Structure and Glass Transition Temperature of Amorphous Dispersions of Model Pharmaceuticals with Nucleobases from Molecular Dynamics
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
19-02889S
Grantová Agentura České Republiky
PubMed
34452214
PubMed Central
PMC8400648
DOI
10.3390/pharmaceutics13081253
PII: pharmaceutics13081253
Knihovny.cz E-resources
- Keywords
- active pharmaceutical ingredients, amorphous dispersion, glass transition, molecular dynamics,
- Publication type
- Journal Article MeSH
Glass transition temperature (Tg) is an important material property, which predetermines the kinetic stability of amorphous solids. In the context of active pharmaceutical ingredients (API), there is motivation to maximize their Tg by forming amorphous mixtures with other chemicals, labeled excipients. Molecular dynamics simulations are a natural computational tool to investigate the relationships between structure, dynamics, and cohesion of amorphous materials with an all-atom resolution. This work presents a computational study, addressing primarily the predictions of the glass transition temperatures of four selected API (carbamazepine, racemic ibuprofen, indomethacin, and naproxen) with two nucleobases (adenine and cytosine). Since the classical non-polarizable simulations fail to reach the quantitative accuracy of the predicted Tg, analyses of internal dynamics, hydrogen bonding, and cohesive forces in bulk phases of pure API and their mixtures with the nucleobases are performed to interpret the predicted trends. This manuscript reveals the method for a systematic search of beneficial pairs of API and excipients (with maximum Tg when mixed). Monitoring of transport and cohesive properties of API-excipients systems via molecular simulation will enable the design of such API formulations more efficiently in the future.
See more in PubMed
Craig D.Q.M., Royall P.G., Kett V.L., Hopton M.L. The relevance of the amorphous state to pharmaceutical dosage forms: Glassy drugs and freeze dried systems. Int. J. Pharm. 1999;179:179–207. doi: 10.1016/S0378-5173(98)00338-X. PubMed DOI
Hancock B.C., Zograf G. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci. 1997;86:1–12. doi: 10.1021/js9601896. PubMed DOI
Rams-Baron M., Jachowicz R., Boldyreva E., Zhou D., Jamroz W., Paluch M. Amorphous Drugs, Benefits and Challenges. Springer; Cham, Switzerland: 2018.
Barmpalexis P., Karagianni A., Katopodis K., Vardaka E., Kachrimanis K. Molecular modelling and simulation of fusion-based amorphous drug dispersions in polymer/plasticizer blends. Eur. J. Pharm. Sci. 2019;130:260–268. doi: 10.1016/j.ejps.2019.02.004. PubMed DOI
Medarevic D., Djuris J., Barmpalexis P., Kachrimanis K., Ibric S. Analytical and Computational Methods for the Estimation of Drug-Polymer Solubility and Miscibility in Solid Dispersions Development. Pharmaceutics. 2019;11:372. doi: 10.3390/pharmaceutics11080372. PubMed DOI PMC
Gupta J., Nunes C., Jonnalagadda S. A Molecular Dynamics Approach for Predicting the Glass Transition Temperature and Plasticization Effect in Amorphous Pharmaceuticals. Mol. Pharm. 2013;10:4136–4145. doi: 10.1021/mp400118v. PubMed DOI
Russo M.G., Baldoni H.A., Davila Y.A., Brusau E.V., Ellena J.A., Narda G.E. Rational Design of a Famotidine-Ibuprofen Coamorphous System: An Experimental and Theoretical Study. J. Phys. Chem. B. 2018;122:8772–8782. doi: 10.1021/acs.jpcb.8b06105. PubMed DOI
Knapik-Kowalczuk J., Tu W., Chmiel K., Rams-Baron M., Paluch M. Co-Stabilization of Amorphous Pharmaceuticals—The Case of Nifedipine and Nimodipine. Mol. Pharm. 2018;15:2455–2465. doi: 10.1021/acs.molpharmaceut.8b00308. PubMed DOI
Weng L.D., Stott S.L., Toner M. Exploring Dynamics and Structure of Biomolecules, Cryoprotectants, and Water Using Molecular Dynamics Simulations: Implications for Biostabilization and Biopreservation. Annu. Rev. Biomed. Eng. 2019;15:1–31. doi: 10.1146/annurev-bioeng-060418-052130. PubMed DOI PMC
Phan A.D., Knapik-Kowalczuk J., Paluch M., Hoang T.X., Wakabayashi K. Theoretical Model for the Structural Relaxation Time in Coamorphous Drugs. Mol. Pharm. 2019;16:2992–2998. doi: 10.1021/acs.molpharmaceut.9b00230. PubMed DOI
Alzghoul A., Alhalaweh A., Mahlin D., Bergström C.A.S. Experimental and Computational Prediction of Glass Transition Temperature of Drugs. J. Chem. Inf. Modeling. 2014;54:3396–3403. doi: 10.1021/ci5004834. PubMed DOI
