The Contribution of Autophagy and LncRNAs to MYC-Driven Gene Regulatory Networks in Cancers
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34445233
PubMed Central
PMC8395220
DOI
10.3390/ijms22168527
PII: ijms22168527
Knihovny.cz E-zdroje
- Klíčová slova
- MYC, autophagy, gene regulatory networks (GRNs), lncRNAs,
- MeSH
- autofagie * MeSH
- genové regulační sítě * MeSH
- lidé MeSH
- protoonkogenní proteiny c-myc genetika metabolismus MeSH
- regulace genové exprese u nádorů * MeSH
- RNA dlouhá nekódující genetika metabolismus MeSH
- RNA nádorová genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- MYC protein, human MeSH Prohlížeč
- protoonkogenní proteiny c-myc MeSH
- RNA dlouhá nekódující MeSH
- RNA nádorová MeSH
MYC is a target of the Wnt signalling pathway and governs numerous cellular and developmental programmes hijacked in cancers. The amplification of MYC is a frequently occurring genetic alteration in cancer genomes, and this transcription factor is implicated in metabolic reprogramming, cell death, and angiogenesis in cancers. In this review, we analyse MYC gene networks in solid cancers. We investigate the interaction of MYC with long non-coding RNAs (lncRNAs). Furthermore, we investigate the role of MYC regulatory networks in inducing changes to cellular processes, including autophagy and mitophagy. Finally, we review the interaction and mutual regulation between MYC and lncRNAs, and autophagic processes and analyse these networks as unexplored areas of targeting and manipulation for therapeutic gain in MYC-driven malignancies.
CEITEC Masaryk University 625 00 Brno Czech Republic
Department of Functional Genomics GlaxoSmithKline Stevenage SG1 2NY UK
Department of Life Sciences Birmingham City University Birmingham B15 3TN UK
Department of Neurology Massachusetts General Hospital Harvard Medical School Boston MA 02114 USA
Mammalian Genetics Unit Medical Research Council Harwell Institute Oxfordshire OX11 0RD UK
MRC Health Data Research Birmingham B15 2TT UK
NIHR Biomedical Research Centre Birmingham B15 2TT UK
NIHR Experimental Cancer Medicine Centre Birmingham B15 2TT UK
NIHR Surgical Reconstruction and Microbiology Research Centre Birmingham B15 2TT UK
Zobrazit více v PubMed
Malynn B.A., de Alboran I.M., O’Hagan R.C., Bronson R., Davidson L., DePinho R.A., Alt F.W. N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev. 2000;14:1390–1399. PubMed PMC
Kohl N.E., Kanda N., Schreck R.R., Bruns G., Latt S.A., Gilbert F., Alt F.W. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell. 1983;35:359–367. doi: 10.1016/0092-8674(83)90169-1. PubMed DOI
Amati B., Littlewood T.D., Evan G.I., Land H. The c-Myc protein induces cell cycle progression and apoptosis through dimerization with Max. EMBO J. 1993;12:5083–5087. doi: 10.1002/j.1460-2075.1993.tb06202.x. PubMed DOI PMC
Dang C.V. MYC on the path to cancer. Cell. 2012;149:22–35. doi: 10.1016/j.cell.2012.03.003. PubMed DOI PMC
Soucek L., Evan G.I. The ups and downs of Myc biology. Curr. Opin. Genet. Dev. 2010;20:91–95. doi: 10.1016/j.gde.2009.11.001. PubMed DOI PMC
Kelly K., Cochran B.H., Stiles C.D., Leder P. Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell. 1983;35:603–610. doi: 10.1016/0092-8674(83)90092-2. PubMed DOI
