Beyond Self-Resistance: ABCF ATPase LmrC Is a Signal-Transducing Component of an Antibiotic-Driven Signaling Cascade Accelerating the Onset of Lincomycin Biosynthesis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34488446
PubMed Central
PMC8546547
DOI
10.1128/mbio.01731-21
Knihovny.cz E-zdroje
- Klíčová slova
- ABCF ATPase, Streptomyces, antibiotic biosynthesis, antibiotic resistance, antibiotic-mediated signaling, chemical communication, regulation of gene expression, ribosomal regulation, signal transduction, specialized metabolism,
- MeSH
- adenosintrifosfatasy metabolismus MeSH
- antibakteriální látky biosyntéza farmakologie MeSH
- bakteriální léková rezistence MeSH
- bakteriální proteiny genetika metabolismus MeSH
- linkomycin biosyntéza farmakologie MeSH
- methyltransferasy MeSH
- multigenová rodina MeSH
- proteiny spojené s mnohočetnou rezistencí k lékům genetika metabolismus MeSH
- regulace genové exprese u bakterií účinky léků MeSH
- ribozomy metabolismus MeSH
- signální transdukce MeSH
- Streptomyces metabolismus MeSH
- transkripční faktory MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfatasy MeSH
- antibakteriální látky MeSH
- bakteriální proteiny MeSH
- linkomycin MeSH
- methyltransferasy MeSH
- proteiny spojené s mnohočetnou rezistencí k lékům MeSH
- rRNA (adenosine-O-2'-)methyltransferase MeSH Prohlížeč
- transkripční faktory MeSH
In natural environments, antibiotics are important means of interspecies competition. At subinhibitory concentrations, they act as cues or signals inducing antibiotic production; however, our knowledge of well-documented antibiotic-based sensing systems is limited. Here, for the soil actinobacterium Streptomyces lincolnensis, we describe a fundamentally new ribosome-mediated signaling cascade that accelerates the onset of lincomycin production in response to an external ribosome-targeting antibiotic to synchronize antibiotic production within the population. The entire cascade is encoded in the lincomycin biosynthetic gene cluster (BGC) and consists of three lincomycin resistance proteins in addition to the transcriptional regulator LmbU: a lincomycin transporter (LmrA), a 23S rRNA methyltransferase (LmrB), both of which confer high resistance, and an ATP-binding cassette family F (ABCF) ATPase, LmrC, which confers only moderate resistance but is essential for antibiotic-induced signal transduction. Specifically, antibiotic sensing occurs via ribosome-mediated attenuation, which activates LmrC production in response to lincosamide, streptogramin A, or pleuromutilin antibiotics. Then, ATPase activity of the ribosome-associated LmrC triggers the transcription of lmbU and consequently the expression of lincomycin BGC. Finally, the production of LmrC is downregulated by LmrA and LmrB, which reduces the amount of ribosome-bound antibiotic and thus fine-tunes the cascade. We propose that analogous ABCF-mediated signaling systems are relatively common because many ribosome-targeting antibiotic BGCs encode an ABCF protein accompanied by additional resistance protein(s) and transcriptional regulators. Moreover, we revealed that three of the eight coproduced ABCF proteins of S. lincolnensis are clindamycin responsive, suggesting that the ABCF-mediated antibiotic signaling may be a widely utilized tool for chemical communication. IMPORTANCE Resistance proteins are perceived as mechanisms protecting bacteria from the inhibitory effect of their produced antibiotics or antibiotics from competitors. Here, we report that antibiotic resistance proteins regulate lincomycin biosynthesis in response to subinhibitory concentrations of antibiotics. In particular, we show the dual character of the ABCF ATPase LmrC, which confers antibiotic resistance and simultaneously transduces a signal from ribosome-bound antibiotics to gene expression, where the 5' untranslated sequence upstream of its encoding gene functions as a primary antibiotic sensor. ABCF-mediated antibiotic signaling can in principle function not only in the induction of antibiotic biosynthesis but also in selective gene expression in response to any small molecules targeting the 50S ribosomal subunit, including clinically important antibiotics, to mediate intercellular antibiotic signaling and stress response induction. Moreover, the resistance-regulatory function of LmrC presented here for the first time unifies functionally inconsistent ABCF family members involving antibiotic resistance proteins and translational regulators.
