Large Platelet and Endothelial Extracellular Vesicles in Cord Blood of Preterm Newborns: Correlation with the Presence of Hemolysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV17-31403A
Agentura Pro Zdravotnický Výzkum České Republiky
1322119
Grantová Agentura, Univerzita Karlova
PubMed
34441251
PubMed Central
PMC8394910
DOI
10.3390/diagnostics11081316
PII: diagnostics11081316
Knihovny.cz E-zdroje
- Klíčová slova
- cord blood, extracellular vesicles, flow cytometry, immune electron microscopy,
- Publikační typ
- časopisecké články MeSH
Different biomarkers are investigated to detect the causes of severe complications in preterm infants. Extracellular vesicles (EVs) are recognized as an important part of cell-to-cell communication, and their increased levels were reported in numerous pathological states. We aimed to increase our knowledge about the incidence of platelet and endothelial EVs in cord blood of preterm newborns using conventional flow cytometry. The presence of platelet (CD36+CD41+), activated platelet (CD41+CD62+), and endothelial (CD31+CD105+) EVs was analyzed. Immune electron microscopy was used to confirm the presence of EVs and the specificity of their labeling. The size of detected extracellular vesicles was in the range 400-2000 nm. The differences in the counts of EVs between the preterm and control group were not significant and no correlation of EVs count with gestation age was recorded. Cord blood plasma samples with free hemoglobin level > 1 mg/mL had more than threefold higher counts of CD36+CD41+ and CD41+CD62+ EVs (p < 0.001), while the count of CD31+CD105+ EVs was only moderately increased (p < 0.05). Further studies utilizing cytometers with improved sensitivity are needed to confirm that the analysis of large platelet and endothelial EVs mirrors the quantitative situation of their whole plasma assemblage.
Zobrazit více v PubMed
Galinsky R., Polglase G.R., Hooper S.B., Black M.J., Moss T.J. The consequences of chorioamnionitis: Preterm birth and effects on development. J. Pregnancy. 2013;2013:412831. doi: 10.1155/2013/412831. PubMed DOI PMC
Spinillo A., Iacobone A.D., Calvino I.G., Alberi I., Gardella B. The role of the placenta in feto-neonatal infections. Early Hum. Dev. 2014;90(Suppl. 1):S7–S9. doi: 10.1016/S0378-3782(14)70003-9. PubMed DOI
Sabic D., Koenig J.M. A perfect storm: Fetal inflammation and the developing immune system. Pediatr. Res. 2020;87:319–326. doi: 10.1038/s41390-019-0582-6. PubMed DOI PMC
Janota J., Stranák Z., Bĕlohlávková S., Mudra K., Simák J. Postnatal increase of procalcitonin in premature newborns is enhanced by chorioamnionitis and neonatal sepsis. Eur. J. Clin. Investig. 2001;31:978–983. doi: 10.1046/j.1365-2362.2001.00912.x. PubMed DOI
Van Niel G., D’Angelo G., Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018;19:213–228. doi: 10.1038/nrm.2017.125. PubMed DOI
Condrat C.E., Varlas V.N., Duică F., Antoniadis P., Danila C.A., Cretoiu D., Suciu N., Crețoiu S.M., Voinea S.C. Pregnancy-related extracellular vesicles revisited. Int. J. Mol. Sci. 2021;22:3904. doi: 10.3390/ijms22083904. PubMed DOI PMC
Nolan J.P., Jones J.C. Detection of platelet vesicles by flow cytometry. Platelets. 2017;28:256–262. doi: 10.1080/09537104.2017.1280602. PubMed DOI PMC
Lucchetti D., Battaglia A., Ricciardi-Tenore C., Colella F., Perelli L., De Maria R., Scambia G., Sgambato A., Fattorossi A. Measuring extracellular vesicles by conventional flow cytometry: Dream or reality? Int. J. Mol. Sci. 2020;21:6257. doi: 10.3390/ijms21176257. PubMed DOI PMC
Vozel D., Uršič B., Krek J.L., Štukelj R., Kralj-Iglič V. Applicability of extracellular vesicles in clinical studies. Eur. J. Clin. Investig. 2017;47:305–313. doi: 10.1111/eci.12733. PubMed DOI
Wang Z., Zhao G., Zeng M., Feng W., Liu J. Overview of extracellular vesicles in the pathogenesis of preeclampsia. Biol. Reprod. 2021;105:32–39. doi: 10.1093/biolre/ioab060. PubMed DOI
Schweintzger S., Schlagenhauf A., Leschnik B., Rinner B., Bernhard H., Novak M., Muntean W. Microparticles in newborn cord blood: Slight elevation after normal delivery. Thromb. Res. 2011;128:62–67. doi: 10.1016/j.thromres.2011.01.013. PubMed DOI
Sibikova M., Vitkova V., Jamrichova L., Haluzik M., Zivny J., Janota J. Spontaneous delivery is associated with increased endothelial activity in cord blood compared to elective cesarean section. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020;251:229–234. doi: 10.1016/j.ejogrb.2020.05.059. PubMed DOI
Wasiluk A., Mantur M., Szczepański M., Matowicka-Karna J., Kemona H., Warda J. Platelet-derived microparticles and platelet count in preterm newborns. Fetal Diagn. Ther. 2008;23:149–152. doi: 10.1159/000111597. PubMed DOI
Hujacova A., Brozova T., Mosko T., Kostelanska M., Stranak Z., Holada K. Platelet extracellular vesicles in cord blood of term and preterm newborns assayed by flow cytometry: The effect of delay in sample preparation and of sample freezing. Folia Biol. 2020;66:204–211. PubMed
Margraf A., Nussbaum C., Sperandio M. Ontogeny of platelet function. Blood Adv. 2019;3:692–703. doi: 10.1182/bloodadvances.2018024372. PubMed DOI PMC
Gordijn S.J., Beune I.M., Thilaganathan B., Papageorghiou A., Baschat A.A., Baker P.N., Silver R.M., Wynia K., Ganzevoort W. Consensus definition of fetal growth restriction: A Delphi procedure. Ultrasound Obstet. Gynecol. 2016;48:333–339. doi: 10.1002/uog.15884. PubMed DOI
Committee on Obstetric Practice Committee Opinion No. 713: Antenatal corticosteroid therapy for fetal maturation. Obstet. Gynecol. 2017;130:e102–e109. doi: 10.1097/AOG.0000000000002237. PubMed DOI
Di Renzo G.C., Roura L.C., Facchinetti F., Antsaklis A., Breborowicz G., Gratacos E., Husslein P., Lamont R., Mikhailov A., Montenegro N., et al. Guidelines for the management of spontaneous preterm labor: Identification of spontaneous preterm labor, diagnosis of preterm premature rupture of membranes, and preventive tools for preterm birth. J. Matern. Neonatal Med. 2011;24:659–667. doi: 10.3109/14767058.2011.553694. PubMed DOI PMC
Khong T.Y., Mooney E.E., Ariel I., Balmus N.C., Boyd T.K., Brundler M.A., Derricott H., Evans M.J., Faye-Petersen O.M., Gillan J.E., et al. Sampling and definitions of placental lesions: Amsterdam Placental Workshop Group consensus statement. Arch. Pathol. Lab. Med. 2016;140:698–713. doi: 10.5858/arpa.2015-0225-CC. PubMed DOI
Jung E., Romero R., Yeo L., Diaz-Primera R., Marin-Concha J., Para R., Lopez A.M., Pacora P., Gomez-Lopez N., Yoon B.H., et al. The fetal inflammatory response syndrome: The origins of a concept, pathophysiology, diagnosis, and obstetrical implications. Semin. Fetal Neonatal Med. 2020;25:101146. doi: 10.1016/j.siny.2020.101146. PubMed DOI PMC
Manuals and Forms. [(accessed on 16 February 2021)]; Available online: https://vtoxford.zendesk.com/hc/en-us/categories/360000861394-Manuals-and-Forms.