Satoh K., Yachida S., Sugimoto M., Oshima M., Nakagawa T., Akamoto S., Tabata S., Saitoh K., Kato K., Sato S., et al. Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proc. Natl. Acad. Sci. USA. 2017;114:E7697–E7706. doi: 10.1073/pnas.1710366114. PubMed DOI PMC
Adams J.M., Harris A.W., Pinkert C.A., Corcoran L.M., Alexander W.S., Cory S., Palmiter R.D., Brinster R.L. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature. 1985;318:533–538. doi: 10.1038/318533a0. PubMed DOI
Stine Z.E., Walton Z.E., Altman B.J., Hsieh A.L., Dang C.V. MYC, metabolism, and cancer. Cancer Discov. 2015;5:1024–1039. doi: 10.1158/2159-8290.CD-15-0507. PubMed DOI PMC
He T.-C., Sparks A.B., Rago C., Hermeking H., Zawel L., da Costa L.T., Morin P.J., Vogelstein B., Kinzler K.W. Identification of c-MYC as a target of the APC pathway. Science. 1998;281:1509–1512. doi: 10.1126/science.281.5382.1509. PubMed DOI
Palomero T., Lim W.K., Odom D.T., Sulis M.L., Real P.J., Margolin A., Barnes K.C., O’Neil J., Neuberg D., Weng A.P., et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl. Acad. Sci. USA. 2006;103:18261–18266. doi: 10.1073/pnas.0606108103. PubMed DOI PMC
Swartling F.J., Savov V., Persson A.I., Chen J., Hackett C.S., Northcott P.A., Grimmer M.R., Lau J., Chesler L., Perry A., et al. Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC. Cancer Cell. 2012;21:601–613. doi: 10.1016/j.ccr.2012.04.012. PubMed DOI PMC
Evan G.I., Littlewood T.D. The role of c-myc in cell growth. Curr. Opin. Genet. Dev. 1993;3:44–49. doi: 10.1016/S0959-437X(05)80339-9. PubMed DOI
Ayer D.E., Eisenman R.N. A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation. Genes Dev. 1993;7:2110–2119. doi: 10.1101/gad.7.11.2110. PubMed DOI
Laurenti E., Varnum-Finney B., Wilson A., Ferrero I., Blanco-Bose W.E., Ehninger A., Knoepfler P.S., Cheng P.F., MacDonald H.R., Eisenman R.N., et al. Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell. 2008;3:611–624. doi: 10.1016/j.stem.2008.09.005. PubMed DOI PMC
Gandarillas A., Watt F. c-Myc promotes differentiation of human epidermal stem cells. Genes Dev. 1997;11:2869–2882. doi: 10.1101/gad.11.21.2869. PubMed DOI PMC
Land H., Parada L.F., Weinberg R.A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature. 1983;304:596–602. doi: 10.1038/304596a0. PubMed DOI
Mathew P., Valentine M.B., Bowman L.C., Rowe S.T., Nash M.B., Valentine V.A., Cohn S.L., Castleberry R.P., Brodeur G.M., Look A.T. Detection of MYCN gene amplification in neuroblastoma by fluorescence in situ hybridization: A pediatric oncology group study. Neoplasia. 2001;3:105–109. doi: 10.1038/sj.neo.7900146. PubMed DOI PMC
Davis F.G., McCarthy B.J., Freels S., Kupelian V., Bondy M.L. The conditional probability of survival of patients with primary malignant brain tumors: Surveillance, epidemiology, and end results (SEER) data. Cancer. 1999;85:485–491. doi: 10.1002/(SICI)1097-0142(19990115)85:2<485::AID-CNCR29>3.0.CO;2-L. PubMed DOI
Dang C.V. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb. Perspect. Med. 2013;3:a014217. doi: 10.1101/cshperspect.a014217. PubMed DOI PMC
