High Mobility Group Box 1 in Pig Amniotic Membrane Experimentally Infected with E. coli O55
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34439812
PubMed Central
PMC8393629
DOI
10.3390/biom11081146
PII: biom11081146
Knihovny.cz E-resources
- Keywords
- Toll-like receptor, amniotic fluid, amniotic membrane, cytokines, high mobility group box 1, intra-amniotic infection, pig, preterm birth, receptor for advanced glycation endproducts,
- MeSH
- Amnion immunology microbiology pathology MeSH
- Escherichia coli growth & development pathogenicity MeSH
- Escherichia coli Infections genetics immunology microbiology veterinary MeSH
- Pregnancy Complications, Infectious genetics immunology microbiology veterinary MeSH
- Host-Pathogen Interactions genetics immunology MeSH
- Humans MeSH
- RNA, Messenger genetics immunology MeSH
- Disease Models, Animal MeSH
- Amniotic Fluid immunology microbiology MeSH
- Swine MeSH
- Premature Birth prevention & control MeSH
- HMGB1 Protein genetics immunology MeSH
- Receptor for Advanced Glycation End Products genetics immunology MeSH
- Gene Expression Regulation MeSH
- Signal Transduction MeSH
- Pregnancy MeSH
- Toll-Like Receptor 4 genetics immunology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Messenger MeSH
- HMGB1 Protein MeSH
- Receptor for Advanced Glycation End Products MeSH
- Toll-Like Receptor 4 MeSH
Intra-amniotic infections (IAI) are one of the reasons for preterm birth. High mobility group box 1 (HMGB1) is a nuclear protein with various physiological functions, including tissue healing. Its excessive extracellular release potentiates inflammatory reaction and can revert its action from beneficial to detrimental. We infected the amniotic fluid of a pig on the 80th day of gestation with 1 × 104 colony forming units (CFUs) of E. coli O55 for 10 h, and evaluated the appearance of HMGB1, receptor for glycation endproducts (RAGE), and Toll-like receptor (TLR) 4 in the amniotic membrane and fluid. Sham-infected amniotic fluid served as a control. The expression and release of HMGB1 were evaluated by Real-Time PCR, immunofluorescence, immunohistochemistry, and ELISA. The infection downregulated HMGB1 mRNA expression in the amniotic membrane, changed the distribution of HMGB1 protein in the amniotic membrane, and increased its level in amniotic fluid. All RAGE mRNA, protein expression in the amniotic membrane, and soluble RAGE level in the amniotic fluid were downregulated. TLR4 mRNA and protein expression and soluble TLR4 were all upregulated. HMGB1 is a potential target for therapy to suppress the exaggerated inflammatory response. This controlled expression and release can, in some cases, prevent the preterm birth of vulnerable infants. Studies on suitable animal models can contribute to the development of appropriate therapy.
See more in PubMed
Goldenberg R.L., Culhane J.F., Iams J.D., Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84. doi: 10.1016/S0140-6736(08)60074-4. PubMed DOI PMC
Romero R., Dey S.K., Fisher S.J. Preterm labor: One syndrome, many causes. Science. 2014;345:760–765. doi: 10.1126/science.1251816. PubMed DOI PMC
Gravett M.G. Successful treatment of intraamniotic infection/inflammation: A paradigm shift. Am. J. Obstet. Gynecol. 2019;221:83–85. doi: 10.1016/j.ajog.2019.05.020. PubMed DOI
Romero R., Grivel J.C., Tarca A.L., Chaemsaithong P., Xu Z., Fitzgerald W., Hassan S.S., Chaiworapongsa T., Margolis L. Evidence of perturbations of the cytokine network in preterm labor. Am. J. Obstet. Gynecol. 2015;213:836.e1–836.e18. doi: 10.1016/j.ajog.2015.07.037. PubMed DOI PMC
