Reference Data for Fat Mass and Fat-Free Mass Measured by Bioelectrical Impedance in Croatian Youth
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
34444250
PubMed Central
PMC8394035
DOI
10.3390/ijerph18168501
PII: ijerph18168501
Knihovny.cz E-resources
- Keywords
- adolescents, body composition, children, normative,
- MeSH
- Child MeSH
- Electric Impedance MeSH
- Body Mass Index MeSH
- Humans MeSH
- Adolescent MeSH
- Cross-Sectional Studies MeSH
- Reference Standards MeSH
- Body Composition * MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Fat mass and fat-free mass have become useful clinical indices in determining healthy growth and physical development during critical periods of childhood and adolescence; however, despite a wide range of nutritional surveillance its study is limited by a lack of reference data. The purpose of this study was to establish sex-specific and age-specific standards for fat mass and fat-free mass in a large sample of Croatian children and adolescents. In this cross-sectional study, we collected data from 12,678 participants aged 11 to 18 years old (mean age ± standard deviation (SD): 14.17 ± 2.25 years; height 164.56 ± 11.31 cm; weight: 57.45 ± 13.73 kg; body mass index: 21.24 ± 3.67 kg/m2; 53% girls). Fat mass and fat-free mass were measured three times by bioelectrical impedance. The Lambda, Mu and Sigma methods were used to create percentile charts for fat mass index (FMI) and fat-free mass index (FFMI; fat mass and fat-free mass divided by height2). Sex and age differences were calculated using an analysis of variance (ANOVA) with post hoc comparisons. Boys had lower FMI (from 2.66 to 3.89) and higher FFMI values (from 16.90 to 17.80) in all age groups, compared to girls (for FMI from 2.79 to 5.17 and for FFMI from 14.50 to 14.90, p < 0.001). In boys, FMI slightly declined until the age of 14, after which an increase from the age of 15 to 18 was observed. In girls, FMI gradually increased from the age of 11 to 18 (p < 0.001). In general, FFMI increased by age in boys [F(7,5440) = 52.674, p < 0.001], while girls had more stable FFMI across all age groups [F(7,7222) = 2.728, p = 0.057]. The newly established sex-specific and age-specific reference data could be used for national surveillance and to screen for children and adolescents with high FMI and low FFMI.
Department of Education Faculty of Teacher Education University of Rijeka 51000 Rijeka Croatia
Department of Sports Kinesiology Faculty of Kinesiology University of Zagreb 10000 Zagreb Croatia
Recruitment and Examination Faculty of Science Masaryk University 62 500 Brno Czech Republic
See more in PubMed
NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390:2627–2642. doi: 10.1016/S0140-6736(17)32129-3. PubMed DOI PMC
McCarthy H.D., Samani–Radia D., Jebb S.A., Prentice A.M. Skeletal muscle mass reference curves for children and adolescents. Pediatr. Obes. 2014;9:249–259. doi: 10.1111/j.2047-6310.2013.00168.x. PubMed DOI
Steene-Johannessen J., Anderssen S.A., Kolle E., Andersen L.B. Low Muscle Fitness Is Associated with Metabolic Risk in Youth. Med. Sci. Sports Exerc. 2009;41:1361–1367. doi: 10.1249/MSS.0b013e31819aaae5. PubMed DOI
Benson A.C., Torode M.E., Singh M.A.F. Muscular strength and cardiorespiratory fitness is associated with higher insulin sensitivity in children and adolescents. Int. J. Pediatr. Obes. 2006;1:222–231. doi: 10.1080/17477160600962864. PubMed DOI