Sodir N.M., Swigart L.B., Karnezis A.N., Hanahan D., Evan G.I., Soucek L. Endogenous Myc maintains the tumor microenvironment. Genes Dev. 2011;25:907–916. doi: 10.1101/gad.2038411. PubMed DOI PMC
Rapp U.R., Korn C., Ceteci F., Karreman C., Luetkenhaus K., Serafin V., Zanucco E., Castro I., Potapenko T. MYC is a metastasis gene for non-small-cell lung cancer. PLoS ONE. 2009;4:e6029. doi: 10.1371/journal.pone.0006029. PubMed DOI PMC
Shchors K., Shchors E., Rostker F., Lawlor E.R., Brown-Swigart L., Evan G.I. The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1beta. Genes Dev. 2006;20:2527–2538. doi: 10.1101/gad.1455706. PubMed DOI PMC
Berger A., Brady N.J., Bareja R., Robinson B., Conteduca V., Augello M.A., Puca L., Ahmed A., Dardenne E., Lu X., et al. N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer. J. Clin. Invest. 2019;129:3924–3940. doi: 10.1172/JCI127961. PubMed DOI PMC
Murakami S., Nemazanyy I., White S.M., Chen H., Nguyen C.D.K., Graham G.T., Saur D., Pende M., Yi C. A Yap-Myc-Sox2-p53 Regulatory Network Dictates Metabolic Homeostasis and Differentiation in Kras-Driven Pancreatic Ductal Adenocarcinomas. Dev. Cell. 2019;51:113–128.e9. doi: 10.1016/j.devcel.2019.07.022. PubMed DOI PMC
Tao R., Murad N., Xu Z., Zhang P., Okonechnikov K., Kool M., Rivero-Hinojosa S., Lazarski C., Zheng P., Liu Y., et al. MYC Drives Group 3 Medulloblastoma through Transformation of Sox2+ Astrocyte Progenitor Cells. Cancer Res. 2019;79:1967–1980. doi: 10.1158/0008-5472.CAN-18-1787. PubMed DOI PMC
Wang Y., Gao S., Wang W., Xia Y., Liang J. Downregulation of N-Myc inhibits neuroblastoma cell growth via the Wnt/β-catenin signaling pathway. Mol. Med. Rep. 2018;18:377–384. doi: 10.3892/mmr.2018.8966. PubMed DOI
Ooi C.Y., Carter D.R., Liu B., Mayoh C., Beckers A., Lalwani A., Nagy Z., De Brouwer S., Decaesteker B., Hung T.T., et al. Network Modeling of microRNA-mRNA Interactions in Neuroblastoma Tumorigenesis Identifies miR-204 as a Direct Inhibitor of MYCN. Cancer Res. 2018;78:3122–3134. doi: 10.1158/0008-5472.CAN-17-3034. PubMed DOI
Pandey P.R., Chatterjee B., Olanich M.E., Khan J., Miettinen M.M., Hewitt S.M., Barr F.G. PAX3-FOXO1 is essential for tumour initiation and maintenance but not recurrence in a human myoblast model of rhabdomyosarcoma. J. Pathol. 2017;241:626–637. doi: 10.1002/path.4867. PubMed DOI PMC
Kortlever R.M., Sodir N.M., Wilson C.H., Burkhart D.L., Pellegrinet L., Brown Swigart L., Littlewood T.D., Evan G.I. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017;171:1301–1315.e14. doi: 10.1016/j.cell.2017.11.013. PubMed DOI PMC
Soucek L., Whitfield J., Martins C.P., Finch A.J., Murphy D.J., Sodir N.M., Karnezis A.N., Swigart L.B., Nasi S., Evan G.I. Modelling Myc inhibition as a cancer therapy. Nature. 2008;455:679–683. doi: 10.1038/nature07260. PubMed DOI PMC
Ye M., Dong S., Hou H., Zhang T., Shen M. Oncogenic Role of Long Noncoding RNAMALAT1 in Thyroid Cancer Progression through Regulation of the miR-204/IGF2BP2/m6A-MYC Signaling. Mol. Ther. Nucleic Acids. 2020;23:1–12. doi: 10.1016/j.omtn.2020.09.023. PubMed DOI PMC
Crea F., Venalainen E., Ci X., Cheng H., Pikor L., Parolia A., Xue H., Nur Saidy N.R., Lin D., Lam W., et al. The role of epigenetics and long noncoding RNA MIAT in neuroendocrine prostate cancer. Epigenomics. 2016;8:721–731. doi: 10.2217/epi.16.6. PubMed DOI