Elovitz M.A., Mrinalini C. Animal models of preterm birth. Trends Endocrinol. Metab. 2004;15:479–487. doi: 10.1016/j.tem.2004.10.009. PubMed DOI
Theis K.R., Romero R., Winters A.D., Jobe A.H., Gomez-Lopez N. Lack of Evidence for Microbiota in the Placental and Fetal Tissues of Rhesus Macaques. mSphere. 2020;5:e00210-20. doi: 10.1128/mSphere.00210-20. PubMed DOI PMC
Splichalova A., Splichal I., Trebichavsky I., Hojna H. Expression of inflammatory markers in pig amnion after intraamniotic infection with nonpathogenic or enteropathogenic Escherichia coli. Folia Microbiol. 2004;49:751–756. doi: 10.1007/BF02931560. PubMed DOI
Roberts R.M., Green J.A., Schulz L.C. The evolution of the placenta. Reproduction. 2016;152:R179–R189. doi: 10.1530/REP-16-0325. PubMed DOI PMC
Mitchell B.F., Taggart M.J. Are animal models relevant to key aspects of human parturition? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009;297:R525–R545. doi: 10.1152/ajpregu.00153.2009. PubMed DOI
Simister N.E. Placental transport of immunoglobulin G. Vaccine. 2003;21:3365–3369. doi: 10.1016/S0264-410X(03)00334-7. PubMed DOI
Salmon H., Berri M., Gerdts V., Meurens F. Humoral and cellular factors of maternal immunity in swine. Dev. Comp. Immunol. 2009;33:384–393. doi: 10.1016/j.dci.2008.07.007. PubMed DOI
Peter A.T. Bovine placenta: A review on morphology, components, and defects from terminology and clinical perspectives. Theriogenology. 2013;80:693–705. doi: 10.1016/j.theriogenology.2013.06.004. PubMed DOI
Collins J.J., Kallapur S.G., Knox C.L., Nitsos I., Polglase G.R., Pillow J.J., Kuypers E., Newnham J.P., Jobe A.H., Kramer B.W. Inflammation in fetal sheep from intra-amniotic injection of Ureaplasma parvum. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2010;299:L852–L860. doi: 10.1152/ajplung.00183.2010. PubMed DOI PMC
Regan J.K., Kannan P.S., Kemp M.W., Kramer B.W., Newnham J.P., Jobe A.H., Kallapur S.G. Damage-Associated Molecular Pattern and Fetal Membrane Vascular Injury and Collagen Disorganization in Lipopolysaccharide-Induced Intra-amniotic Inflammation in Fetal Sheep. Reprod. Sci. 2016;23:69–80. doi: 10.1177/1933719115594014. PubMed DOI PMC
Janeway C.A., Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 1989;54:1–13. doi: 10.1101/SQB.1989.054.01.003. PubMed DOI
Gong T., Liu L., Jiang W., Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 2020;20:95–112. doi: 10.1038/s41577-019-0215-7. PubMed DOI
Kawai T., Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–650. doi: 10.1016/j.immuni.2011.05.006. PubMed DOI
Chen G.Y., Nunez G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010;10:826–837. doi: 10.1038/nri2873. PubMed DOI PMC
Andersson U., Yang H., Harris H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Semin. Immunol. 2018;38:40–48. doi: 10.1016/j.smim.2018.02.011. PubMed DOI
Bianchi M.E., Crippa M.P., Manfredi A.A., Mezzapelle R., Rovere Q.P., Venereau E. High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunol. Rev. 2017;280:74–82. doi: 10.1111/imr.12601. PubMed DOI
Nadeau-Vallee M., Obari D., Palacios J., Brien M.E., Duval C., Chemtob S., Girard S. Sterile inflammation and pregnancy complications: A review. Reproduction. 2016;152:R277–R292. doi: 10.1530/REP-16-0453. PubMed DOI
Dumitriu I.E., Baruah P., Manfredi A.A., Bianchi M.E., Rovere-Querini P. HMGB1: Guiding immunity from within. Trends Immunol. 2005;26:381–387. doi: 10.1016/j.it.2005.04.009. PubMed DOI
Deng M., Scott M.J., Fan J., Billiar T.R. Location is the key to function: HMGB1 in sepsis and trauma-induced inflammation. J. Leukoc. Biol. 2019;106:161–169. doi: 10.1002/JLB.3MIR1218-497R. PubMed DOI PMC
Bertheloot D., Latz E. HMGB1, IL-1alpha, IL-33 and S100 proteins: Dual-function alarmins. Cell. Mol. Immunol. 2017;14:43–64. doi: 10.1038/cmi.2016.34. PubMed DOI PMC
Paudel Y.N., Angelopoulou E., Piperi C., Balasubramaniam V.R., Othman I., Shaikh M.F. Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: Updates on receptor signalling. Eur. J. Pharmacol. 2019;858:172487. doi: 10.1016/j.ejphar.2019.172487. PubMed DOI
Yang H., Wang H., Andersson U. Targeting Inflammation Driven by HMGB1. Front. Immunol. 2020;11:484. doi: 10.3389/fimmu.2020.00484. PubMed DOI PMC
Gibbs R.S., Duff P. Progress in pathogenesis and management of clinical intraamniotic infection. Am. J. Obstet. Gynecol. 1991;164:1317–1326. doi: 10.1016/0002-9378(91)90707-X. PubMed DOI
Splichalova A., Splichal I., Chmelarova P., Trebichavsky I. Alarmin HMGB1 is released in the small intestine of gnotobiotic piglets infected with enteric pathogens and its level in plasma reflects severity of sepsis. J. Clin. Immunol. 2011;31:488–497. doi: 10.1007/s10875-010-9505-3. PubMed DOI
Splichalova A., Splichal I. Local and systemic occurrences of HMGB1 in gnotobiotic piglets infected with E. coli O55 are related to bacterial translocation and inflammatory cytokines. Cytokine. 2012;60:597–600. doi: 10.1016/j.cyto.2012.07.026. PubMed DOI
Splichalova A., Trebichavsky I., Muneta Y., Mori Y., Splichal I. Effect of bacterial virulence on IL-18 expression in the amnion infected with Escherichia coli. Am. J. Reprod. Immunol. 2005;53:255–260. doi: 10.1111/j.1600-0897.2005.00273.x. PubMed DOI
Splichal I., Trebichavsky I., Splichalova A., Ditetova L., Zahradnickova M. Escherichia coli administered into pig amniotic cavity appear in fetal airways and attract macrophages into fetal lungs. Physiol. Res. 2002;51:523–528. PubMed
Splichalova A., Slavikova V., Splichalova Z., Splichal I. Preterm Life in Sterile Conditions: A Study on Preterm, Germ-Free Piglets. Front. Immunol. 2018;9:220. doi: 10.3389/fimmu.2018.00220. PubMed DOI PMC
Splichal I., Donovan S.M., Jenistova V., Splichalova I., Salmonova H., Vlkova E., Neuzil B.V., Sinkora M., Killer J., Skrivanova E., et al. High Mobility Group Box 1 and TLR4 Signaling Pathway in Gnotobiotic Piglets Colonized/Infected with L. amylovorus, L. mucosae, E. coli Nissle 1917 and S. Typhimurium. Int. J. Mol. Sci. 2019;20:6294. doi: 10.3390/ijms20246294. PubMed DOI PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Splichal I., Rychlik I., Splichalova I., Karasova D., Splichalova A. Toll-Like Receptor 4 Signaling in the Ileum and Colon of Gnotobiotic Piglets Infected with Salmonella Typhimurium or Its Isogenic rfa Mutants. Toxins. 2020;12:545. doi: 10.3390/toxins12090545. PubMed DOI PMC
Looi K., Evans D.J., Garratt L.W., Ang S., Hillas J.K., Kicic A., Simpson S.J. Preterm birth: Born too soon for the developing airway epithelium? Paediatr. Respir. Rev. 2019;31:82–88. doi: 10.1016/j.prrv.2018.11.003. PubMed DOI
Coffey L.L., Keesler R.I., Pesavento P.A., Woolard K., Singapuri A., Watanabe J., Cruzen C., Christe K.L., Usachenko J., Yee J., et al. Intraamniotic Zika virus inoculation of pregnant rhesus macaques produces fetal neurologic disease. Nat. Commun. 2018;9:2414. doi: 10.1038/s41467-018-04777-6. PubMed DOI PMC
Grigsby P.L., Novy M.J., Sadowsky D.W., Morgan T.K., Long M., Acosta E., Duffy L.B., Waites K.B. Maternal azithromycin therapy for Ureaplasma intraamniotic infection delays preterm delivery and reduces fetal lung injury in a primate model. Am. J. Obstet. Gynecol. 2012;207:475.e1–475.e14. doi: 10.1016/j.ajog.2012.10.871. PubMed DOI PMC
