A Laser Reduced Graphene Oxide Grid Electrode for the Voltammetric Determination of Carbaryl
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20-01417J
Grant Agency of the Czech Republic
RFBR 19-5326001
Rusina Fond for Basic Researc
PubMed
34443639
PubMed Central
PMC8401968
DOI
10.3390/molecules26165050
PII: molecules26165050
Knihovny.cz E-resources
- Keywords
- carbaryl, graphene oxide, grid electrode, laser reduced graphene oxide, linear sweep voltammetry, pesticides,
- MeSH
- Electrochemical Techniques methods MeSH
- Electrodes MeSH
- Graphite chemistry MeSH
- Carbaryl chemistry MeSH
- Hydrogen-Ion Concentration MeSH
- Lasers MeSH
- Oxidation-Reduction MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Graphite MeSH
- graphene oxide MeSH Browser
- Carbaryl MeSH
Laser-reduced graphene oxide (LRGO) on a polyethylene terephthalate (PET) substrate was prepared in one step to obtain the LRGO grid electrode for sensitive carbaryl determination. The grid form results in a grid distribution of different electrochemically active zones affecting the electroactive substance diffusion towards the electrode surface and increasing the electrochemical sensitivity for carbaryl determination. Carbaryl is electrochemically irreversibly oxidized at the secondary amine moiety of the molecule with the loss of one proton and one electron in the pH range from 5 to 7 by linear scan voltammetry (LSV) on the LRGO grid electrode with a scan rate of 300 mV/s. Some interference of the juice matrix molecules does not significantly affect the LSV oxidation current of carbaryl on the LRGO grid electrode after adsorptive accumulation without applied potential. The LRGO grid electrode can be used for LSV determination of carbaryl in fruit juices in the concentration range from 0.25 to 128 mg/L with LOD of 0.1 mg/L. The fabrication of the LRGO grid electrode opens up possibilities for further inexpensive monitoring of carbaryl in other fruit juices and fruits.
See more in PubMed
Derbalah A., Ismail A., Shaheen S. On the presence of organophosphorus pesticides in drainage water and its remediation technologies. Environ. Eng. Landsc. Manag. 2016;15:1777–1787. doi: 10.30638/eemj.2016.190. DOI
Bazrafshan A.A., Ghaedi M., Rafiee Z., Hajati S., Ostovan A. Nano-sized molecularly imprinted polymer for selective ultrasound-assisted microextraction of pesticide Carbaryl from water samples: Spectrophotometric determination. J. Colloid Interface Sci. 2017;498:313–322. doi: 10.1016/j.jcis.2017.03.076. PubMed DOI
Chattoraj S., Mondal N.K., Das B., Roy P., Sadhukhan B. Carbaryl removal from aqueous solution by Lemna major biomass using response surface methodology and artificial neural network. J. Environ. Chem. Eng. 2014;2:1920–1928. doi: 10.1016/j.jece.2014.08.011. DOI
EU Pesticides Database. [(accessed on 3 August 2021)]; Available online: http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=EN.
Wang M., Huang J., Wang M., Zhang D., Chen J. Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables. Food Chem. 2014;151:191–197. doi: 10.1016/j.foodchem.2013.11.046. PubMed DOI
Rahmani T., Bagheri H., Behbahani M., Hajian A., Afkhami A. Modified 3D graphene-Au as a novel sensing layer for direct and sensitive electrochemical determination of carbaryl pesticide in fruit, vegetable, and water samples. Food Anal. Methods. 2018;11:3005–3014. doi: 10.1007/s12161-018-1280-4. DOI
Dorozhko E.V., Gashevskay A.S., Korotkova E.I., Barek J., Vyskocil V., Eremin S.A., Galunin E.V., Saqib M. A copper nanoparticle-based electrochemical immunosensor for carbaryl detection. Talanta. 2021;228:122174. doi: 10.1016/j.talanta.2021.122174. PubMed DOI
Rujiralai T., Cheewasedtham W., Jayeoye T.J., Kaewsara S., Plaisen S. Hydrolyzed product mediated aggregation of l-cysteine-modified gold nanoparticles as a colorimetric probe for carbamate residues in chilis. Anal. Lett. 2020;53:574–588. doi: 10.1080/00032719.2019.1659804. DOI
Cesarino I., Moraes F.C., Lanza M.R.V., Machado S.A.S. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes. Food Chem. 2012;135:873–879. doi: 10.1016/j.foodchem.2012.04.147. PubMed DOI
Long Z., Shen S., Lu Y., Lan W., Chen J., Qiu H.D. Monodisperse core-shell-structured SiO2@Gd2O3:Eu3+@SiO2@MIP nanospheres for specific identification and fluorescent determination of carbaryl in green tea. Anal Bioanal. Chem. 2019;411:4221–4229. doi: 10.1007/s00216-019-01902-2. PubMed DOI
Bilehal D.C., Chetti M.B., Deepa G.T., Khetagoudar M.C. Multiresidue Pesticide analysis using QuEChERS method in vegetable samples by Ultra-Performance Liquid Chromatography. Anal. Chem. Lett. 2016;6:688–696. doi: 10.1080/22297928.2016.1253499. DOI
