• This record comes from PubMed

High Mobility Group Box 1 in Pig Amniotic Membrane Experimentally Infected with E. coli O55

. 2021 Aug 03 ; 11 (8) : . [epub] 20210803

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Intra-amniotic infections (IAI) are one of the reasons for preterm birth. High mobility group box 1 (HMGB1) is a nuclear protein with various physiological functions, including tissue healing. Its excessive extracellular release potentiates inflammatory reaction and can revert its action from beneficial to detrimental. We infected the amniotic fluid of a pig on the 80th day of gestation with 1 × 104 colony forming units (CFUs) of E. coli O55 for 10 h, and evaluated the appearance of HMGB1, receptor for glycation endproducts (RAGE), and Toll-like receptor (TLR) 4 in the amniotic membrane and fluid. Sham-infected amniotic fluid served as a control. The expression and release of HMGB1 were evaluated by Real-Time PCR, immunofluorescence, immunohistochemistry, and ELISA. The infection downregulated HMGB1 mRNA expression in the amniotic membrane, changed the distribution of HMGB1 protein in the amniotic membrane, and increased its level in amniotic fluid. All RAGE mRNA, protein expression in the amniotic membrane, and soluble RAGE level in the amniotic fluid were downregulated. TLR4 mRNA and protein expression and soluble TLR4 were all upregulated. HMGB1 is a potential target for therapy to suppress the exaggerated inflammatory response. This controlled expression and release can, in some cases, prevent the preterm birth of vulnerable infants. Studies on suitable animal models can contribute to the development of appropriate therapy.

See more in PubMed

Goldenberg R.L., Culhane J.F., Iams J.D., Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84. doi: 10.1016/S0140-6736(08)60074-4. PubMed DOI PMC

Romero R., Dey S.K., Fisher S.J. Preterm labor: One syndrome, many causes. Science. 2014;345:760–765. doi: 10.1126/science.1251816. PubMed DOI PMC

Gravett M.G. Successful treatment of intraamniotic infection/inflammation: A paradigm shift. Am. J. Obstet. Gynecol. 2019;221:83–85. doi: 10.1016/j.ajog.2019.05.020. PubMed DOI

Romero R., Grivel J.C., Tarca A.L., Chaemsaithong P., Xu Z., Fitzgerald W., Hassan S.S., Chaiworapongsa T., Margolis L. Evidence of perturbations of the cytokine network in preterm labor. Am. J. Obstet. Gynecol. 2015;213:836.e1–836.e18. doi: 10.1016/j.ajog.2015.07.037. PubMed DOI PMC

Elovitz M.A., Mrinalini C. Animal models of preterm birth. Trends Endocrinol. Metab. 2004;15:479–487. doi: 10.1016/j.tem.2004.10.009. PubMed DOI

Theis K.R., Romero R., Winters A.D., Jobe A.H., Gomez-Lopez N. Lack of Evidence for Microbiota in the Placental and Fetal Tissues of Rhesus Macaques. mSphere. 2020;5:e00210-20. doi: 10.1128/mSphere.00210-20. PubMed DOI PMC

Splichalova A., Splichal I., Trebichavsky I., Hojna H. Expression of inflammatory markers in pig amnion after intraamniotic infection with nonpathogenic or enteropathogenic Escherichia coli. Folia Microbiol. 2004;49:751–756. doi: 10.1007/BF02931560. PubMed DOI

Roberts R.M., Green J.A., Schulz L.C. The evolution of the placenta. Reproduction. 2016;152:R179–R189. doi: 10.1530/REP-16-0325. PubMed DOI PMC

Mitchell B.F., Taggart M.J. Are animal models relevant to key aspects of human parturition? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009;297:R525–R545. doi: 10.1152/ajpregu.00153.2009. PubMed DOI

Simister N.E. Placental transport of immunoglobulin G. Vaccine. 2003;21:3365–3369. doi: 10.1016/S0264-410X(03)00334-7. PubMed DOI

Salmon H., Berri M., Gerdts V., Meurens F. Humoral and cellular factors of maternal immunity in swine. Dev. Comp. Immunol. 2009;33:384–393. doi: 10.1016/j.dci.2008.07.007. PubMed DOI