Gravett M.G., Adams K.M., Sadowsky D.W., Grosvenor A.R., Witkin S.S., Axthelm M.K., Novy M.J. Immunomodulators plus antibiotics delay preterm delivery after experimental intraamniotic infection in a nonhuman primate model. Am. J. Obstet. Gynecol. 2007;197:518.e1–518.e8. doi: 10.1016/j.ajog.2007.03.064. PubMed DOI PMC
Nguyen D.N., Thymann T., Goericke-Pesch S.K., Ren S., Wei W., Skovgaard K., Damborg P., Brunse A., van Gorp C., Kramer B.W., et al. Prenatal Intra-Amniotic Endotoxin Induces Fetal Gut and Lung Immune Responses and Postnatal Systemic Inflammation in Preterm Pigs. Am. J. Pathol. 2018;188:2629–2643. doi: 10.1016/j.ajpath.2018.07.020. PubMed DOI
Trebichavsky I., Splichal I., Zahradnickova M., Splichalova A., Mori Y. Lipopolysaccharide induces inflammatory cytokines in the pig amnion. Vet. Immunol. Immunopathol. 2002;87:11–18. doi: 10.1016/S0165-2427(02)00025-9. PubMed DOI
Stinson L.F., Payne M.S. Infection-mediated preterm birth: Bacterial origins and avenues for intervention. Aust. N. Z. J. Obstet. Gynaecol. 2019;59:781–790. doi: 10.1111/ajo.13078. PubMed DOI
Matzinger P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 1994;12:991–1045. doi: 10.1146/annurev.iy.12.040194.005015. PubMed DOI
Kim C.J., Romero R., Chaemsaithong P., Chaiyasit N., Yoon B.H., Kim Y.M. Acute chorioamnionitis and funisitis: Definition, pathologic features, and clinical significance. Am. J. Obstet. Gynecol. 2015;213:S29–S52. doi: 10.1016/j.ajog.2015.08.040. PubMed DOI PMC
Gomez-Lopez N., Romero R., Plazyo O., Panaitescu B., Furcron A.E., Miller D., Roumayah T., Flom E., Hassan S.S. Intra-Amniotic Administration of HMGB1 Induces Spontaneous Preterm Labor and Birth. Am. J. Reprod. Immunol. 2016;75:3–7. doi: 10.1111/aji.12443. PubMed DOI PMC
Wang H., Bloom O., Zhang M., Vishnubhakat J.M., Ombrellino M., Che J., Frazier A., Yang H., Ivanova S., Borovikova L., et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–251. doi: 10.1126/science.285.5425.248. PubMed DOI
Cheng Z., Abrams S.T., Toh J., Wang S.S., Wang Z., Yu Q., Yu W., Toh C.H., Wang G. The Critical Roles and Mechanisms of Immune Cell Death in Sepsis. Front. Immunol. 2020;11:1918. doi: 10.3389/fimmu.2020.01918. PubMed DOI PMC
Wang H., Yang H., Czura C.J., Sama A.E., Tracey K.J. HMGB1 as a late mediator of lethal systemic inflammation. Am. J. Respir. Crit. Care Med. 2001;164:1768–1773. doi: 10.1164/ajrccm.164.10.2106117. PubMed DOI
Karlsson S., Pettila V., Tenhunen J., Laru-Sompa R., Hynninen M., Ruokonen E. HMGB1 as a predictor of organ dysfunction and outcome in patients with severe sepsis. Intensive Care Med. 2008;34:1046–1053. doi: 10.1007/s00134-008-1032-9. PubMed DOI
Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801. doi: 10.1016/j.cell.2006.02.015. PubMed DOI
Hudson B.I., Lippman M.E. Targeting RAGE Signaling in Inflammatory Disease. Annu. Rev. Med. 2018;69:349–364. doi: 10.1146/annurev-med-041316-085215. PubMed DOI
Bonaldi T., Talamo F., Scaffidi P., Ferrera D., Porto A., Bachi A., Rubartelli A., Agresti A., Bianchi M.E. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003;22:5551–5560. doi: 10.1093/emboj/cdg516. PubMed DOI PMC
Youn J.H., Shin J.S. Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J. Immunol. 2006;177:7889–7897. doi: 10.4049/jimmunol.177.11.7889. PubMed DOI
Ito I., Fukazawa J., Yoshida M. Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils. J. Biol. Chem. 2007;282:16336–16344. doi: 10.1074/jbc.M608467200. PubMed DOI
Gardella S., Andrei C., Ferrera D., Lotti L.V., Torrisi M.R., Bianchi M.E., Rubartelli A. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 2002;3:995–1001. doi: 10.1093/embo-reports/kvf198. PubMed DOI PMC
