• This record comes from PubMed

A Laser Reduced Graphene Oxide Grid Electrode for the Voltammetric Determination of Carbaryl

. 2021 Aug 20 ; 26 (16) : . [epub] 20210820

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
20-01417J Grant Agency of the Czech Republic
RFBR 19-5326001 Rusina Fond for Basic Researc

Links

PubMed 34443639
PubMed Central PMC8401968
DOI 10.3390/molecules26165050
PII: molecules26165050
Knihovny.cz E-resources

Laser-reduced graphene oxide (LRGO) on a polyethylene terephthalate (PET) substrate was prepared in one step to obtain the LRGO grid electrode for sensitive carbaryl determination. The grid form results in a grid distribution of different electrochemically active zones affecting the electroactive substance diffusion towards the electrode surface and increasing the electrochemical sensitivity for carbaryl determination. Carbaryl is electrochemically irreversibly oxidized at the secondary amine moiety of the molecule with the loss of one proton and one electron in the pH range from 5 to 7 by linear scan voltammetry (LSV) on the LRGO grid electrode with a scan rate of 300 mV/s. Some interference of the juice matrix molecules does not significantly affect the LSV oxidation current of carbaryl on the LRGO grid electrode after adsorptive accumulation without applied potential. The LRGO grid electrode can be used for LSV determination of carbaryl in fruit juices in the concentration range from 0.25 to 128 mg/L with LOD of 0.1 mg/L. The fabrication of the LRGO grid electrode opens up possibilities for further inexpensive monitoring of carbaryl in other fruit juices and fruits.

See more in PubMed

Derbalah A., Ismail A., Shaheen S. On the presence of organophosphorus pesticides in drainage water and its remediation technologies. Environ. Eng. Landsc. Manag. 2016;15:1777–1787. doi: 10.30638/eemj.2016.190. DOI

Bazrafshan A.A., Ghaedi M., Rafiee Z., Hajati S., Ostovan A. Nano-sized molecularly imprinted polymer for selective ultrasound-assisted microextraction of pesticide Carbaryl from water samples: Spectrophotometric determination. J. Colloid Interface Sci. 2017;498:313–322. doi: 10.1016/j.jcis.2017.03.076. PubMed DOI

Chattoraj S., Mondal N.K., Das B., Roy P., Sadhukhan B. Carbaryl removal from aqueous solution by Lemna major biomass using response surface methodology and artificial neural network. J. Environ. Chem. Eng. 2014;2:1920–1928. doi: 10.1016/j.jece.2014.08.011. DOI

EU Pesticides Database. [(accessed on 3 August 2021)]; Available online: http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=EN.

Wang M., Huang J., Wang M., Zhang D., Chen J. Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables. Food Chem. 2014;151:191–197. doi: 10.1016/j.foodchem.2013.11.046. PubMed DOI

Rahmani T., Bagheri H., Behbahani M., Hajian A., Afkhami A. Modified 3D graphene-Au as a novel sensing layer for direct and sensitive electrochemical determination of carbaryl pesticide in fruit, vegetable, and water samples. Food Anal. Methods. 2018;11:3005–3014. doi: 10.1007/s12161-018-1280-4. DOI

Dorozhko E.V., Gashevskay A.S., Korotkova E.I., Barek J., Vyskocil V., Eremin S.A., Galunin E.V., Saqib M. A copper nanoparticle-based electrochemical immunosensor for carbaryl detection. Talanta. 2021;228:122174. doi: 10.1016/j.talanta.2021.122174. PubMed DOI

Rujiralai T., Cheewasedtham W., Jayeoye T.J., Kaewsara S., Plaisen S. Hydrolyzed product mediated aggregation of l-cysteine-modified gold nanoparticles as a colorimetric probe for carbamate residues in chilis. Anal. Lett. 2020;53:574–588. doi: 10.1080/00032719.2019.1659804. DOI

Cesarino I., Moraes F.C., Lanza M.R.V., Machado S.A.S. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes. Food Chem. 2012;135:873–879. doi: 10.1016/j.foodchem.2012.04.147. PubMed DOI

Long Z., Shen S., Lu Y., Lan W., Chen J., Qiu H.D. Monodisperse core-shell-structured SiO2@Gd2O3:Eu3+@SiO2@MIP nanospheres for specific identification and fluorescent determination of carbaryl in green tea. Anal Bioanal. Chem. 2019;411:4221–4229. doi: 10.1007/s00216-019-01902-2. PubMed DOI

Bilehal D.C., Chetti M.B., Deepa G.T., Khetagoudar M.C. Multiresidue Pesticide analysis using QuEChERS method in vegetable samples by Ultra-Performance Liquid Chromatography. Anal. Chem. Lett. 2016;6:688–696. doi: 10.1080/22297928.2016.1253499. DOI

Cavaliere B., Monteleone M., Naccarato A., Sindona G., Tagarelli A. A solid-phase microextraction-gas chromatographic approach combined with triple quadrupole mass spectrometry for the assay of carbamate pesticides in water samples. J. Chromatogr. A. 2012;1257:149–157. doi: 10.1016/j.chroma.2012.08.011. PubMed DOI

Rousis N.I., Bade R., Bijlsma L., Zuccato E., Sancho J.V., Hernandez F., Castiglioni S. Monitoring a large number of pesticides and transformation products in water samples from Spain and Italy. Environ. Res. 2017;156:31–38. doi: 10.1016/j.envres.2017.03.013. PubMed DOI