Peter A.T. Bovine placenta: A review on morphology, components, and defects from terminology and clinical perspectives. Theriogenology. 2013;80:693–705. doi: 10.1016/j.theriogenology.2013.06.004. PubMed DOI

Collins J.J., Kallapur S.G., Knox C.L., Nitsos I., Polglase G.R., Pillow J.J., Kuypers E., Newnham J.P., Jobe A.H., Kramer B.W. Inflammation in fetal sheep from intra-amniotic injection of Ureaplasma parvum. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2010;299:L852–L860. doi: 10.1152/ajplung.00183.2010. PubMed DOI PMC

Regan J.K., Kannan P.S., Kemp M.W., Kramer B.W., Newnham J.P., Jobe A.H., Kallapur S.G. Damage-Associated Molecular Pattern and Fetal Membrane Vascular Injury and Collagen Disorganization in Lipopolysaccharide-Induced Intra-amniotic Inflammation in Fetal Sheep. Reprod. Sci. 2016;23:69–80. doi: 10.1177/1933719115594014. PubMed DOI PMC

Janeway C.A., Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 1989;54:1–13. doi: 10.1101/SQB.1989.054.01.003. PubMed DOI

Gong T., Liu L., Jiang W., Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 2020;20:95–112. doi: 10.1038/s41577-019-0215-7. PubMed DOI

Kawai T., Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–650. doi: 10.1016/j.immuni.2011.05.006. PubMed DOI

Chen G.Y., Nunez G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010;10:826–837. doi: 10.1038/nri2873. PubMed DOI PMC

Andersson U., Yang H., Harris H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Semin. Immunol. 2018;38:40–48. doi: 10.1016/j.smim.2018.02.011. PubMed DOI

Bianchi M.E., Crippa M.P., Manfredi A.A., Mezzapelle R., Rovere Q.P., Venereau E. High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunol. Rev. 2017;280:74–82. doi: 10.1111/imr.12601. PubMed DOI

Nadeau-Vallee M., Obari D., Palacios J., Brien M.E., Duval C., Chemtob S., Girard S. Sterile inflammation and pregnancy complications: A review. Reproduction. 2016;152:R277–R292. doi: 10.1530/REP-16-0453. PubMed DOI

Dumitriu I.E., Baruah P., Manfredi A.A., Bianchi M.E., Rovere-Querini P. HMGB1: Guiding immunity from within. Trends Immunol. 2005;26:381–387. doi: 10.1016/j.it.2005.04.009. PubMed DOI

Deng M., Scott M.J., Fan J., Billiar T.R. Location is the key to function: HMGB1 in sepsis and trauma-induced inflammation. J. Leukoc. Biol. 2019;106:161–169. doi: 10.1002/JLB.3MIR1218-497R. PubMed DOI PMC

Bertheloot D., Latz E. HMGB1, IL-1alpha, IL-33 and S100 proteins: Dual-function alarmins. Cell. Mol. Immunol. 2017;14:43–64. doi: 10.1038/cmi.2016.34. PubMed DOI PMC

Paudel Y.N., Angelopoulou E., Piperi C., Balasubramaniam V.R., Othman I., Shaikh M.F. Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: Updates on receptor signalling. Eur. J. Pharmacol. 2019;858:172487. doi: 10.1016/j.ejphar.2019.172487. PubMed DOI

Yang H., Wang H., Andersson U. Targeting Inflammation Driven by HMGB1. Front. Immunol. 2020;11:484. doi: 10.3389/fimmu.2020.00484. PubMed DOI PMC

Gibbs R.S., Duff P. Progress in pathogenesis and management of clinical intraamniotic infection. Am. J. Obstet. Gynecol. 1991;164:1317–1326. doi: 10.1016/0002-9378(91)90707-X. PubMed DOI

Splichalova A., Splichal I., Chmelarova P., Trebichavsky I. Alarmin HMGB1 is released in the small intestine of gnotobiotic piglets infected with enteric pathogens and its level in plasma reflects severity of sepsis. J. Clin. Immunol. 2011;31:488–497. doi: 10.1007/s10875-010-9505-3. PubMed DOI

Splichalova A., Splichal I. Local and systemic occurrences of HMGB1 in gnotobiotic piglets infected with E. coli O55 are related to bacterial translocation and inflammatory cytokines. Cytokine. 2012;60:597–600. doi: 10.1016/j.cyto.2012.07.026. PubMed DOI