Gordon M., Taylor J.S. Ideal Copolymers and the 2nd-order Transitions of Synthetic Rubbers. 1. Non-crystalline Copolymers. J. Appl. Chem. 1952;2:493–500. doi: 10.1002/jctb.5010020901. DOI
Fox T.G., Flory P.J. 2nd-order Transition Temperatures and Related Properties of Polystyrene. 1. Influence of Molecular Weight. J. Appl. Phys. 1950;21:581–591. doi: 10.1063/1.1699711. DOI
Bergstrom C.A.S., Charman W.N., Porter C.J.H. Computational prediction of formulation strategies for beyond-rule-of-5 compounds. Adv. Drug Deliv. Rev. 2016;101:6–21. doi: 10.1016/j.addr.2016.02.005. PubMed DOI
Grzybowska K., Grzybowski A., Knapik-Kowalczuk J., Chmiel K., Woyna-Orlewicz K., Szafraniec-Szczęsny J., Antosik-Rogóż A., Jachowicz R., Kowalska-Szojda K., Lodowski P., et al. Molecular Dynamics and Physical Stability of Ibuprofen in Binary Mixtures with an Acetylated Derivative of Maltose. Mol. Pharm. 2020;17:3087–3105. doi: 10.1021/acs.molpharmaceut.0c00517. PubMed DOI PMC
Koperwas K., Adrjanowicz K., Wojnarowska Z., Jedrzejowska A., Knapik J., Paluch M. Glass-Forming Tendency of Molecular Liquids and the Strength of the Intermolecular Attractions. Sci. Rep. 2016;6:36934. doi: 10.1038/srep36934. PubMed DOI PMC
Glotzer S.C., Paul W. Molecular and mesoscale simulation methods for polymer materials. Annu. Rev. Mater. Res. 2002;32:401–436. doi: 10.1146/annurev.matsci.32.010802.112213. DOI
Paul W., Smith G.D. Structure and dynamics of amorphous polymers: Computer simulations compared to experiment and theory. Rep. Prog. Phys. 2004;67:1117–1185. doi: 10.1088/0034-4885/67/7/R03. DOI
Roe R.J. Short-time Dynamics of Polymer Liquid and Glass Studied by Molecular-Dynamics Simulation. J. Chem. Phys. 1994;100:1610–1619. doi: 10.1063/1.466588. DOI
Han J., Gee R.H., Boyd R.H. Glass-transition Temperatures of Polymers from Molecular-Dynamics Simulations. Macromolecules. 1994;27:7781–7784. doi: 10.1021/ma00104a036. DOI
Greiner M., Elts E., Schneider J., Reuter K., Briesen H. Dissolution study of active pharmaceutical ingredients using molecular dynamics simulations with classical force fields. J. Cryst. Growth. 2014;405:122–130. doi: 10.1016/j.jcrysgro.2014.07.046. DOI
Römer F., Kraska T. A force field for naproxen. Mol. Simul. 2012;38:152–160. doi: 10.1080/08927022.2011.608847. DOI
Xiang T.-X., Anderson B.D. Molecular Dynamics Simulation of Amorphous Indomethacin. Mol. Pharm. 2013;10:102–114. doi: 10.1021/mp3000698. PubMed DOI
Jorgensen W.L., Maxwell D.S., Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996;118:11225–11236. doi: 10.1021/ja9621760. DOI
Pranata J., Wierschke S.G., Jorgensen W.L. OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform. J. Am. Chem. Soc. 1991;113:2810–2819. doi: 10.1021/ja00008a002. DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16 Revision B.01. Gaussian Inc.; Wallingford, CT, USA: 2016.
Hanus M., Kabeláč M., Rejnek J., Ryjáček F., Hobza P. Correlated ab Initio Study of Nucleic Acid Bases and Their Tautomers in the Gas Phase, in a Microhydrated Environment, and in Aqueous Solution. Part 3. Adenine. J. Phys. Chem. B. 2004;108:2087–2097. doi: 10.1021/jp036090m. PubMed DOI
Trygubenko S.A., Bogdan T.V., Rueda M., Orozco M., Luque F.J., Šponer J., Slavíček P., Hobza P. Correlated ab initio study of nucleic acid bases and their tautomers in the gas phase, in a microhydrated environment and in aqueous solution Part 1. Cytosine. Phys. Chem. Chem. Phys. 2002;4:4192–4203. doi: 10.1039/B202156K. DOI
Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039. DOI
Martinez L., Andrade R., Birgin E.G., Martinez J.M. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009;30:2157–2164. doi: 10.1002/jcc.21224. PubMed DOI
Tuckerman M.E., Alejandre J., Lopez-Rendon R., Jochim A.L., Martyna G.J. A Liouville-operator derived. measure-preserving integrator for molecular dynamics simulations in the isothermal-isobaric ensemble. J. Phys. A Math. Gen. 2006;39:5629–5651. doi: 10.1088/0305-4470/39/19/S18. DOI
Shinoda W., Shiga M., Mikami M. Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys. Rev. B. 2004;69:134103. doi: 10.1103/PhysRevB.69.134103. DOI
Hockney R.W., Eastwood J.W. Computer Simulation Using Particles. Taylor&Francis; New York, NY, USA: 1988. p. 540.