Luo S., Wu Y., Gou H. A voltammetric sensor based on GO–MWNTs hybrid nanomaterial-modified electrode for determination of carbendazim in soil and water samples. Ionics. 2013;19:673–680. doi: 10.1007/s11581-013-0868-3. DOI

Moraes F.C., Mascaro L.H., Machado S.A.S., Brett C.M.A. Direct electrochemical determination of carbaryl using a multi-walled carbon nanotube/cobalt phthalocyanine modified electrode. Talanta. 2009;79:1406–1411. doi: 10.1016/j.talanta.2009.06.013. PubMed DOI

Hashemi P., Karimian N., Khoshsafar H., Arduini F., Mesri M., Afkhami A., Bagheri H. Reduced graphene oxide decorated on Cu/CuO-Ag nanocomposite as a high-performance material for the construction of a non-enzymatic sensor: Application to the determination of carbaryl and fenamiphos pesticides. Mater. Sci. Eng. C. 2019;102:764–772. doi: 10.1016/j.msec.2019.05.010. PubMed DOI

Pop A., Manea F., Flueras A., Schoonman J. Simultaneous Voltammetric detection of carbaryl and paraquat pesticides on graphene-modified boron-doped diamond electrode. Sensors. 2017;17:2033. doi: 10.3390/s17092033. PubMed DOI PMC

Silva T.A., Moraes F.C., Janegitz B.C., Fatibello-Filho O. Electrochemical biosensors based on nanostructured carbon black: A review. J. Nanomater. 2017;2017:4571614. doi: 10.1155/2017/4571614. DOI

Salih F.E., Achiou B., Ouammou M., Bennazha J., Ouarzane A., Younssi S.A., El Rhazi M. Electrochemical sensor based on low silica X zeolite modified carbon paste for carbaryl determination. J. Advert. Res. 2017;8:669–676. doi: 10.1016/j.jare.2017.08.002. PubMed DOI PMC

Tan X., Hu Q., Wu J., Li X., Li P., Yu H., Li X., Lei F. Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran. Sens. Actuators B Chem. 2015;220:216–221. doi: 10.1016/j.snb.2015.05.048. DOI

Della Pelle F., Angelini C., Sergi M., Del Carlo M., Pepe A., Compagnone D. Nano carbon black-based screen printed sensor for carbofuran, isoprocarb, carbaryl and fenobucarb detection: Application to grain samples. Talanta. 2018;186:389–396. doi: 10.1016/j.talanta.2018.04.082. PubMed DOI

Ambrosi A., Chua C.K., Bonanni A., Pumera M. Electrochemistry of graphene and related materials. Chem. Rev. 2014;114:7150–7188. doi: 10.1021/cr500023c. PubMed DOI

Yang Y., Asiri A.M., Du D., Lin Y. Acetylcholinesterase biosensor based on a gold nanoparticle–polypyrrole–reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst. 2014;139:3055. doi: 10.1039/c4an00068d. PubMed DOI

Wong A., Silva T., Caetano F., Bergamini M., Marcolino-Junior L., Fatibello-Filho O., Janegitz B. An overview of pesticide monitoring at environmental samples using carbon nanotubes-based electrochemical sensors. C. 2017;3:8. doi: 10.3390/c3010008. DOI

Bahadır E.B., Sezgintürk M.K. Applications of graphene in electrochemical sensing and biosensing. Trends Analyt. Chem. 2016;76:1–14. doi: 10.1016/j.trac.2015.07.008. DOI

Rodriguez R.D., Shchadenko S., Murastov G., Lipovka A., Fatkullin M., Petrov I., Tran T., Khalelov A., Saqib M., Villa N.E., et al. Ultra-robust flexible electronics by laser-driven polymer-nanomaterials integration. Adv. Funct. Mater. 2021;31:2008818. doi: 10.1002/adfm.202008818. DOI

Al-Gaashani R., Najjar A., Zakaria Y., Mansour S., Atieh M.A. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 2019;45:14439–14448. doi: 10.1016/j.ceramint.2019.04.165. DOI

Dobrota A.S., Pašti I.A., Mentus S.V., Skorodumova N.V. A general view on the reactivity of the oxygen-functionalized graphene basal plane. Phys. Chem. Chem. Phys. 2016;18:6580–6586. doi: 10.1039/C5CP07612A. PubMed DOI

Compton R.G., Banks C.E. Understanding Voltammetry. 3rd ed. WSPC; London, UK: 2018.

Garrigues S., de la Guardia M., Cassella A.R., de Campos R.C., Santelli R.E., Cassella R.J. Flow injection-FTIR determination of dithiocarbamate pesticides. Analyst. 2000;125:1829–1833. doi: 10.1039/b004504g. PubMed DOI

Maliyekkal S.M., Sreeprasad T.S., Krishnan D., Kouser S., Mishra A.K., Waghmare U.V., Pradeep T. Graphene: A reusable substrate for unprecedented adsorption of pesticides. Small. 2013;9:273–283. doi: 10.1002/smll.201201125. PubMed DOI

Zhang C., Cui H., Cai J., Duan Y., Liu Y. Development of fluorescence sensing material based on CdSe/ZnS quantum dots and molecularly imprinted polymer for the detection of carbaryl in rice and Chinese cabbage. J. Agric. Food Chem. 2015;63:4966–4972. doi: 10.1021/acs.jafc.5b01072. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...