Predation by avian predators may have initiated the evolution of myrmecomorph spiders
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34446800
PubMed Central
PMC8390495
DOI
10.1038/s41598-021-96737-2
PII: 10.1038/s41598-021-96737-2
Knihovny.cz E-resources
- MeSH
- Ants physiology MeSH
- Humans MeSH
- Mantodea physiology MeSH
- Biological Mimicry physiology MeSH
- Passeriformes physiology MeSH
- Spiders physiology MeSH
- Predatory Behavior physiology MeSH
- Feeding Behavior physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Myrmecomorphy is a strategy utilized by a variety of species, among which spiders are the most common. It is supposed that myrmecomorphy tends to be selected by predator avoidance of preying on ants rather than by blind ant workers. To date, this hypothesis has been tested mainly on invertebrate predators (mantises and spiders). We are the first to test whether an imperfect myrmecomorph spider (Phrurolithus festivus) gains protection against avian predators (wild adult great tits-Parus major) through its appearance. In a set of preferential trials, we showed that the ant model and the myrmecomorph spider are equally well protected against attack, though the attacked myrmecomorphs are usually eaten. This suggests that the mimicry of the myrmecomorph spiders is effective against avian predators and works in a Batesian manner. In this study, we have provided evidence toward the evolution of myrmecomorphy in response to selective pressure elicited by visually-oriented predators like birds.
See more in PubMed
McIver DJ, Stonedahl G. Myrmecomorphy: Morphological and behavioral mimicry of ants. Annual Rev. Entomol. 1993;38:351–377. doi: 10.1146/annurev.en.38.010193.002031. DOI
Cushing PE. Spider-ant associations: An updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche. 2012;2012:151989. doi: 10.1155/2012/151989. DOI
Jackson RR, Nelson XJ, Salm K. The natural history of Myrmarachne melanotarsa, a social ant-mimicking jumping spider. N. Z. J. Zool. 2008;35:225–235. doi: 10.1080/03014220809510118. DOI
Nelson JX, Jackson RR, Li D, Barrion TA, Edwards BG. Innate aversion to ants (Hymenoptera: Formicidae) and ant mimics: Experimental findings from mantises (Mantodea) Biol. J. Linnean Soc. 2006;88:23–32. doi: 10.1111/j.1095-8312.2006.00598.x. DOI
Pekár S, Jarab M. Life-history constraints in inaccurate Batesian myrmecomorphic spiders (Araneae: Corinnidae, Gnaphosidae) Eur. J. Entomol. 2011;108:255–260. doi: 10.14411/eje.2011.034. DOI
Pekár S, Jarab M. Assessment of color and behavioral resemblance to models by inaccurate myrmecomorphic spiders (Araneae) Invertebr. Biol. 2011;130:83–90. doi: 10.1111/j.1744-7410.2010.00217.x. DOI
Pekár S, Král J. Mimicry complex in two central European zodariid spiders (Araneae: Zodariidae): How Zodarion deceives ants. Biol. J. Linnean Soc. 2002;75:517–532. doi: 10.1046/j.1095-8312.2002.00043.x. DOI
Hölldobler B. Communication between ants and their guests. Sci. Am. 1971;224:86–95. doi: 10.1038/scientificamerican0371-86. PubMed DOI
Jackson RR, Wilcox RS. Aggressive mimicry, prey-specific predatory behaviour and predator recognition in the predator-prey interactions of Portia fimbriata and Euryattus sp., jumping spiders from Queensland. Behav. Ecol. Sociobiol. 1990;26:111–119. doi: 10.1007/BF00171580. DOI
Hölldobler B. Host finding by odor in the myrmecophilic beetle Atemeles pubicollis Bris. (Staphylinidae) Science. 1969;166:757–758. doi: 10.1126/science.166.3906.757. PubMed DOI
Elgar AM, Allan AR. Chemical mimicry of the ant Oecophylla smaragdina by the myrmecophilous spider Cosmophasis bitaeniata: Is it colony-specific? J. Ethol. 2006;24:239–246. doi: 10.1007/s10164-005-0188-9. DOI
von Beeren C, Hashim R, Witte V. The social integration of a myrmecophilous spider does not depend exclusively on chemical mimicry. J. Chem. Ecol. 2012;38:262–271. doi: 10.1007/s10886-012-0083-0. PubMed DOI
Nelson XJ, Jackson RR. Vision-based innate aversion to ants and ant mimics. Behav. Ecol. 2006;17:676–681. doi: 10.1093/beheco/ark017. DOI
Edmunds M. Does mimicry of ants reduce predation by wasps on salticid spiders? Mem. Queensl. Mus. 1993;33:23–32.
Huang JN, Cheng RC, Li D, Tso IM. Salticid predation as one potential driving force of ant mimicry in jumping spiders. Proc. R. Soc. B. 2011;278:1356–1364. doi: 10.1098/rspb.2010.1896. PubMed DOI PMC
Lindström L. Experimental approaches to studying the initial evolution of conspicuous aposematic signalling. Evol. Ecol. 1999;13:605–618. doi: 10.1023/A:1011004129607. DOI
Ruxton GD, Allen WL, Sherratt TN, Speed MP. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry. Oxford University Press; 2019.
Veselý P, Fuchs R. Newly emerged Batesian mimicry protects only unfamiliar prey. Evol. Ecol. 2009;23:919–929. doi: 10.1007/s10682-008-9281-1. DOI
Nelson XJ, Jackson RR. Collective Batesian mimicry of ant groups by aggregating spiders. Anim. Behav. 2009;78:123–129. doi: 10.1016/j.anbehav.2009.04.005. DOI
Cramp S, Brooks DJ. Handbook of the Birds of Europe, the Middle East and North Africa. The Birds of the Western Palearctic. Warbles. Oxford University Press; 1992.