Splichalova A., Trebichavsky I., Muneta Y., Mori Y., Splichal I. Effect of bacterial virulence on IL-18 expression in the amnion infected with Escherichia coli. Am. J. Reprod. Immunol. 2005;53:255–260. doi: 10.1111/j.1600-0897.2005.00273.x. PubMed DOI

Splichal I., Trebichavsky I., Splichalova A., Ditetova L., Zahradnickova M. Escherichia coli administered into pig amniotic cavity appear in fetal airways and attract macrophages into fetal lungs. Physiol. Res. 2002;51:523–528. PubMed

Splichalova A., Slavikova V., Splichalova Z., Splichal I. Preterm Life in Sterile Conditions: A Study on Preterm, Germ-Free Piglets. Front. Immunol. 2018;9:220. doi: 10.3389/fimmu.2018.00220. PubMed DOI PMC

Splichal I., Donovan S.M., Jenistova V., Splichalova I., Salmonova H., Vlkova E., Neuzil B.V., Sinkora M., Killer J., Skrivanova E., et al. High Mobility Group Box 1 and TLR4 Signaling Pathway in Gnotobiotic Piglets Colonized/Infected with L. amylovorus, L. mucosae, E. coli Nissle 1917 and S. Typhimurium. Int. J. Mol. Sci. 2019;20:6294. doi: 10.3390/ijms20246294. PubMed DOI PMC

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Splichal I., Rychlik I., Splichalova I., Karasova D., Splichalova A. Toll-Like Receptor 4 Signaling in the Ileum and Colon of Gnotobiotic Piglets Infected with Salmonella Typhimurium or Its Isogenic rfa Mutants. Toxins. 2020;12:545. doi: 10.3390/toxins12090545. PubMed DOI PMC

Looi K., Evans D.J., Garratt L.W., Ang S., Hillas J.K., Kicic A., Simpson S.J. Preterm birth: Born too soon for the developing airway epithelium? Paediatr. Respir. Rev. 2019;31:82–88. doi: 10.1016/j.prrv.2018.11.003. PubMed DOI

Coffey L.L., Keesler R.I., Pesavento P.A., Woolard K., Singapuri A., Watanabe J., Cruzen C., Christe K.L., Usachenko J., Yee J., et al. Intraamniotic Zika virus inoculation of pregnant rhesus macaques produces fetal neurologic disease. Nat. Commun. 2018;9:2414. doi: 10.1038/s41467-018-04777-6. PubMed DOI PMC

Grigsby P.L., Novy M.J., Sadowsky D.W., Morgan T.K., Long M., Acosta E., Duffy L.B., Waites K.B. Maternal azithromycin therapy for Ureaplasma intraamniotic infection delays preterm delivery and reduces fetal lung injury in a primate model. Am. J. Obstet. Gynecol. 2012;207:475.e1–475.e14. doi: 10.1016/j.ajog.2012.10.871. PubMed DOI PMC

Gravett M.G., Adams K.M., Sadowsky D.W., Grosvenor A.R., Witkin S.S., Axthelm M.K., Novy M.J. Immunomodulators plus antibiotics delay preterm delivery after experimental intraamniotic infection in a nonhuman primate model. Am. J. Obstet. Gynecol. 2007;197:518.e1–518.e8. doi: 10.1016/j.ajog.2007.03.064. PubMed DOI PMC

Nguyen D.N., Thymann T., Goericke-Pesch S.K., Ren S., Wei W., Skovgaard K., Damborg P., Brunse A., van Gorp C., Kramer B.W., et al. Prenatal Intra-Amniotic Endotoxin Induces Fetal Gut and Lung Immune Responses and Postnatal Systemic Inflammation in Preterm Pigs. Am. J. Pathol. 2018;188:2629–2643. doi: 10.1016/j.ajpath.2018.07.020. PubMed DOI

Trebichavsky I., Splichal I., Zahradnickova M., Splichalova A., Mori Y. Lipopolysaccharide induces inflammatory cytokines in the pig amnion. Vet. Immunol. Immunopathol. 2002;87:11–18. doi: 10.1016/S0165-2427(02)00025-9. PubMed DOI