Gargini R., García-Escudero V., Izquierdo M., Wandosell F. Oncogene-mediated tumor transformation sensitizes cells to autophagy induction. Oncol. Rep. 2016;35:3689–3695. doi: 10.3892/or.2016.4699. PubMed DOI
García-Escudero V., Gargini R. Autophagy induction as an efficient strategy to eradicate tumors. Autophagy. 2008;4:923–925. doi: 10.4161/auto.6714. PubMed DOI
Gargini R., García-Escudero V., Izquierdo M. Therapy mediated by mitophagy abrogates tumor progression. Autophagy. 2011;7:466–476. doi: 10.4161/auto.7.5.14731. PubMed DOI
Ying H., Kimmelman A.C., Lyssiotis C.A., Hua S., Chu G.C., Fletcher-Sananikone E., Locasale J.W., Son J., Zhang H., Coloff J.L., et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149:656–670. doi: 10.1016/j.cell.2012.01.058. PubMed DOI PMC
Zhang W., Nandakumar N., Shi Y., Manzano M., Smith A., Graham G., Gupta S., Vietsch E.E., Laughlin S.Z., Wadhwa M., et al. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci. Signal. 2014;7:ra42. doi: 10.1126/scisignal.2005049. PubMed DOI PMC
Brodeur G.M. Neuroblastoma: Biological insights into a clinical enigma. Nat. Rev. Cancer. 2003;3:203–216. doi: 10.1038/nrc1014. PubMed DOI
Driman D., Thorner P.S., Greenberg M.L., Chilton-MacNeill S., Squire J. MYCN gene amplification in rhabdomyosarcoma. Cancer. 1994;73:2231–2237. doi: 10.1002/1097-0142(19940415)73:8<2231::AID-CNCR2820730832>3.0.CO;2-E. PubMed DOI
Hachitanda Y., Toyoshima S., Akazawa K., Tsuneyoshi M. N-myc gene amplification in rhabdomyosarcoma detected by fluorescence in situ hybridization: Its correlation with histologic features. Mod. Pathol. 1998;11:1222–1227. PubMed
Williamson D., Lu Y.J., Gordon T., Sciot R., Kelsey A., Fisher C., Poremba C., Anderson J., Pritchard-Jones K., Shipley J. Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J. Clin. Oncol. 2005;23:880–888. doi: 10.1200/JCO.2005.11.078. PubMed DOI
He J., Li F., Zhou Y., Hou X., Liu S., Li X., Zhang Y., Jing X., Yang L. LncRNA XLOC_006390 promotes pancreatic carcinogenesis and glutamate metabolism by stabilizing c-Myc. Cancer Lett. 2020;469:419–428. doi: 10.1016/j.canlet.2019.11.021. PubMed DOI
Xu Z., Liu C., Zhao Q., Lü J., Ding X., Luo A., He J., Wang G., Li Y., Cai Z., et al. Long non-coding RNA CCAT2 promotes oncogenesis in triple-negative breast cancer by regulating stemness of cancer cells. Pharmacol. Res. 2020;152:104628. doi: 10.1016/j.phrs.2020.104628. PubMed DOI
Wu J., Zhu P., Lu T., Du Y., Wang Y., He L., Ye B., Liu B., Yang L., Wang J., et al. The long non-coding RNA LncHDAC2 drives the self-renewal of liver cancer stem cells via activation of Hedgehog signaling. J. Hepatol. 2019;70:918–929. doi: 10.1016/j.jhep.2018.12.015. PubMed DOI
Crea F., Clermont P.L., Parolia A., Wang Y., Helgason C.D. The non-coding transcriptome as a dynamic regulator of cancer metastasis. Cancer Metastasis Rev. 2014;33:1–16. doi: 10.1007/s10555-013-9455-3. PubMed DOI PMC
Sun L., Su Y., Liu X., Xu M., Chen X., Zhu Y., Guo Z., Bai T., Dong L., Wei C., et al. Serum and exosome long non coding RNAs as potential biomarkers for hepatocellular carcinoma. J. Cancer. 2018;9:2631–2639. doi: 10.7150/jca.24978. PubMed DOI PMC