Romero R., Chaiworapongsa T., Alpay S.Z., Xu Y., Hussein Y., Dong Z., Kusanovic J.P., Kim C.J., Hassan S.S. Damage-associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: A study of the alarmin HMGB1. J. Matern. Fetal Neonatal Med. 2011;24:1444–1455. doi: 10.3109/14767058.2011.591460. PubMed DOI PMC
Kobayashi K., Miwa H., Yasui M. Inflammatory mediators weaken the amniotic membrane barrier through disruption of tight junctions. J. Physiol. 2010;588:4859–4869. doi: 10.1113/jphysiol.2010.197764. PubMed DOI PMC
Romero R., Chaiworapongsa T., Savasan Z.A., Hussein Y., Dong Z., Kusanovic J.P., Kim C.J., Hassan S.S. Clinical chorioamnionitis is characterized by changes in the expression of the alarmin HMGB1 and one of its receptors, sRAGE. J. Matern. Fetal Neonatal Med. 2012;25:558–567. doi: 10.3109/14767058.2011.599083. PubMed DOI PMC
Baumbusch M.A., Buhimschi C.S., Oliver E.A., Zhao G., Thung S., Rood K., Buhimschi I.A. High Mobility Group-Box 1 (HMGB1) levels are increased in amniotic fluid of women with intra-amniotic inflammation-determined preterm birth, and the source may be the damaged fetal membranes. Cytokine. 2016;81:82–87. doi: 10.1016/j.cyto.2016.02.013. PubMed DOI PMC
Choltus H., Lavergne M., Belville C., Gallot D., Minet-Quinard R., Durif J., Blanchon L., Sapin V. Occurrence of a RAGE-Mediated Inflammatory Response in Human Fetal Membranes. Front. Physiol. 2020;11:581. doi: 10.3389/fphys.2020.00581. PubMed DOI PMC
Romero R., Miranda J., Chaiworapongsa T., Korzeniewski S.J., Chaemsaithong P., Gotsch F., Dong Z., Ahmed A.I., Yoon B.H., Hassan S.S., et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am. J. Reprod. Immunol. 2014;72:458–474. doi: 10.1111/aji.12296. PubMed DOI PMC
Kang R., Chen R., Zhang Q., Hou W., Wu S., Cao L., Huang J., Yu Y., Fan X.G., Yan Z., et al. HMGB1 in health and disease. Mol. Asp. Med. 2014;40:1–116. doi: 10.1016/j.mam.2014.05.001. PubMed DOI PMC
Vijay K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int. Immunopharmacol. 2018;59:391–412. doi: 10.1016/j.intimp.2018.03.002. PubMed DOI PMC
Caroff M., Karibian D. Structure of bacterial lipopolysaccharides. Carbohydr. Res. 2003;338:2431–2447. doi: 10.1016/j.carres.2003.07.010. PubMed DOI
Yamamoto Y., Harashima A., Saito H., Tsuneyama K., Munesue S., Motoyoshi S., Han D., Watanabe T., Asano M., Takasawa S., et al. Septic shock is associated with receptor for advanced glycation end products ligation of LPS. J. Immunol. 2011;186:3248–3257. doi: 10.4049/jimmunol.1002253. PubMed DOI
Palanissami G., Paul S.F.D. RAGE and Its Ligands: Molecular Interplay Between Glycation, Inflammation, and Hallmarks of Cancer—A Review. Horm. Cancer. 2018;9:295–325. doi: 10.1007/s12672-018-0342-9. PubMed DOI PMC
Romero R., Espinoza J., Hassan S., Gotsch F., Kusanovic J.P., Avila C., Erez O., Edwin S., Schmidt A.M. Soluble receptor for advanced glycation end products (sRAGE) and endogenous secretory RAGE (esRAGE) in amniotic fluid: Modulation by infection and inflammation. J. Perinat. Med. 2008;36:388–398. doi: 10.1515/JPM.2008.076. PubMed DOI PMC
Buhimschi I.A., Zhao G., Pettker C.M., Bahtiyar M.O., Magloire L.K., Thung S., Fairchild T., Buhimschi C.S. The receptor for advanced glycation end products (RAGE) system in women with intraamniotic infection and inflammation. Am. J. Obstet. Gynecol. 2007;196:181.e1–181.e13. doi: 10.1016/j.ajog.2006.09.001. PubMed DOI
Cao X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat. Rev. Immunol. 2016;16:35–50. doi: 10.1038/nri.2015.8. PubMed DOI
Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–820. doi: 10.1016/j.cell.2010.01.022. PubMed DOI
Wu Z., Zhang Z., Lei Z., Lei P. CD14: Biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev. 2019;48:24–31. doi: 10.1016/j.cytogfr.2019.06.003. PubMed DOI
Dulay A.T., Buhimschi C.S., Zhao G., Oliver E.A., Abdel-Razeq S.S., Shook L.L., Bahtiyar M.O., Buhimschi I.A. Amniotic Fluid Soluble Myeloid Differentiation-2 (sMD-2) as Regulator of Intra-amniotic Inflammation in Infection-induced Preterm Birth. Am. J. Reprod. Immunol. 2015;73:507–521. doi: 10.1111/aji.12362. PubMed DOI PMC
Dziarski R., Viriyakosol S., Kirkland T.N., Gupta D. Soluble CD14 enhances membrane CD14-mediated responses to peptidoglycan: Structural requirements differ from those for responses to lipopolysaccharide. Infect. Immun. 2000;68:5254–5260. doi: 10.1128/IAI.68.9.5254-5260.2000. PubMed DOI PMC
Adams K.M., Lucas J., Kapur R.P., Stevens A.M. LPS induces translocation of TLR4 in amniotic epithelium. Placenta. 2007;28:477–481. doi: 10.1016/j.placenta.2006.08.004. PubMed DOI PMC
Kacerovsky M., Andrys C., Hornychova H., Pliskova L., Lancz K., Musilova I., Drahosova M., Bolehovska R., Tambor V., Jacobsson B. Amniotic fluid soluble Toll-like receptor 4 in pregnancies complicated by preterm prelabor rupture of the membranes. J. Matern. Fetal Neonatal Med. 2012;25:1148–1155. doi: 10.3109/14767058.2011.626821. PubMed DOI
Robertson S.A., Wahid H.H., Chin P.Y., Hutchinson M.R., Moldenhauer L.M., Keelan J.A. Toll-like Receptor-4: A New Target for Preterm Labour Pharmacotherapies? Curr. Pharm. Des. 2018;24:960–973. doi: 10.2174/1381612824666180130122450. PubMed DOI
Robertson S.A., Hutchinson M.R., Rice K.C., Chin P.Y., Moldenhauer L.M., Stark M.J., Olson D.M., Keelan J.A. Targeting Toll-like receptor-4 to tackle preterm birth and fetal inflammatory injury. Clin. Transl. Immunol. 2020;9:e1121. doi: 10.1002/cti2.1121. PubMed DOI PMC
Wahid H.H., Dorian C.L., Chin P.Y., Hutchinson M.R., Rice K.C., Olson D.M., Moldenhauer L.M., Robertson S.A. Toll-Like Receptor 4 Is an Essential Upstream Regulator of On-Time Parturition and Perinatal Viability in Mice. Endocrinology. 2015;156:3828–3841. doi: 10.1210/en.2015-1089. PubMed DOI PMC
Raby A.C., Holst B., Le B.E., Diaz C., Ferran E., Conraux L., Guillemot J.C., Coles B., Kift-Morgan A., Colmont C.S., et al. Targeting the TLR co-receptor CD14 with TLR2-derived peptides modulates immune responses to pathogens. Sci. Transl. Med. 2013;5:185ra64. doi: 10.1126/scitranslmed.3005544. PubMed DOI
Dziarski R., Wang Q., Miyake K., Kirschning C.J., Gupta D. MD-2 enables Toll-like receptor 2 (TLR2)-mediated responses to lipopolysaccharide and enhances TLR2-mediated responses to Gram-positive and Gram-negative bacteria and their cell wall components. J. Immunol. 2001;166:1938–1944. doi: 10.4049/jimmunol.166.3.1938. PubMed DOI
Lembo A., Kalis C., Kirschning C.J., Mitolo V., Jirillo E., Wagner H., Galanos C., Freudenberg M.A. Differential contribution of Toll-like receptors 4 and 2 to the cytokine response to Salmonella enterica serovar Typhimurium and Staphylococcus aureus in mice. Infect. Immun. 2003;71:6058–6062. doi: 10.1128/IAI.71.10.6058-6062.2003. PubMed DOI PMC
Ibrahim Z.A., Armour C.L., Phipps S., Sukkar M.B. RAGE and TLRs: Relatives, friends or neighbours? Mol. Immunol. 2013;56:739–744. doi: 10.1016/j.molimm.2013.07.008. PubMed DOI
Dulay A.T., Buhimschi C.S., Zhao G., Oliver E.A., Mbele A., Jing S., Buhimschi I.A. Soluble TLR2 is present in human amniotic fluid and modulates the intraamniotic inflammatory response to infection. J. Immunol. 2009;182:7244–7253. doi: 10.4049/jimmunol.0803517. PubMed DOI