Cavaliere B., Monteleone M., Naccarato A., Sindona G., Tagarelli A. A solid-phase microextraction-gas chromatographic approach combined with triple quadrupole mass spectrometry for the assay of carbamate pesticides in water samples. J. Chromatogr. A. 2012;1257:149–157. doi: 10.1016/j.chroma.2012.08.011. PubMed DOI
Rousis N.I., Bade R., Bijlsma L., Zuccato E., Sancho J.V., Hernandez F., Castiglioni S. Monitoring a large number of pesticides and transformation products in water samples from Spain and Italy. Environ. Res. 2017;156:31–38. doi: 10.1016/j.envres.2017.03.013. PubMed DOI
Luo S., Wu Y., Gou H. A voltammetric sensor based on GO–MWNTs hybrid nanomaterial-modified electrode for determination of carbendazim in soil and water samples. Ionics. 2013;19:673–680. doi: 10.1007/s11581-013-0868-3. DOI
Moraes F.C., Mascaro L.H., Machado S.A.S., Brett C.M.A. Direct electrochemical determination of carbaryl using a multi-walled carbon nanotube/cobalt phthalocyanine modified electrode. Talanta. 2009;79:1406–1411. doi: 10.1016/j.talanta.2009.06.013. PubMed DOI
Hashemi P., Karimian N., Khoshsafar H., Arduini F., Mesri M., Afkhami A., Bagheri H. Reduced graphene oxide decorated on Cu/CuO-Ag nanocomposite as a high-performance material for the construction of a non-enzymatic sensor: Application to the determination of carbaryl and fenamiphos pesticides. Mater. Sci. Eng. C. 2019;102:764–772. doi: 10.1016/j.msec.2019.05.010. PubMed DOI
Pop A., Manea F., Flueras A., Schoonman J. Simultaneous Voltammetric detection of carbaryl and paraquat pesticides on graphene-modified boron-doped diamond electrode. Sensors. 2017;17:2033. doi: 10.3390/s17092033. PubMed DOI PMC
Silva T.A., Moraes F.C., Janegitz B.C., Fatibello-Filho O. Electrochemical biosensors based on nanostructured carbon black: A review. J. Nanomater. 2017;2017:4571614. doi: 10.1155/2017/4571614. DOI
Salih F.E., Achiou B., Ouammou M., Bennazha J., Ouarzane A., Younssi S.A., El Rhazi M. Electrochemical sensor based on low silica X zeolite modified carbon paste for carbaryl determination. J. Advert. Res. 2017;8:669–676. doi: 10.1016/j.jare.2017.08.002. PubMed DOI PMC
Tan X., Hu Q., Wu J., Li X., Li P., Yu H., Li X., Lei F. Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran. Sens. Actuators B Chem. 2015;220:216–221. doi: 10.1016/j.snb.2015.05.048. DOI
Della Pelle F., Angelini C., Sergi M., Del Carlo M., Pepe A., Compagnone D. Nano carbon black-based screen printed sensor for carbofuran, isoprocarb, carbaryl and fenobucarb detection: Application to grain samples. Talanta. 2018;186:389–396. doi: 10.1016/j.talanta.2018.04.082. PubMed DOI
Ambrosi A., Chua C.K., Bonanni A., Pumera M. Electrochemistry of graphene and related materials. Chem. Rev. 2014;114:7150–7188. doi: 10.1021/cr500023c. PubMed DOI
Yang Y., Asiri A.M., Du D., Lin Y. Acetylcholinesterase biosensor based on a gold nanoparticle–polypyrrole–reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst. 2014;139:3055. doi: 10.1039/c4an00068d. PubMed DOI
Wong A., Silva T., Caetano F., Bergamini M., Marcolino-Junior L., Fatibello-Filho O., Janegitz B. An overview of pesticide monitoring at environmental samples using carbon nanotubes-based electrochemical sensors. C. 2017;3:8. doi: 10.3390/c3010008. DOI
Bahadır E.B., Sezgintürk M.K. Applications of graphene in electrochemical sensing and biosensing. Trends Analyt. Chem. 2016;76:1–14. doi: 10.1016/j.trac.2015.07.008. DOI
Rodriguez R.D., Shchadenko S., Murastov G., Lipovka A., Fatkullin M., Petrov I., Tran T., Khalelov A., Saqib M., Villa N.E., et al. Ultra-robust flexible electronics by laser-driven polymer-nanomaterials integration. Adv. Funct. Mater. 2021;31:2008818. doi: 10.1002/adfm.202008818. DOI
Al-Gaashani R., Najjar A., Zakaria Y., Mansour S., Atieh M.A. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 2019;45:14439–14448. doi: 10.1016/j.ceramint.2019.04.165. DOI
Dobrota A.S., Pašti I.A., Mentus S.V., Skorodumova N.V. A general view on the reactivity of the oxygen-functionalized graphene basal plane. Phys. Chem. Chem. Phys. 2016;18:6580–6586. doi: 10.1039/C5CP07612A. PubMed DOI
Compton R.G., Banks C.E. Understanding Voltammetry. 3rd ed. WSPC; London, UK: 2018.
Garrigues S., de la Guardia M., Cassella A.R., de Campos R.C., Santelli R.E., Cassella R.J. Flow injection-FTIR determination of dithiocarbamate pesticides. Analyst. 2000;125:1829–1833. doi: 10.1039/b004504g. PubMed DOI
Maliyekkal S.M., Sreeprasad T.S., Krishnan D., Kouser S., Mishra A.K., Waghmare U.V., Pradeep T. Graphene: A reusable substrate for unprecedented adsorption of pesticides. Small. 2013;9:273–283. doi: 10.1002/smll.201201125. PubMed DOI
Zhang C., Cui H., Cai J., Duan Y., Liu Y. Development of fluorescence sensing material based on CdSe/ZnS quantum dots and molecularly imprinted polymer for the detection of carbaryl in rice and Chinese cabbage. J. Agric. Food Chem. 2015;63:4966–4972. doi: 10.1021/acs.jafc.5b01072. PubMed DOI