Stinson L.F., Payne M.S. Infection-mediated preterm birth: Bacterial origins and avenues for intervention. Aust. N. Z. J. Obstet. Gynaecol. 2019;59:781–790. doi: 10.1111/ajo.13078. PubMed DOI

Matzinger P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 1994;12:991–1045. doi: 10.1146/annurev.iy.12.040194.005015. PubMed DOI

Kim C.J., Romero R., Chaemsaithong P., Chaiyasit N., Yoon B.H., Kim Y.M. Acute chorioamnionitis and funisitis: Definition, pathologic features, and clinical significance. Am. J. Obstet. Gynecol. 2015;213:S29–S52. doi: 10.1016/j.ajog.2015.08.040. PubMed DOI PMC

Gomez-Lopez N., Romero R., Plazyo O., Panaitescu B., Furcron A.E., Miller D., Roumayah T., Flom E., Hassan S.S. Intra-Amniotic Administration of HMGB1 Induces Spontaneous Preterm Labor and Birth. Am. J. Reprod. Immunol. 2016;75:3–7. doi: 10.1111/aji.12443. PubMed DOI PMC

Wang H., Bloom O., Zhang M., Vishnubhakat J.M., Ombrellino M., Che J., Frazier A., Yang H., Ivanova S., Borovikova L., et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–251. doi: 10.1126/science.285.5425.248. PubMed DOI

Cheng Z., Abrams S.T., Toh J., Wang S.S., Wang Z., Yu Q., Yu W., Toh C.H., Wang G. The Critical Roles and Mechanisms of Immune Cell Death in Sepsis. Front. Immunol. 2020;11:1918. doi: 10.3389/fimmu.2020.01918. PubMed DOI PMC

Wang H., Yang H., Czura C.J., Sama A.E., Tracey K.J. HMGB1 as a late mediator of lethal systemic inflammation. Am. J. Respir. Crit. Care Med. 2001;164:1768–1773. doi: 10.1164/ajrccm.164.10.2106117. PubMed DOI

Karlsson S., Pettila V., Tenhunen J., Laru-Sompa R., Hynninen M., Ruokonen E. HMGB1 as a predictor of organ dysfunction and outcome in patients with severe sepsis. Intensive Care Med. 2008;34:1046–1053. doi: 10.1007/s00134-008-1032-9. PubMed DOI

Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801. doi: 10.1016/j.cell.2006.02.015. PubMed DOI

Hudson B.I., Lippman M.E. Targeting RAGE Signaling in Inflammatory Disease. Annu. Rev. Med. 2018;69:349–364. doi: 10.1146/annurev-med-041316-085215. PubMed DOI

Bonaldi T., Talamo F., Scaffidi P., Ferrera D., Porto A., Bachi A., Rubartelli A., Agresti A., Bianchi M.E. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003;22:5551–5560. doi: 10.1093/emboj/cdg516. PubMed DOI PMC

Youn J.H., Shin J.S. Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J. Immunol. 2006;177:7889–7897. doi: 10.4049/jimmunol.177.11.7889. PubMed DOI

Ito I., Fukazawa J., Yoshida M. Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils. J. Biol. Chem. 2007;282:16336–16344. doi: 10.1074/jbc.M608467200. PubMed DOI

Gardella S., Andrei C., Ferrera D., Lotti L.V., Torrisi M.R., Bianchi M.E., Rubartelli A. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 2002;3:995–1001. doi: 10.1093/embo-reports/kvf198. PubMed DOI PMC

Romero R., Chaiworapongsa T., Alpay S.Z., Xu Y., Hussein Y., Dong Z., Kusanovic J.P., Kim C.J., Hassan S.S. Damage-associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: A study of the alarmin HMGB1. J. Matern. Fetal Neonatal Med. 2011;24:1444–1455. doi: 10.3109/14767058.2011.591460. PubMed DOI PMC

Kobayashi K., Miwa H., Yasui M. Inflammatory mediators weaken the amniotic membrane barrier through disruption of tight junctions. J. Physiol. 2010;588:4859–4869. doi: 10.1113/jphysiol.2010.197764. PubMed DOI PMC