Conigliaro A., Costa V., Lo Dico A., Saieva L., Buccheri S., Dieli F., Manno M., Raccosta S., Mancone C., Tripodi M., et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol. Cancer. 2015;14:155. doi: 10.1186/s12943-015-0426-x. PubMed DOI PMC
Roobol M.J., Schröder F.H., van Leeuwen P., Wolters T., van den Bergh R.C., van Leenders G.J., Hessels D. Performance of the prostate cancer antigen 3 (PCA3) gene and prostate-specific antigen in prescreened men: Exploring the value of PCA3 for a first-line diagnostic test. Eur. Urol. 2010;58:475–481. doi: 10.1016/j.eururo.2010.06.039. PubMed DOI
Bellmunt J., Eigl B.J., Senkus E., Loriot Y., Twardowski P., Castellano D., Blais N., Sridhar S.S., Sternberg C.N., Retz M., et al. Borealis-1: A randomized, first-line, placebo-controlled, phase II study evaluating apatorsen and chemotherapy for patients with advanced urothelial cancer. Ann. Oncol. 2017;28:2481–2488. doi: 10.1093/annonc/mdx400. PubMed DOI
Chi K.N., Higano C.S., Blumenstein B., Ferrero J.M., Reeves J., Feyerabend S., Gravis G., Merseburger A.S., Stenzl A., Bergman A.M., et al. Custirsen in combination with docetaxel and prednisone for patients with metastatic castration-resistant prostate cancer (SYNERGY trial): A phase 3, multicentre, open-label, randomised trial. Lancet Oncol. 2017;18:473–485. doi: 10.1016/S1470-2045(17)30168-7. PubMed DOI
Chery J. RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J. 2016;4:35–50. doi: 10.14304/SURYA.JPR.V4N7.5. PubMed DOI PMC
Wang W.T., Han C., Sun Y.M., Chen T.Q., Chen Y.Q. Noncoding RNAs in cancer therapy resistance and targeted drug development. J. Hematol. Oncol. 2019;12:55. doi: 10.1186/s13045-019-0748-z. PubMed DOI PMC
Shen X., Corey D.R. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 2018;46:1584–1600. doi: 10.1093/nar/gkx1239. PubMed DOI PMC
Sekhon H.S., London C.A., Sekhon M., Iversen P.L., Devi G.R. c-MYC antisense phosphosphorodiamidate morpholino oligomer inhibits lung metastasis in a murine tumor model. Lung Cancer. 2008;60:347–354. doi: 10.1016/j.lungcan.2007.10.028. PubMed DOI
Iversen P.L., Arora V., Acker A.J., Mason D.H., Devi G.R. Efficacy of antisense morpholino oligomer targeted to c-myc in prostate cancer xenograft murine model and a Phase I safety study in humans. Clin. Cancer Res. 2003;9:2510–2519. PubMed
Zhang Z., Lin W., Lin Y., Kang M., Zhu J., Tong Z., Wu L., Sun J., Lin J. Long intergenic non-coding RNA Linc00485 promotes lung cancer progression by modulating miR-298/c-Myc axis. J. Cell Mol. Med. 2021;25:309–322. doi: 10.1111/jcmm.16036. PubMed DOI PMC
Liu S., Zheng Y., Zhang Y., Zhang J., Xie F., Guo S., Gu J., Yang J., Zheng P., Lai J., et al. Methylation-mediated LINC00261 suppresses pancreatic cancer progression by epigenetically inhibiting c-Myc transcription. Theranostics. 2020;10:10634–10651. doi: 10.7150/thno.44278. PubMed DOI PMC
Zhang X., Niu W., Mu M., Hu S., Niu C. Long non-coding RNA LPP-AS2 promotes glioma tumorigenesis via miR-7-5p/EGFR/PI3K/AKT/c-MYC feedback loop. J. Exp. Clin. Cancer Res. 2020;39:196. doi: 10.1186/s13046-020-01695-8. PubMed DOI PMC
