Cord Blood Extracellular Vesicles Analyzed by Flow Cytometry with Thresholding Using 405 nm or 488 nm Laser Leads to Concurrent Results
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV17-31403A
Ministerstvo Zdravotnictví Ceské Republiky
1322119
Grantová Agentura, Univerzita Karlova
PubMed
34441255
PubMed Central
PMC8392526
DOI
10.3390/diagnostics11081320
PII: diagnostics11081320
Knihovny.cz E-zdroje
- Klíčová slova
- data correlation, extracellular vesicles, flow cytometry, thresholding parameter,
- Publikační typ
- časopisecké články MeSH
Extracellular vesicles (EVs) from liquid biopsies are extensively analyzed by flow cytometry, a technology that is continuously evolving. Thresholding utilizing a violet 405 nm laser side scatter (VSSC) has recently been implemented. Here, we collected set of large EV (lEV) samples from cord blood, which we analyzed using a standard flow cytometer improved via a 405 nm laser side scatter. Samples were analyzed using two distinct thresholding methods-one based on VSSC, and one based on VSSC combined with fluorescence thresholding on stained phosphatidylserine. Through these thresholding methods, we compared lEVs from pre-term births and control cord blood. Double-labeled lEVs with platelet CD36+/CD41+, activated platelet CD41+/CD62P+ and endothelial CD31+/CD105+ antibodies were used. Apart from comparing the two groups together, we also correlated measured lEVs with the thresholding methods. We also correlated the results of this study with data analyzed in our previous study in which we used a conventional 488 nm laser SSC. We did not find any difference between the two cord blood groups. However, we found highly concurrent data via our correlation of the thresholding methods, with correlation coefficients ranging from 0.80 to 0.96 even though the numbers of detected lEVs differed between thresholding methods. In conclusion, our approaches to thresholding provided concurrent data and it seems that improving the cytometer with the use of a VSSC increases its sensitivity, despite not being particularly critical to the validity of flow cytometric studies that compare pathological and physiological conditions in liquid biopsies.
Zobrazit více v PubMed
Welsh J.A., Van Der Pol E., Arkesteijn G.J.A., Bremer M., Brisson A., Coumans F., Dignat-George F., Duggan E., Ghiran I., Giebel B., et al. MIFlowCyt-EV: A framework for standardized reporting of extracellular vesicle flow cytometry experiments. J. Extracell. Vesicles. 2020;9:17. doi: 10.1080/20013078.2020.1713526. PubMed DOI PMC
Ayers L., Kohler M., Harrison P., Sargent I., Dragovic R., Schaap M., Nieuwland R., Brooks S.A., Ferry B. Measurement of circulating cell-derived microparticles by flow cytometry: Sources of variability within the assay. Thromb. Res. 2011;127:370–377. doi: 10.1016/j.thromres.2010.12.014. PubMed DOI
Lacroix R., Judicone C., Poncelet P., Robert S., Arnaud L., Sampol J., Dignat-George F. Impact of pre-analytical parameters on the measurement of circulating microparticles: Towards standardization of protocol. J. Thromb. Haemost. 2012;10:437–446. doi: 10.1111/j.1538-7836.2011.04610.x. PubMed DOI
Hujacova A., Brozova T., Mosko T., Kostelanska M., Stranak Z., Holada K. Platelet extracellular vesicles in cord blood of term and preterm newborns assayed by flow cytometry: The effect of delay in sample preparation and of sample freezing. Folia Biol. 2020;66:204–211. PubMed
Lacroix R., Judicone C., Mooberry M., Boucekine M., Key N.S., Dignat-George F., Workshop I.S. Standardization of pre-analytical variables in plasma microparticle determination: Results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J. Thromb. Haemost. 2013;11:1190–1193. doi: 10.1111/jth.12207. PubMed DOI PMC
Cointe S., Judicone C., Robert S., Mooberry M.J., Poncelet P., Wauben M., Nieuwland R., Key N.S., Dignat-George F., Lacroix R. Standardization of microparticle enumeration across different flow cytometry platforms: Results of a multicenter collaborative workshop. J. Thromb. Haemost. 2017;15:187–193. doi: 10.1111/jth.13514. PubMed DOI PMC