Institute of Microbiology The Czech Academy of Sciences BIOCEV Vestec Czech Republic
Institute of Microbiology The Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Mukherjee S, Seshadri R, Varghese NJ, Eloe-Fadrosh EA, Meier-Kolthoff JP, Göker M, Coates RC, Hadjithomas M, Pavlopoulos GA, Paez-Espino D, Yoshikuni Y, Visel A, Whitman WB, Garrity GM, Eisen JA, Hugenholtz P, Pati A, Ivanova NN, Woyke T, Klenk HP, Kyrpides NC. 2017. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat Biotechnol 35:676–683. doi:10.1038/nbt.3886. PubMed DOI
Abrudan MI, Smakman F, Grimbergen AJ, Westhoff S, Miller EL, van Wezel GP, Rozen DE. 2015. Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc Natl Acad Sci USA 112:11054–11059. doi:10.1073/pnas.1504076112. PubMed DOI PMC
Tyc O, van den Berg M, Gerards S, van Veen JA, Raaijmakers JM, de Boer W, Garbeva P. 2014. Impact of interspecific interactions on antimicrobial activity among soil bacteria. Front Microbiol 5:567. doi:10.3389/fmicb.2014.00567. PubMed DOI PMC
Cornforth DM, Foster KR. 2013. Competition sensing: the social side of bacterial stress responses. Nat Rev Microbiol 11:285–293. doi:10.1038/nrmicro2977. PubMed DOI
Westhoff S, Kloosterman A, van Hoesel SFA, van Wezel GP, Rozen DE. 2020. Competition sensing alters antibiotic production in Streptomyces. bioRxiv doi:10.1101/2020.01.24.918557. PubMed DOI PMC
Imai Y, Sato S, Tanaka Y, Ochi K, Hosaka T. 2015. Lincomycin at subinhibitory concentrations potentiates secondary metabolite production by Streptomyces spp. Appl Environ Microbiol 81:3869–3879. doi:10.1128/AEM.04214-14. PubMed DOI PMC
Lozano GL, Guan C, Cao Y, Handelsman J, Borlee BR, Broderick NA, Stabb EV. 2020. A chemical counterpunch: Chromobacterium violaceum ATCC 31532 produces violacein in response to translation-inhibiting antibiotics. mBio 11:e00948-20. doi:10.1128/mBio.00948-20. PubMed DOI PMC
Tanaka Y, Izawa M, Hiraga Y, Misaki Y, Watanabe T, Ochi K. 2017. Metabolic perturbation to enhance polyketide and nonribosomal peptide antibiotic production using triclosan and ribosome-targeting drugs. Appl Microbiol Biotechnol 101:4417–4431. doi:10.1007/s00253-017-8216-6. PubMed DOI
Wilson DN. 2014. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 12:35–48. doi:10.1038/nrmicro3155. PubMed DOI
Van Der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, Van Wezel GP, Van Wezel GP. 2018. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 35:575–604. doi:10.1039/C8NP00012C. PubMed DOI
Weber JM, Leung JO, Maine GT, Potenz RH, Paulus TJ, DeWitt JP. 1990. Organization of a cluster of erythromycin genes in Saccharopolyspora erythraea. J Bacteriol 172:2372–2383. doi:10.1128/jb.172.5.2372-2383.1990. PubMed DOI PMC
Janata J, Kadlcik S, Koberska M, Ulanova D, Kamenik Z, Novak P, Kopecky J, Novotna J, Radojevic B, Plhackova K, Gazak R, Najmanova L. 2015. Lincosamide synthetase: a unique condensation system combining elements of nonribosomal peptide synthetase and mycothiol metabolism. PLoS One 10:e0118850. doi:10.1371/journal.pone.0118850. PubMed DOI PMC
Karray F, Darbon E, Oestreicher N, Dominguez H, Tuphile K, Gagnat J, Blondelet-Rouault MH, Gerbaud C, Pernodet JL. 2007. Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in Streptomyces ambofaciens. Microbiology (Reading) 153:4111–4122. doi:10.1099/mic.0.2007/009746-0. PubMed DOI
Peschke U, Schmidt H, Zhang H-Z, Piepersberg W. 1995. Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11. Mol Microbiol 16:1137–1156. doi:10.1111/j.1365-2958.1995.tb02338.x. PubMed DOI
Pulsawat N, Kitani S, Nihira T. 2007. Characterization of biosynthetic gene cluster for the production of virginiamycin M, a streptogramin type A antibiotic, in Streptomyces virginiae. Gene 393:31–42. doi:10.1016/j.gene.2006.12.035. PubMed DOI
Mochizuki S, Hiratsu K, Suwa M, Ishii T, Sugino F, Yamada K, