Palmitoylation of Prolactin-Releasing Peptide Increased Affinity for and Activation of the GPR10, NPFF-R2 and NPFF-R1 Receptors: In Vitro Study

. 2021 Aug 18 ; 22 (16) : . [epub] 20210818

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34445614

Grantová podpora
21-03691S Grantová Agentura České Republiky
RVO:67985823 Akademie Věd České Republiky
RVO:61388963 Ústav organické chemie a biochemie Akademie věd České republiky

The anorexigenic neuropeptide prolactin-releasing peptide (PrRP) is involved in the regulation of food intake and energy expenditure. Lipidization of PrRP stabilizes the peptide, facilitates central effect after peripheral administration and increases its affinity for its receptor, GPR10, and for the neuropeptide FF (NPFF) receptor NPFF-R2. The two most potent palmitoylated analogs with anorectic effects in mice, palm11-PrRP31 and palm-PrRP31, were studied in vitro to determine their agonist/antagonist properties and mechanism of action on GPR10, NPFF-R2 and other potential off-target receptors related to energy homeostasis. Palmitoylation of both PrRP31 analogs increased the binding properties of PrRP31 to anorexigenic receptors GPR10 and NPFF-R2 and resulted in a high affinity for another NPFF receptor, NPFF-R1. Moreover, in CHO-K1 cells expressing GPR10, NPFF-R2 or NPFF-R1, palm11-PrRP and palm-PrRP significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK), protein kinase B (Akt) and cAMP-responsive element-binding protein (CREB). Palm11-PrRP31, unlike palm-PrRP31, did not activate either c-Jun N-terminal kinase (JNK), p38, c-Jun, c-Fos or CREB pathways in cells expressing NPFF-1R. Palm-PrRP31 also has higher binding affinities for off-target receptors, namely, the ghrelin, opioid (KOR, MOR, DOR and OPR-L1) and neuropeptide Y (Y1, Y2 and Y5) receptors. Palm11-PrRP31 exhibited fewer off-target activities; therefore, it has a higher potential to be used as an anti-obesity drug with anorectic effects.

Zobrazit více v PubMed

Hinuma S., Habata Y., Fujii R., Kawamata Y., Hosoya M., Fukusumi S., Kitada C., Masuo Y., Asano T., Matsumoto H., et al. A prolactin-releasing peptide in the brain. Nature. 1998;393:272–276. doi: 10.1038/30515. PubMed DOI

Matsumoto H., Noguchi J., Horikoshi Y., Kawamata Y., Kitada C., Hinuma S., Onda H., Nishimura O., Fujino M. Stimulation of Prolactin Release by Prolactin-Releasing. Biochem. Biophys. Res. Commun. 1999;259:321–324. doi: 10.1006/bbrc.1999.0789. PubMed DOI

Lawrence C.B., Celsi F., Brennand J., Luckman S.M. Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat. Neurosc. 2000;3:645–646. doi: 10.1038/76597. PubMed DOI

Lawrence C.B., Ellacott K.L.J., Luckman S.M. PRL-releasing peptide reduces food intake and may mediate satiety signaling. Endocrinology. 2002;143:360–367. doi: 10.1210/endo.143.2.8609. PubMed DOI

Bjursell M., Lenneras M., Goransson M., Elmgren A., Bohlooly Y.M. GPR10 deficiency in mice results in altered energy expenditure and obesity. Biochem. Biophys. Res. Commun. 2007;363:633–638. doi: 10.1016/j.bbrc.2007.09.016. PubMed DOI

Gu W., Geddes B.J., Zhang C., Foley K.P., Stricker-Krongrad A. The prolactin-releasing peptide receptor (GPR10) regulates body weight homeostasis in mice. J. Mol. Neurosc. 2004;22:93–103. doi: 10.1385/JMN:22:1-2:93. PubMed DOI

Prazienkova V., Funda J., Pirnik Z., Karnosova A., Hruba L., Korinkova L., Neprasova B., Janovska P., Benzce M., Kadlecova M., et al. GPR10 gene deletion in mice increases basal neuronal activity, disturbs insulin sensitivity and alters lipid homeostasis. Gene. 2021;774:145427. doi: 10.1016/j.gene.2021.145427. PubMed DOI