Romero R., Chaiworapongsa T., Savasan Z.A., Hussein Y., Dong Z., Kusanovic J.P., Kim C.J., Hassan S.S. Clinical chorioamnionitis is characterized by changes in the expression of the alarmin HMGB1 and one of its receptors, sRAGE. J. Matern. Fetal Neonatal Med. 2012;25:558–567. doi: 10.3109/14767058.2011.599083. PubMed DOI PMC

Baumbusch M.A., Buhimschi C.S., Oliver E.A., Zhao G., Thung S., Rood K., Buhimschi I.A. High Mobility Group-Box 1 (HMGB1) levels are increased in amniotic fluid of women with intra-amniotic inflammation-determined preterm birth, and the source may be the damaged fetal membranes. Cytokine. 2016;81:82–87. doi: 10.1016/j.cyto.2016.02.013. PubMed DOI PMC

Choltus H., Lavergne M., Belville C., Gallot D., Minet-Quinard R., Durif J., Blanchon L., Sapin V. Occurrence of a RAGE-Mediated Inflammatory Response in Human Fetal Membranes. Front. Physiol. 2020;11:581. doi: 10.3389/fphys.2020.00581. PubMed DOI PMC

Romero R., Miranda J., Chaiworapongsa T., Korzeniewski S.J., Chaemsaithong P., Gotsch F., Dong Z., Ahmed A.I., Yoon B.H., Hassan S.S., et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am. J. Reprod. Immunol. 2014;72:458–474. doi: 10.1111/aji.12296. PubMed DOI PMC

Kang R., Chen R., Zhang Q., Hou W., Wu S., Cao L., Huang J., Yu Y., Fan X.G., Yan Z., et al. HMGB1 in health and disease. Mol. Asp. Med. 2014;40:1–116. doi: 10.1016/j.mam.2014.05.001. PubMed DOI PMC

Vijay K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int. Immunopharmacol. 2018;59:391–412. doi: 10.1016/j.intimp.2018.03.002. PubMed DOI PMC

Caroff M., Karibian D. Structure of bacterial lipopolysaccharides. Carbohydr. Res. 2003;338:2431–2447. doi: 10.1016/j.carres.2003.07.010. PubMed DOI

Yamamoto Y., Harashima A., Saito H., Tsuneyama K., Munesue S., Motoyoshi S., Han D., Watanabe T., Asano M., Takasawa S., et al. Septic shock is associated with receptor for advanced glycation end products ligation of LPS. J. Immunol. 2011;186:3248–3257. doi: 10.4049/jimmunol.1002253. PubMed DOI

Palanissami G., Paul S.F.D. RAGE and Its Ligands: Molecular Interplay Between Glycation, Inflammation, and Hallmarks of Cancer—A Review. Horm. Cancer. 2018;9:295–325. doi: 10.1007/s12672-018-0342-9. PubMed DOI PMC

Romero R., Espinoza J., Hassan S., Gotsch F., Kusanovic J.P., Avila C., Erez O., Edwin S., Schmidt A.M. Soluble receptor for advanced glycation end products (sRAGE) and endogenous secretory RAGE (esRAGE) in amniotic fluid: Modulation by infection and inflammation. J. Perinat. Med. 2008;36:388–398. doi: 10.1515/JPM.2008.076. PubMed DOI PMC

Buhimschi I.A., Zhao G., Pettker C.M., Bahtiyar M.O., Magloire L.K., Thung S., Fairchild T., Buhimschi C.S. The receptor for advanced glycation end products (RAGE) system in women with intraamniotic infection and inflammation. Am. J. Obstet. Gynecol. 2007;196:181.e1–181.e13. doi: 10.1016/j.ajog.2006.09.001. PubMed DOI

Cao X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat. Rev. Immunol. 2016;16:35–50. doi: 10.1038/nri.2015.8. PubMed DOI

Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–820. doi: 10.1016/j.cell.2010.01.022. PubMed DOI

Wu Z., Zhang Z., Lei Z., Lei P. CD14: Biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev. 2019;48:24–31. doi: 10.1016/j.cytogfr.2019.06.003. PubMed DOI

Dulay A.T., Buhimschi C.S., Zhao G., Oliver E.A., Abdel-Razeq S.S., Shook L.L., Bahtiyar M.O., Buhimschi I.A. Amniotic Fluid Soluble Myeloid Differentiation-2 (sMD-2) as Regulator of Intra-amniotic Inflammation in Infection-induced Preterm Birth. Am. J. Reprod. Immunol. 2015;73:507–521. doi: 10.1111/aji.12362. PubMed DOI PMC