Panigaj M., Brouckova A., Glierova H., Dvorakova E., Simak J., Vostal J.G., Holada K. Underestimation of the expression of cellular prion protein on human red blood cells. Transfusion. 2011;51:1012–1021. doi: 10.1111/j.1537-2995.2010.02924.x. PubMed DOI
Noe D.A., Weedn V., Bell W.R. Direct spectrophotometry of serum hemoglobin: An Allen correction compared with a three-wavelength polychromatic analysis. Clin. Chem. 1984;30:627–630. doi: 10.1093/clinchem/30.5.627. PubMed DOI
Welsh J.A., Horak P., Wilkinson J.S., Ford V.J., Jones J.C., Smith D., Holloway J.A., Englyst N.A. FCMPASS software aids extracellular vesicle light scatter standardization. Cytom. A. 2020;97:569–581. doi: 10.1002/cyto.a.23782. PubMed DOI PMC
Pietrasanta C., Pugni L., Ronchi A., Bottino I., Ghirardi B., Sanchez-Schmitz G., Borriello F., Mosca F., Levy O. Vascular endothelium in neonatal sepsis: Basic mechanisms and translational opportunities. Front. Pediatr. 2019;7:340. doi: 10.3389/fped.2019.00340. PubMed DOI PMC
Ayers L., Kohler M., Harrison P., Sargent I., Dragovic R., Schaap M., Nieuwland R., Brooks S.A., Ferry B. Measurement of circulating cell-derived microparticles by flow cytometry: Sources of variability within the assay. Thromb. Res. 2011;127:370–377. doi: 10.1016/j.thromres.2010.12.014. PubMed DOI
Panigaj M., Glier H., Wildova M., Holada K. Expression of prion protein in mouse erythroid progenitors and differentiating murine erythroleukemia cells. PLoS ONE. 2011;6:e24599. doi: 10.1371/journal.pone.0024599. PubMed DOI PMC
De Paoli S.H., Tegegn T.Z., Elhelu O.K., Strader M.B., Patel M., Diduch L.L., Tarandovskiy I.D., Wu Y., Zheng J., Ovanesov M.V., et al. Dissecting the biochemical architecture and morphological release pathways of the human platelet extracellular vesiculome. Cell. Mol. Life Sci. 2018;75:3781–3801. doi: 10.1007/s00018-018-2771-6. PubMed DOI PMC
Simak J., Holada K., Risitano A.M., Zivny J.H., Young N.S., Vostal J.G. Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria. Br. J. Haematol. 2004;125:804–813. doi: 10.1111/j.1365-2141.2004.04974.x. PubMed DOI
Rikkert L.G., Nieuwland R., Terstappen L.W.M.M., Coumans F.A.W. Quality of extracellular vesicle images by transmission electron microscopy is operator and protocol dependent. J. Extracell. Vesicles. 2019;8:1555419. doi: 10.1080/20013078.2018.1555419. PubMed DOI PMC
Jamaly S., Ramberg C., Olsen R., Latysheva N., Webster P., Sovershaev T., Brækkan S.K., Hansen J.B. Impact of preanalytical conditions on plasma concentration and size distribution of extracellular vesicles using Nanoparticle Tracking Analysis. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-35401-8. PubMed DOI PMC
Welsh J.A., Van Der Pol E., Arkesteijn G.J.A., Bremer M., Brisson A., Coumans F., Dignat-George F., Duggan E., Ghiran I., Giebel B., et al. MIFlowCyt-EV: A framework for standardized reporting of extracellular vesicle flow cytometry experiments. J. Extracell. Vesicles. 2020;9:1713526. doi: 10.1080/20013078.2020.1713526. PubMed DOI PMC
Helms C.C., Marvel M., Zhao W., Stahle M., Vest R., Kato G.J., Lee J.S., Christ G., Gladwin M.T., Hantgan R.R., et al. Mechanisms of hemolysis-associated platelet activation. J. Thromb. Haemost. 2013;11:2148–2154. doi: 10.1111/jth.12422. PubMed DOI PMC
Tóth J., Oláh A.V., Petercsák T., Kovács T., Kappelmayer J. Detection of haemolysis, a frequent preanalytical problem in the serum of newborns and adults. EJIFCC. 2020;31:6–14. PubMed PMC
Nussbaum C., Gloning A., Pruenster M., Frommhold D., Bierschenk S., Genzel-Boroviczény O., von Andrian U.H., Quackenbush E., Sperandio M. Neutrophil and endothelial adhesive function during human fetal ontogeny. J. Leukoc. Biol. 2013;93:175–184. doi: 10.1189/jlb.0912468. PubMed DOI PMC
McVey M.J., Spring C.M., Kuebler W.M. Improved resolution in extracellular vesicle populations using 405 instead of 488 nm side scatter. J. Extracell. Vesicles. 2018;7:1454776. doi: 10.1080/20013078.2018.1454776. PubMed DOI PMC
Pekarkova K., Soukup J., Kostelanska M., Sirc J., Stranak Z., Holada K. Cord blood extracellular vesicles analyzed by flow cytometry with thresholding using 405 nm or 488 nm laser leads to concurrent results. Diagnostics. under review. PubMed PMC