Cramp S, Perrins CM. Handbook of the Birds of Europe, the Middle East and North Africa. The Birds of the Western Palearctic. Flycatchers to Shrikes. Oxford University Press; 1993.
Cramp S, Simmons KEL. Handbook of the Birds of Europe, the Middle East and North Africa: The Birds of the Western Palearctic. Terns to woodpeckers. Oxford University Press; 1985.
Cramp S, Perrins CM, Brooks DJ. Handbook of the birds of Europe, the Middle East, and North Africa: The birds of the Western Palearctic. Crows to finches. Oxford University Press; 1994.
Veselý P, Luhanová D, Prášková M, Fuchs R. Generalization of mimics imperfect in colour patterns: The point of view of wild avian predators. Ethology. 2013;119:138–145. doi: 10.1111/j.1095-8312.2010.01463.x. DOI
Průchová A, Nedvěd O, Veselý P, Ernestová B, Fuchs R. Visual warning signals of the ladybird Harmonia axyridis: The avian predators' point of view. Entomol. Exp. Appl. 2014;151:128–134. doi: 10.1111/eea.12176. DOI
Kevan PG, Chittka L, Dyer AG. Limits to the salience of ultraviolet: Lessons from colour vision in bees and birds. J. Exp. Biol. 2001;204:2571–2580. doi: 10.1242/jeb.204.14.2571. PubMed DOI
Pekár S, Petráková L, Bulbert MW, Whiting MJ, Herberstein ME. The golden mimicry complex uses a wide spectrum of defence to deter a community of predators. Elife. 2017;6:e22089. doi: 10.7554/eLife.22089. PubMed DOI PMC
Uma D, Durkee C, Herzner G, Weiss M. Double deception: Ant-mimicking spiders elude both visually-and chemically-oriented predators. PLoS ONE. 2013;8:e79660. doi: 10.1371/journal.pone.0079660. PubMed DOI PMC
Lindström L, Alatalo RV, Lyytinen A, Mappes J. The effect of alternative prey on the dynamics of imperfect Batesian and Müllerian mimicries. Evolution. 2004;58:1294–1302. doi: 10.1111/j.0014-3820.2004.tb01708.x. PubMed DOI
McNab BK. Physiological convergence amongst ant-eating and termite-eating mammals. J. Zool. Lond. 1984;203:485–510. doi: 10.1111/j.1469-7998.1984.tb02345.x. DOI
Naef-Daenzer L, Naef-Daenzer B, Nager RG. Prey selection and foraging performance of breeding Great Tits Parus major in relation to food availability. J. Avian Biol. 2000;31:206–214. doi: 10.1034/j.1600-048X.2000.310212.x. DOI
Wilkin TA, King LE, Sheldon BC. Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. J. Avian Biol. 2009;40:135–145. doi: 10.1111/j.1600-048X.2009.04362.x. DOI
Svádová K, et al. Role of different colours of aposematic insects in learning, memory and generalization of naïve bird predators. Anim. Behav. 2009;77:327–336. doi: 10.1016/j.anbehav.2008.09.034. DOI
Sendoya SF, Freitas AV, Oliveira PS. Egg-laying butterflies distinguish predaceous ants by sight. Am. Nat. 2009;174:134–140. doi: 10.1086/599302. PubMed DOI
Exnerová A, Ježová D, Štys P, Doktorovová L, Rojas B, Mappes J. Different reactions to aposematic prey in 2 geographically distant populations of great tits. Behav. Ecol. 2015;26:1361–1370. doi: 10.1093/beheco/arv086. DOI
Harrap S, Quinn D. Chickadees, Tits, Nuthatches & Treecreepers. Princeton University Press; 1995.
Pagani-Núñez E, Ruiz Í, Quesada J, Negro JJ, Senar JC. The diet of Great Tit Parus major nestlings in a Mediterranean Iberian forest: The important role of spiders. Anim. Biodivers. Conserv. 2011;34:355–361.
Exnerová A, Landová E, Štys P, Fuchs R, Prokopová M, Cehláriková P. Reactions of passerine birds to aposematic and non-aposematic firebugs (Pyrrhocoris apterus; Heteroptera) Biol. J. Linnean Soc. 2003;78:517–525. doi: 10.1046/j.0024-4066.2002.00161.x. DOI
Exnerová A, et al. Importance of colour in the reaction of passerine predators to aposematic prey: Experiments with mutants of Pyrrhocoris apterus (Heteroptera) Biol. J. Linnean Soc. 2006;88:143–153. doi: 10.1111/j.1095-8312.2006.00611.x. DOI
Cibulková A, Veselý P, Fuchs R. Importance of conspicuous colours in warning signals: The great tit’s (Parus major) point of view. Evol. Ecol. 2014;28:427–439. doi: 10.1007/s10682-014-9690-2. DOI
Prokopová M, Veselý P, Fuchs R, Zrzavý J. The role of size and colour pattern in protection of developmental stages of the red firebug (Pyrrhocoris apterus) against avian predators. Biol. J. Linnean Soc. 2010;100:890–898. doi: 10.1111/j.1095-8312.2010.01463.x. DOI
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org.
Yamasaki T. Studies on taxonomy, biogeography and mimicry of the genus Myrmarachne in Southeast Asia. Acta Arachnol. 2015;64:49–56. doi: 10.2476/asjaa.64.49. DOI
Nelson XJ, Jackson RR. How spiders practice aggressive and Batesian mimicry. Curr. Zool. 2012;58:620–629. doi: 10.1093/czoolo/58.4.620. DOI