Li H., Liu J., Cao W., Xiao X., Liang L., Liu-Smith F., Wang W., Liu H., Zhou P., Ouyang R., et al. C-myc/miR-150/EPG5 axis mediated dysfunction of autophagy promotes development of non-small cell lung cancer. Theranostics. 2019;9:5134–5148. doi: 10.7150/thno.34887. PubMed DOI PMC
Cianfanelli V., Fuoco C., Lorente M., Salazar M., Quondamatteo F., Gherardini P.F., De Zio D., Nazio F., Antonioli M., D’Orazio M., et al. AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat. Cell Biol. 2015;17:20–30. doi: 10.1038/ncb3072. PubMed DOI PMC
Hart L.S., Cunningham J.T., Datta T., Dey S., Tameire F., Lehman S.L., Qiu B., Zhang H., Cerniglia G., Bi M., et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J. Clin. Invest. 2012;122:4621–4634. doi: 10.1172/JCI62973. PubMed DOI PMC
Gomes L.R., Menck C.F.M., Cuervo A.M. Chaperone-mediated autophagy prevents cellular transformation by regulating MYC proteasomal degradation. Autophagy. 2017;13:928–940. doi: 10.1080/15548627.2017.1293767. PubMed DOI PMC
Zhai S., Xu Z., Xie J., Zhang J., Wang X., Peng C., Li H., Chen H., Shen B., Deng X. Epigenetic silencing of LncRNA LINC00261 promotes c-myc-mediated aerobic glycolysis by regulating miR-222-3p/HIPK2/ERK axis and sequestering IGF2BP1. Oncogene. 2021;40:277–291. doi: 10.1038/s41388-020-01525-3. PubMed DOI PMC
Shigeyasu K., Toden S., Ozawa T., Matsuyama T., Nagasaka T., Ishikawa T., Sahoo D., Ghosh P., Uetake H., Fujiwara T. The PVT1 lncRNA is a novel epigenetic enhancer of MYC, and a promising risk-stratification biomarker in colorectal cancer. Mol. Cancer. 2020;19:155. doi: 10.1186/s12943-020-01277-4. PubMed DOI PMC
Olivero C.E., Martínez-Terroba E., Zimmer J., Liao C., Tesfaye E., Hooshdaran N., Schofield J.A., Bendor J., Fang D., Simon M.D., et al. p53 Activates the Long Noncoding RNA Pvt1b to Inhibit Myc and Suppress Tumorigenesis. Mol. Cell. 2020;77:761–774.e8. doi: 10.1016/j.molcel.2019.12.014. PubMed DOI PMC
Hu Y., Wang F., Xu F., Fang K., Fang Z., Shuai X., Cai K., Chen J., Hu P., Chen D., et al. A reciprocal feedback of Myc and lncRNA MTSS1-AS contributes to extracellular acidity-promoted metastasis of pancreatic cancer. Theranostics. 2020;10:10120–10140. doi: 10.7150/thno.49147. PubMed DOI PMC
Usman R.M., Razzaq F., Akbar A., Farooqui A.A., Iftikhar A., Latif A., Hassan H., Zhao J., Carew J.S., Nawrocki S.T., et al. Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance. Asia. Pac. J. Clin. Oncol. 2021;17:193–208. doi: 10.1111/ajco.13449. PubMed DOI
Toh P.P.C., Luo S., Menzies F.M., Raskó T., Wanker E.E., Rubinsztein D.C. Myc inhibition impairs autophagosome formation. Hum. Mol. Genet. 2013;22:5237–5248. doi: 10.1093/hmg/ddt381. PubMed DOI PMC
Sears R.C. The Life Cycle of C-Myc: From Synthesis to Degradation. Cell Cycle. 2004;3:1131–1135. doi: 10.4161/cc.3.9.1145. PubMed DOI
Mo H., He J., Yuan Z., Wu Z., Liu B., Lin X., Guan J. PLK1 contributes to autophagy by regulating MYC stabilization in osteosarcoma cells. Onco Targets Ther. 2019;12:7527–7536. doi: 10.2147/OTT.S210575. PubMed DOI PMC
Kon M., Kiffin R., Koga H., Chapochnick J., Macian F., Varticovski L., Cuervo A.M. Chaperone-mediated autophagy is required for tumor growth. Sci. Transl. Med. 2011;3:109ra117. doi: 10.1126/scitranslmed.3003182. PubMed DOI PMC