Maletinska L., Nagelova V., Ticha A., Zemenova J., Pirnik Z., Holubova M., Spolcova A., Mikulaskova B., Blechova M., Sykora D., et al. Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int. J. Obesity. 2015;39:986–993. doi: 10.1038/ijo.2015.28. PubMed DOI

Prazienkova V., Holubova M., Pelantova H., Buganova M., Pirnik Z., Mikulaskova B., Popelova A., Blechova M., Haluzik M., Zelezna B., et al. Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS ONE. 2017;12:e0183449. doi: 10.1371/journal.pone.0183449. PubMed DOI PMC

Prazienkova V., Ticha A., Blechova M., Spolcova A., Zelezna B., Maletinska L. Pharmacological characterization of lipidized analogs of prolactin-releasing peptide with a modified C-terminalaromatic ring. J. Physiol. Pharmacol. 2016;67:121–128. PubMed

Pirnik Z., Kolesarova M., Zelezna B., Maletinska L. Repeated peripheral administration of lipidized prolactin-releasing peptide analog induces c-fos and FosB expression in neurons of dorsomedial hypothalamic nucleus in male C57 mice. Neurochem. Int. 2018;116:77–84. doi: 10.1016/j.neuint.2018.03.013. PubMed DOI

Pirnik Z., Zelezna B., Kiss A., Maletinska L. Peripheral administration of palmitoylated prolactin-releasing peptide induces Fos expression in hypothalamic neurons involved in energy homeostasis in NMRI male mice. Brain Res. 2015;1625:151–158. doi: 10.1016/j.brainres.2015.08.042. PubMed DOI

Engstrom M., Brandt A., Wurster S., Savola J.M., Panula P. Prolactin releasing peptide has high affinity and efficacy at neuropeptide FF2 receptors. J. Pharmacol. Exp. Therapeut. 2003;305:825–832. doi: 10.1124/jpet.102.047118. PubMed DOI

Elhabazi K., Humbert J.P., Bertin I., Schmitt M., Bihel F., Bourguignon J.J., Bucher B., Becker J.A., Sorg T., Meziane H., et al. Endogenous mammalian RF-amide peptides, including PrRP, kisspeptin and 26RFa, modulate nociception and morphine analgesia via NPFF receptors. Neuropharmacology. 2013;75:164–171. doi: 10.1016/j.neuropharm.2013.07.012. PubMed DOI

Murase T., Arima H., Kondo K., Oiso Y. Neuropeptide FF reduces food intake in rats. Peptides. 1996;17:353–354. doi: 10.1016/0196-9781(95)02137-X. PubMed DOI

Sunter D., Hewson A.K., Lynam S., Dickson S.L. Intracerebroventricular injection of neuropeptide FF, an opioid modulating neuropeptide, acutely reduces food intake and stimulates water intake in the rat. Neurosci. Lett. 2001;313:145–148. doi: 10.1016/S0304-3940(01)02267-4. PubMed DOI

Mouledous L., Mollereau C., Zajac J.M. Opioid-modulating properties of the neuropeptide FF system. BioFactors. 2010;36:423–429. doi: 10.1002/biof.116. PubMed DOI

Nicklous D.M., Simansky K.J. Neuropeptide FF exerts pro- and anti-opioid actions in the parabrachial nucleus to modulate food intake. Am. J. Physiol. Regulat. Integr. Compar. Physiol. 2003;285:1046–1054. doi: 10.1152/ajpregu.00107.2003. PubMed DOI

Panula P., Aarnisalo A.A., Wasowicz K. Neuropeptide FF, a mammalian neuropeptide with multiple functions. Progress Neurobiol. 1996;48:461–479. doi: 10.1016/0301-0082(96)00001-9. PubMed DOI

Simonin F., Schmitt M., Laulin J.-P., Laboureyras E., Jhamandas J.H., MacTavish D., Matifas A., Mollereau C., Laurent P. RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid-induced tolerance associated with hyperalgesia. Proc. Natl. Acad. Sci. USA. 2006;103:466–471. doi: 10.1073/pnas.0502090103. PubMed DOI PMC

Maletinska L., Ticha A., Nagelova V., Spolcova A., Blechova M., Elbert T., Zelezna B. Neuropeptide FF analog RF9 is not an antagonist of NPFF receptor and decreases food intake in mice after its central and peripheral administration. Brain Res. 2013;1498:33–40. doi: 10.1016/j.brainres.2012.12.037. PubMed DOI

Kalliomäki M.L., Pertovaara A., Brandt A., Wei H., Pietilä P., Kalmari J., Xu M., Kalso E., Panula P. Prolactin-releasing peptide affects pain, allodynia and autonomicreflexes through medullary mechanisms. Neuropharmacology. 2004;46:412–424. doi: 10.1016/j.neuropharm.2003.09.021. PubMed DOI

Laurent P., Becker J.A., Valverde O., Ledent C., de Kerchove d’Exaerde A., Schiffmann S.N., Maldonado R., Vassart G., Parmentier M. The prolactin-releasing peptide antagonizes the opioid system through its receptor GPR10. Nat. Neurosci. 2005;8:1735–1741. doi: 10.1038/nn1585. PubMed DOI

Cardoso J.C., Felix R.C., Fonseca V.G., Power D.M. Feeding and the rhodopsin family g-protein coupled receptors in nematodes and arthropods. Front. Endocrinol. 2012;3:157. doi: 10.3389/fendo.2012.00157. PubMed DOI PMC

Marchese A., Heiber M., Nguyen T., Heng H.H.Q., Saldivia V.R., Cheng R., Murphy P.M., Tsui L.C., Shi X., Gregor P., et al. Cloning and Chromosomal Mapping of Three Novel Genes, GPR9, GPR10, and GPR14, Encoding Receptors Related to Interleukin 8, Neuropeptide Y, and Somatostatin Receptors. Genomics. 1995;29:335–344. doi: 10.1006/geno.1995.9996. PubMed DOI

Bonini J.A., Jones K.A., Adham N., Forray C., Artymyshyn R., Durkin M.M., Smith K.E., Tamm J.A., Boteju L.W., Lakhlani P.P., et al. Identification and characterization of two G protein-coupled receptors for neuropeptide FF. J. Biol. Chem. 2000;275:39324–39331. doi: 10.1074/jbc.M004385200. PubMed DOI

Langmead C.J., Szekeres P.G., Chambers J.K., Ratcliffe S.J., Jones D.N., Hirst W.D., Price G.W., Herdon H.J. Characterization of the binding of [(125)I]-human prolactin releasing peptide (PrRP) to GPR10, a novel G protein coupled receptor. British J. Pharmacol. 2000;131:683–688. doi: 10.1038/sj.bjp.0703617. PubMed DOI PMC

Roland B.L., Sutton S.W., Wilson S.J., Luo L., Pyati J., Huvar R., Erlander M.G., Lovenberg T.W. Anatomical distribution of prolactin-releasing peptide and its receptor suggests additional functions in the central nervous system and periphery. Endocrinology. 1999;140:5736–5745. doi: 10.1210/endo.140.12.7211. PubMed DOI

Chuderland D., Seger R. Calcium regulates ERK signaling by modulating its protein-protein interactions. Commun. Integr. Biol. 2008;1:4–5. doi: 10.4161/cib.1.1.6107. PubMed DOI PMC

Kimura A., Ohmichi M., Tasaka K., Kanda Y., Ikegami H., Hayakawa J., Hisamoto K., Morishige K., Hinuma S., Kurachi H., et al. Prolactin-releasing peptide activation of the prolactin promoter is differentially mediated by extracellular signal-regulated protein kinase and c-Jun N-terminal protein kinase. J. Biol. Chem. 2000;275:3667–3674. doi: 10.1074/jbc.275.5.3667. PubMed DOI

Maixnerova J., Spolcova A., Pychova M., Blechova M., Elbert T., Rezacova M., Zelezna B., Maletinska L. Characterization of prolactin-releasing peptide: Binding, signaling and hormone secretion in rodent pituitary cell lines endogenously expressing its receptor. Peptides. 2011;32:811–817. doi: 10.1016/j.peptides.2010.12.011. PubMed DOI