Gilligan L.A., Towbin A.J., Dillman J.R., Somasundaram E., Trout A.T. Quantification of skeletal muscle mass: Sarcopenia as a marker of overall health in children and adults. Pediatr. Radiol. 2020;50:455–464. doi: 10.1007/s00247-019-04562-7. PubMed DOI
Vetrano D.L., Landi F., Volpato S., Corsonello A., Meloni E., Bernabei R., Onder G. Association of Sarcopenia with Short- and Long-term Mortality in Older Adults Admitted to Acute Care Wards: Results from the CRIME Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014;69:1154–1161. doi: 10.1093/gerona/glu034. PubMed DOI
Ulbricht L., De Campos M.F., Esmanhoto E., Ripka W.L. Prevalence of excessive body fat among adolescents of a south Brazilian metropolitan region and State capital, associated risk factors, and consequences. BMC Public Health. 2018;18:312. doi: 10.1186/s12889-018-5216-0. PubMed DOI PMC
Ooi P.H., Thompson-Hodgetts S., Pritchard-Wiart L., Gilmour S.M., Mager D.R. Pediatric sarcopenia: A paradigm in the overall definition of malnutrition in children? J. Parenter. Enter. Nutr. 2020;44:407–418. doi: 10.1002/jpen.1681. PubMed DOI
Kim S., Valdez R. Metabolic risk factors in U.S. youth with low relative muscle mass. Obes. Res. Clin. Pract. 2014;9:125–132. doi: 10.1016/j.orcp.2014.05.002. PubMed DOI PMC
Burrows R., Correa-Burrows P., Reyes M., Blanco E., Albala C., Gahagan S. High cardiometabolic risk in healthy Chilean adolescents: Associations with anthropometric, biological and lifestyle factors. Public Health Nutr. 2015;19:486–493. doi: 10.1017/S1368980015001585. PubMed DOI PMC
VanItallie T.B., Yang M.U., Heymsfield S.B., Funk R.C., Boileau R.A. Height-normalized indices of the body’s fat-free mass and fat mass: Potentially useful indicators of nutritional status. Am. J. Clin. Nutr. 1990;52:953–959. doi: 10.1093/ajcn/52.6.953. PubMed DOI
Lee M.M., Jebb S.A., Oke J., Piernas C. Reference values for fat-free mass and fat mass measured by bioelectrical impedance in 390,565 UK adults. J. Cachexia Sarcopenia Muscle. 2020;11:487–496. doi: 10.1002/jcsm.12523. PubMed DOI PMC
Shen W., Punyanitya M., Wang Z., Gallagher D., St-Onge M.-P., Albu J., Heymsfield S.B., Heshka S. Total body fat-free and adipose tissue volumes: Estimation from a single abdominal cross-sectional image. J. Appl. Physiol. 2004;97:2333–2338. doi: 10.1152/japplphysiol.00744.2004. PubMed DOI
Kim J., Shen W., Gallagher D., Jones A., Jr., Wang Z., Wang J., Heshka S., Heymsfield S.B. Total body fat-free mass: Estimation by dual-energy X-ray absorptiometry in children and adolescents. Am. J. Clin. Nutr. 2006;84:1014–1020. doi: 10.1093/ajcn/84.5.1014. PubMed DOI PMC
Wang Z., Heshka S., Pietrobelli A., Chen Z., Silva A.M., Sardinha L.B., Wang J., Gallager D., Heymsfield S.B. A new total body potassium method to estimate total body fat-free mass in children. J. Nutr. 2007;137:1988–1991. doi: 10.1093/jn/137.8.1988. PubMed DOI PMC
Fields D.A., Goran M.I., McCrory M.A. Body-composition assessment via air-displacement plethysmography in adults and children: A review. Am. J. Clin. Nutr. 2002;75:453–467. doi: 10.1093/ajcn/75.3.453. PubMed DOI
Lacoste Jeanson A., Dupej J., Villa C., Brůžek J. Body composition estimation from selected slices: Equations computed from a new semi-automatic thresholding method developed on whole-body CT scans. PeerJ. 2017;5:3302. doi: 10.7717/peerj.3302. PubMed DOI PMC
Simoni P., Guglielmi R., Aparisi Gómez M.P. Imaging of body composition in children. Quant. Imaging Med. Surg. 2020;10:1661–1671. doi: 10.21037/qims.2020.04.06. PubMed DOI PMC
