev.00044.2003. PubMed DOI
Gilchrest B.A., Eller M.S. DNA photodamage stimulates melanogenesis and other photoprotective responses. J. Investig. Dermatol. Symp. Proc. 1999;4:35–40. doi: 10.1038/sj.jidsp.5640178. PubMed DOI
Garcia-Borron J.C., Sanchez M.C.O. Biosynthesis of melanin. In: Borovansky J., Riley P.A., editors. Melanins and Melanosomes: Biosynthesis, Structure, Physiological and Pathological Functions. Wiley-VCH; Weinheim, Germany: 2011. p. 88.
De Smet P.A.G.M. The role of plant-derived drugs and herbal medicines in healthcare. Drugs. 1997;54:801–840. doi: 10.2165/00003495-199754060-00003. PubMed DOI
Boz H. p-Coumaric acid in cereals: Presence, antioxidant and antimicrobial effects. Int. J. Food Sci. Technol. 2015;50:2323–2328. doi: 10.1111/ijfs.12898. DOI