Van Der Pol E., Sturk A., van Leeuwen T., Nieuwland R., Coumans F., Mobarrez F., Arkesteijn G., Wauben M., Siljander P.R., Sánchez-López V., et al. Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. J. Thromb. Haemost. 2018;16:1236–1245. doi: 10.1111/jth.14009. PubMed DOI
Welsh J.A., Horak P., Wilkinson J.S., Ford V.J., Jones J.C., Smith D., Holloway J.A., Englyst N.A. FCMPASS software aids extracellular vesicle light scatter standardization. Cytom. Part A. 2020;97:569–581. doi: 10.1002/cyto.a.23782. PubMed DOI PMC
Lötvall J., Hill A.F., Hochberg F., Buzás E.I., Di Vizio D., Gardiner C., Gho Y.S., Kurochkin I.V., Mathivanan S., Quesenberry P., et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles. 2014;3:26913. doi: 10.3402/jev.v3.26913. PubMed DOI PMC
Thery C., Witwer K.W., Aikawa E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R., Antoniou A., Arab T., Archer F., Atkin-Smith G.K., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018;7:43. doi: 10.1080/20013078.2018.1535750. PubMed DOI PMC
Hujacova A.S.J., Pekarkova K., Brozova T., Kostelanska M., Soukup J., Mosko T., Holada K., Stranak Z. Large platelet and endothelial extracellular vesicles in cord blood of preterm newborns: Correlation with the pres-ence of hemolysis. Diagnostics. 2021 under review. PubMed PMC
Simeone P., Celia C., Bologna G., Ercolino E., Pierdomenico L., Cilurzo F., Grande R., Diomede F., Vespa S., Canonico B., et al. Diameters and fluorescence calibration for extracellular vesicle analyses by flow cytometry. Int. J. Mol. Sci. 2020;21:7885. doi: 10.3390/ijms21217885. PubMed DOI PMC
Arraud N., Gounou C., Turpin D., Brisson A.R. Fluorescence triggering: A general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry. Cytom. Part A. 2016;89A:184–195. doi: 10.1002/cyto.a.22669. PubMed DOI
Gardiner C., Shaw M., Hole P., Smith J., Tannetta D., Redman C.W., Sargent I.L. Measurement of refractive index by nanoparticle tracking analysis reveals heterogeneity in extracellular vesicles. J. Extracell. Vesicles. 2014;3:25361. doi: 10.3402/jev.v3.25361. PubMed DOI PMC
McVey M.J., Spring C.M., Kuebler W.M. Improved resolution in extracellular vesicle populations using 405 instead of 488 nm side scatter. J. Extracell. Vesicles. 2018;7:11. doi: 10.1080/20013078.2018.1454776. PubMed DOI PMC
Dasgupta S.K., Guchhait P., Thiagarajan P. Lactadherin binding and phosphatidylserine expression on cell surface-comparison with annexin A5. Transl. Res. 2006;148:19–25. doi: 10.1016/j.lab.2006.03.006. PubMed DOI
Erdbrugger U., Rudy C.K., Etter M.E., Dryden K.A., Yeager M., Klibanov A.L., Lannigan J. Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry. Cytom. Part A. 2014;85A:756–770. doi: 10.1002/cyto.a.22494. PubMed DOI
Jamaly S., Ramberg C., Olsen R., Latysheva N., Webster P., Sovershaev T., Braekkan S.K., Hansen J.B. Impact of preanalytical conditions on plasma concentration and size distribution of extracellular vesicles using Nanoparticle Tracking Analysis. Sci. Rep. 2018;8:11. doi: 10.1038/s41598-018-35401-8. PubMed DOI PMC
Morales-Kastresana A., Telford B., Musich T.A., McKinnon K., Clayborne C., Braig Z., Rosner A., Demberg T., Watson D.C., Karpova T.S., et al. Labeling extracellular vesicles for nanoscale flow cytometry. Sci. Rep. 2017;7:10. doi: 10.1038/s41598-017-01731-2. PubMed DOI PMC
Mastoridis S., Bertolino G.M., Whitehouse G., Dazzi F., Sanchez-Fueyo A., Martinez-Llordella M. Multiparametric analysis of circulating exosomes and other small extracellular vesicles by advanced imaging flow cytometry. Front. Immunol. 2018;9:13. doi: 10.3389/fimmu.2018.01583. PubMed DOI PMC
Lannigan J., Erdbruegger U. Imaging flow cytometry for the characterization of extracellular vesicles. Methods. 2017;112:55–67. doi: 10.1016/j.ymeth.2016.09.018. PubMed DOI