Dziarski R., Viriyakosol S., Kirkland T.N., Gupta D. Soluble CD14 enhances membrane CD14-mediated responses to peptidoglycan: Structural requirements differ from those for responses to lipopolysaccharide. Infect. Immun. 2000;68:5254–5260. doi: 10.1128/IAI.68.9.5254-5260.2000. PubMed DOI PMC

Adams K.M., Lucas J., Kapur R.P., Stevens A.M. LPS induces translocation of TLR4 in amniotic epithelium. Placenta. 2007;28:477–481. doi: 10.1016/j.placenta.2006.08.004. PubMed DOI PMC

Kacerovsky M., Andrys C., Hornychova H., Pliskova L., Lancz K., Musilova I., Drahosova M., Bolehovska R., Tambor V., Jacobsson B. Amniotic fluid soluble Toll-like receptor 4 in pregnancies complicated by preterm prelabor rupture of the membranes. J. Matern. Fetal Neonatal Med. 2012;25:1148–1155. doi: 10.3109/14767058.2011.626821. PubMed DOI

Robertson S.A., Wahid H.H., Chin P.Y., Hutchinson M.R., Moldenhauer L.M., Keelan J.A. Toll-like Receptor-4: A New Target for Preterm Labour Pharmacotherapies? Curr. Pharm. Des. 2018;24:960–973. doi: 10.2174/1381612824666180130122450. PubMed DOI

Robertson S.A., Hutchinson M.R., Rice K.C., Chin P.Y., Moldenhauer L.M., Stark M.J., Olson D.M., Keelan J.A. Targeting Toll-like receptor-4 to tackle preterm birth and fetal inflammatory injury. Clin. Transl. Immunol. 2020;9:e1121. doi: 10.1002/cti2.1121. PubMed DOI PMC

Wahid H.H., Dorian C.L., Chin P.Y., Hutchinson M.R., Rice K.C., Olson D.M., Moldenhauer L.M., Robertson S.A. Toll-Like Receptor 4 Is an Essential Upstream Regulator of On-Time Parturition and Perinatal Viability in Mice. Endocrinology. 2015;156:3828–3841. doi: 10.1210/en.2015-1089. PubMed DOI PMC

Raby A.C., Holst B., Le B.E., Diaz C., Ferran E., Conraux L., Guillemot J.C., Coles B., Kift-Morgan A., Colmont C.S., et al. Targeting the TLR co-receptor CD14 with TLR2-derived peptides modulates immune responses to pathogens. Sci. Transl. Med. 2013;5:185ra64. doi: 10.1126/scitranslmed.3005544. PubMed DOI

Dziarski R., Wang Q., Miyake K., Kirschning C.J., Gupta D. MD-2 enables Toll-like receptor 2 (TLR2)-mediated responses to lipopolysaccharide and enhances TLR2-mediated responses to Gram-positive and Gram-negative bacteria and their cell wall components. J. Immunol. 2001;166:1938–1944. doi: 10.4049/jimmunol.166.3.1938. PubMed DOI

Lembo A., Kalis C., Kirschning C.J., Mitolo V., Jirillo E., Wagner H., Galanos C., Freudenberg M.A. Differential contribution of Toll-like receptors 4 and 2 to the cytokine response to Salmonella enterica serovar Typhimurium and Staphylococcus aureus in mice. Infect. Immun. 2003;71:6058–6062. doi: 10.1128/IAI.71.10.6058-6062.2003. PubMed DOI PMC

Ibrahim Z.A., Armour C.L., Phipps S., Sukkar M.B. RAGE and TLRs: Relatives, friends or neighbours? Mol. Immunol. 2013;56:739–744. doi: 10.1016/j.molimm.2013.07.008. PubMed DOI

Dulay A.T., Buhimschi C.S., Zhao G., Oliver E.A., Mbele A., Jing S., Buhimschi I.A. Soluble TLR2 is present in human amniotic fluid and modulates the intraamniotic inflammatory response to infection. J. Immunol. 2009;182:7244–7253. doi: 10.4049/jimmunol.0803517. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...