Vara-Perez M., Felipe-Abrio B., Agostinis P. Mitophagy in Cancer: A Tale of Adaptation. Cells. 2019;8:493. doi: 10.3390/cells8050493. PubMed DOI PMC
Zhang C., Nie P., Zhou C., Hu Y., Duan S., Gu M., Jiang D., Wang Y., Deng Z., Chen J., et al. Oxidative stress-induced mitophagy is suppressed by the miR-106b-93-25 cluster in a protective manner. Cell Death Dis. 2021;12:209. doi: 10.1038/s41419-021-03484-3. PubMed DOI PMC
Kim E.H., Choi K.S. A critical role of superoxide anion in selenite-induced mitophagic cell death. Autophagy. 2008;4:76–78. doi: 10.4161/auto.5119. PubMed DOI
Takahashi Y., Hori T., Cooper T.K., Liao J., Desai N., Serfass J.M., Young M.M., Park S., Izu Y., Wang H.-G. Bif-1 haploinsufficiency promotes chromosomal instability and accelerates Myc-driven lymphomagenesis via suppression of mitophagy. Blood. 2013;121:1622–1632. doi: 10.1182/blood-2012-10-459826. PubMed DOI PMC
Pelengaris S., Littlewood T., Khan M., Elia G., Evan G. Reversible activation of c-Myc in skin: Induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell. 1999;3:565–577. doi: 10.1016/S1097-2765(00)80350-0. PubMed DOI
Bisgrove D.A., Mahmoudi T., Henklein P., Verdin E. Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription. Proc. Natl. Acad. Sci. USA. 2007;104:13690–13695. doi: 10.1073/pnas.0705053104. PubMed DOI PMC
Delmore J.E., Issa G.C., Lemieux M.E., Rahl P.B., Shi J., Jacobs H.M., Kastritis E., Gilpatrick T., Paranal R.M., Qi J., et al. BET Bromodomain Inhibition as a Therapeutic Strategy to Target c-Myc. Cell. 2011;146:904–917. doi: 10.1016/j.cell.2011.08.017. PubMed DOI PMC
Wu R., Li L., Bai Y., Yu B., Xie C., Wu H., Zhang Y., Huang L., Yan Y., Li X., et al. The long noncoding RNA LUCAT1 promotes colorectal cancer cell proliferation by antagonizing Nucleolin to regulate MYC expression. Cell Death Dis. 2020;11:908. doi: 10.1038/s41419-020-03095-4. PubMed DOI PMC
Chen Q., Shen H., Zhu X., Liu Y., Yang H., Chen H., Xiong S., Chi H., Xu W. A nuclear lncRNA Linc00839 as a Myc target to promote breast cancer chemoresistance via PI3K/AKT signaling pathway. Cancer Sci. 2020;111:3279–3291. doi: 10.1111/cas.14555. PubMed DOI PMC
Sun W., Li J., Zhou L., Han J., Liu R., Zhang H., Ning T., Gao Z., Liu B., Chen X., et al. The c-Myc/miR-27b-3p/ATG10 regulatory axis regulates chemoresistance in colorectal cancer. Theranostics. 2020;10:1981–1996. doi: 10.7150/thno.37621. PubMed DOI PMC
Meng Y., Wang L., Chen D., Chang Y., Zhang M., Xu J.-J., Zhou R., Zhang Q.-Y. LAPTM4B: An oncogene in various solid tumors and its functions. Oncogene. 2016;35:6359–6365. doi: 10.1038/onc.2016.189. PubMed DOI PMC
Li L., Wei X.H., Pan Y.P., Li H.C., Yang H., He Q.H., Pang Y., Shan Y., Xiong F.X., Shao G.Z., et al. LAPTM4B: A novel cancer-associated gene motivates multidrug resistance through efflux and activating PI3K/AKT signaling. Oncogene. 2010;29:5785–5795. doi: 10.1038/onc.2010.303. PubMed DOI
Xiong J., Wang L., Fei X.-C., Jiang X.-F., Zheng Z., Zhao Y., Wang C.-F., Li B., Chen S.-J., Janin A., et al. MYC is a positive regulator of choline metabolism and impedes mitophagy-dependent necroptosis in diffuse large B-cell lymphoma. Blood Cancer J. 2017;7:e582. doi: 10.1038/bcj.2017.61. PubMed DOI PMC