McCarthy H.D., Cole T.J., Fry T., Jebb S.A., Prentice A.M. Body fat reference curves for children. Int. J. Obes. 2006;30:598–602. doi: 10.1038/sj.ijo.0803232. PubMed DOI
Chumlea W.C., Guo S.S. Bioelectrical Impedance and Body Composition: Present Status and Future Directions. Nutr. Rev. 2009;52:123–131. doi: 10.1111/j.1753-4887.1994.tb01404.x. PubMed DOI
Kim T.N., Park M.S., Lim K.I., Yang S.J., Joo H.J., Kang H.J., Song W., Seo J.A., Kim S.G., Baik S.H., et al. Fat-free mass to visceral fat area ratio is associated with metabolic syndrome and arterial stiffness: The Korean Sarcopenic Obesity Study (KSOS) Diabetes Res. Clin. Pract. 2011;93:285–291. doi: 10.1016/j.diabres.2011.06.013. PubMed DOI
Sung R.Y.T., So H.K., Choi K.C., Li A.M., Yin J., Nelson E.A.S. Body fat measured by bioelectrical impedance in Hong Kong Chinese children. Hong Kong Med. J. 2009;15:110–117. PubMed
Kurtoglu S., Mazicioglu M.M., Ozturk A., Hatipoğlu N., Cicek B., Ustunbas H.B. Body fat reference curves for healthy Turkish children and adolescents. Eur. J. Nucl. Med. Mol. Imaging. 2010;169:1329–1335. doi: 10.1007/s00431-010-1225-4. PubMed DOI
Cole T.J., Bellizzi M.C., Flegal K., Dietz W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ. 2000;320:1240. doi: 10.1136/bmj.320.7244.1240. PubMed DOI PMC
Pietiläinen K., Kaye S., Karmi A., Suojanen L., Rissanen A., Virtanen K.A. Agreement of bioelectrical impedance with dual-energy X-ray absorptiometry and MRI to estimate changes in body fat, skeletal muscle and visceral fat during a 12-month weight loss intervention. Br. J. Nutr. 2012;109:1910–1916. doi: 10.1017/S0007114512003698. PubMed DOI
Cole T.J., Green P.J. Smoothing reference centile curves: The LMS method and penalized likelihood. Stat. Med. 1992;11:1305–1319. doi: 10.1002/sim.4780111005. PubMed DOI
Freedman D.S., Khan L.K., Serdula M.K., Dietz W.H., Srinivasan S.R., Berenson G.S. Relation of Age at Menarche to Race, Time Period, and Anthropometric Dimensions: The Bogalusa Heart Study. Pediatrics. 2002;110:e43. doi: 10.1542/peds.110.4.e43. PubMed DOI
Bays H. Central obesity as a clinical marker of adiposopathy; increased visceral adiposity as a surrogate marker for global fat dysfunction. Curr. Opin. Endocrinol. Diabetes Obes. 2014;21:345–351. doi: 10.1097/MED.0000000000000093. PubMed DOI PMC
Katz L.D., Glickman M.G., Rapoport S., Ferrannini E., De Fronzo R.A. Splanchnic and peripheral disposal of oral glucose in man. Diabetes. 1983;32:675–679. doi: 10.2337/diab.32.7.675. PubMed DOI
Ortega F.B., Artero E.G., Ruiz J.R., España-Romero V., Jiménez-Pavón D., Vicente-Rodriguez G., Moreno L.A., Manios Y., Béghin L., Ottevaere C., et al. Physical fitness levels among European adolescents: The HELENA study. Br. J. Sports Med. 2011;45:20–29. doi: 10.1136/bjsm.2009.062679. PubMed DOI
Kyle U.G., Bosaeus I., De Lorenzo A.D., Deurenberg P., Elia M., Gómez J.M., Heitmann B.L., Kent-Smith L., Melchior J.-C., Pirlich M., et al. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004;23:1430–1453. doi: 10.1016/j.clnu.2004.09.012. PubMed DOI
Martines-Arano H., García-Pérez B.E., Vidales-Hurtado M.A., Trejo-Valdez M., Hernández-Gómez L.H., Torres-Torres C. Chaotic Signatures Exhibited by Plasmonic Effects in Au Nanoparticles with Cells. Sensors. 2019;19:4728. doi: 10.3390/s19214728. PubMed DOI PMC
Caton J.R., Molé P.A., Adams W.C., Heustis D.S. Body composition analysis by bioelectrical impedance: Effect of skin temperature. Med. Sci. Sports Exerc. 1988;20:489–491. doi: 10.1249/00005768-198810000-00010. PubMed DOI