Ryckaert J.P., Ciccotti G., Berendsen H.J.C. Numerical-integration of cartesian equations of motion of a system with constraints -molecular-dynamics of n-alkanes. J. Comp. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI
Mahapatra S., Nayak S.K., Prathapa S.J., Guru Row T.N. Anhydrous Adenine: Crystallization, Structure, and Correlation with Other Nucleobases. Cryst. Growth Des. 2008;8:1223–1225. doi: 10.1021/cg700743w. DOI
McClure R.J., Craven B.M. New investigations of cytosine and its monohydrate. Acta Crystallogr. Sect. B. 1973;29:1234–1238. doi: 10.1107/S0567740873004292. DOI
Tang G.-M., Wang J.-H., Zhao C., Wang Y.-T., Cui Y.-Z., Cheng F.-Y., Ng S.W. Multi odd–even effects on cell parameters, melting points, and optical properties of chiral crystal solids based on S-naproxen. CrystEngComm. 2015;17:7258–7261. doi: 10.1039/C5CE01345C. DOI
Cox P.J., Manson P.L. [gamma]-Indomethacin at 120 K. Acta Crystallogr. Sect. E. 2003;59:o986–o988. doi: 10.1107/S160053680301290X. DOI
Chen X., Morris K.R., Griesser U.J., Byrn S.R., Stowell J.G. Reactivity Differences of Indomethacin Solid Forms with Ammonia Gas. J. Am. Chem. Soc. 2002;124:15012–15019. doi: 10.1021/ja017662o. PubMed DOI
Ostrowska K., Kropidłowska M., Katrusiak A. High-Pressure Crystallization and Structural Transformations in Compressed R,S-Ibuprofen. Cryst. Growth Des. 2015;15:1512–1517. doi: 10.1021/cg5018888. DOI
Eccles K.S., Stokes S.P., Daly C.A., Barry N.M., McSweeney S.P., O’Neill D.J., Kelly D.M., Jennings W.B., Ni Dhubhghaill O.M., Moynihan H.A., et al. Evaluation of the Bruker SMART X2S: Crystallography for the nonspecialist? J. Appl. Crystallogr. 2011;44:213–215. doi: 10.1107/S0021889810042561. PubMed DOI PMC
Štejfa V., Pokorný V., Mathers A., Růžička K., Fulem M. Heat capacities of selected active pharmaceutical ingredients. J. Chem. Thermodyn. 2021:106585. in press.
Klajmon M. Investigating Various Parametrization Strategies for Pharmaceuticals within the PC-SAFT Equation of State. J. Chem. Eng. Data. 2020;65:5753–5767. doi: 10.1021/acs.jced.0c00707. DOI
Buchholz H., Emel’yanenko V.N., Lorenz H., Verevkin S.P. An Examination of the Phase Transition Thermodynamics of (S)- and (RS)-Naproxen as a Basis for the Design of Enantioselective Crystallization Processes. J. Pharm. Sci. 2016;105:1676–1683. doi: 10.1016/j.xphs.2016.02.032. PubMed DOI
Perlovich G.L., Kurkov S.V., Hansen L.K., Bauer-Brandl A. Thermodynamics of sublimation, crystal lattice energies, and crystal structures of racemates and enantiomers: (+)- and (±)-ibuprofen. J. Pharm. Sci. 2004;93:654–666. doi: 10.1002/jps.10586. PubMed DOI
Červinka C., Fulem M., Růžička K. Evaluation of Accuracy of Ideal-Gas Heat Capacity and Entropy Calculations by Density Functional Theory (DFT) for Rigid Molecules. J. Chem. Eng. Data. 2012;57:227–232. doi: 10.1021/je201095b. DOI
Červinka C., Štejfa V. Computational assessment of the crystallization tendency of 1-ethyl-3-methylimidazolium ionic liquids. Phys. Chem. Chem. Phys. 2021;23:4951–4962. doi: 10.1039/D0CP06083F. PubMed DOI
Zemánková A. Bachelor’s Thesis. University of Chemistry and Technology; Prague, Czech Republic: 2020. Screening and Evaluation of Co-Amorphous Drug Delivery Systems.
Červinka C., Pádua A.A.H., Fulem M. Thermodynamic Properties of Selected Homologous Series of Ionic Liquids Calculated Using Molecular Dynamics. J. Phys. Chem. B. 2016;120:2362–2371. doi: 10.1021/acs.jpcb.5b11070. PubMed DOI
Klajmon M., Červinka C. Does explicit polarizability improve simulations of phase behavior of ionic liquids? J. Chem. Theory Comput. 2021 submitted. PubMed
COSMOPharm: Drug-Polymer Compatibility of Pharmaceutical Amorphous Solid Dispersions from COSMO-SAC