Hayakawa J., Ohmichi M., Tasaka K., Kanda Y., Adachi K., Nishio Y., Hisamoto K., Mabuchi S., Hinuma S., Murata Y. Regulation of the PRL promoter by Akt through cAMP response element binding protein. Endocrinology. 2002;143:13–22. doi: 10.1210/endo.143.1.8586. PubMed DOI

Cheng Y., Prusoff W.H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973;22:3099–3108. doi: 10.1016/0006-2952(73)90196-2. PubMed DOI

Holubova M., Zemenova J., Mikulaskova B., Panajotova V., Stohr J., Haluzik M., Kunes J., Zelezna B., Maletinska L. Palmitoylated PrRP analog decreases body weight in DIO rats but not in ZDF rats. J. Endocrinol. 2016;229:85–96. doi: 10.1530/JOE-15-0519. PubMed DOI

Maletinska L., Popelova A., Zelezna B., Bencze M., Kunes J. The impact of anorexigenic peptides in experimental models of Alzheimer's disease pathology. J. Endocr. 2019;240:R47–R72. doi: 10.1530/JOE-18-0532. PubMed DOI

Nanmoku T., Takekoshi K., Isobe K., Kawakami Y., Nakai T., Okuda Y. Prolactin-releasing peptide stimulates catecholamine release but not proliferation in rat pheochromocytoma PC12 cells. Neurosci. Lett. 2003;350:33–36. doi: 10.1016/S0304-3940(03)00836-X. PubMed DOI

Wang Y., Wang C.Y., Wu Y., Huang G., Li J., Leung F.C. Identification of the receptors for prolactin-releasing peptide (PrRP) and Carassius RFamide peptide (C-RFa) in chickens. Endocrinology. 2012;153:1861–1874. doi: 10.1210/en.2011-1719. PubMed DOI

Nanmoku T., Takekoshi K., Fukuda T., Ishii K., Isobe K., Kawakami Y. Stimulation of catecholamine biosynthesis via the PKC pathway by prolactin-releasing peptide in PC12 rat pheochromocytoma cells. J. Endocrinol. 2005;186:233–239. doi: 10.1677/joe.1.05919. PubMed DOI

Cargnello M., Roux P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 2011;75:50–83. doi: 10.1128/MMBR.00031-10. PubMed DOI PMC

Canovas B., Nebreda A.R. Diversity and versatility of p38 kinase signalling in health and disease. Nat. Rev. Mol. Cell Biol. 2021 doi: 10.1038/s41580-020-00322-w. PubMed DOI PMC

Wen A.Y., Sakamoto K.M., Miller L.S. The role of the transcription factor CREB in immune function. J. Immunol. 2010;185:6413–6419. doi: 10.4049/jimmunol.1001829. PubMed DOI PMC

Loh K., Herzog H., Shi Y.C. Regulation of energy homeostasis by the NPY system. Trends Endocrinol. Metab. 2015;26:125–135. doi: 10.1016/j.tem.2015.01.003. PubMed DOI

Nguyen A.D., Mitchell N.F., Lin S., Macia L., Yulyaningsih E., Baldock P.A., Enriquez R.F., Zhang L., Shi Y.C., Zolotukhin S., et al. Y1 and Y5 receptors are both required for the regulation of food intake and energy homeostasis in mice. PLoS ONE. 2012;7:e40191. doi: 10.1371/journal.pone.0040191. PubMed DOI PMC

Maletinska L., Pychova M., Holubova M., Blechova M., Demianova Z., Elbert T., Zelezna B. Characterization of new stable ghrelin analogs with prolonged orexigenic potency. J. Pharmacol. Exp. Ther. 2012;340:781–786. doi: 10.1124/jpet.111.185371. PubMed DOI

Spolcova A., Mikulaskova B., Holubova M., Nagelova V., Pirnik Z., Zemenova J., Haluzik M., Zelezna B., Galas M.C., Maletinska L. Anorexigenic lipopeptides ameliorate central insulin signaling and attenuate tau phosphorylation in hippocampi of mice with monosodium glutamate-induced obesity. J. Alzheimers Dis. 2015;45:823–835. doi: 10.3233/JAD-143150. PubMed DOI

Motulsky H., Neubig R. Analyzing radioligand binding data. Curr. Protoc. Neurosci. 2002;7 doi: 10.1002/0471142301.ns0705s19. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...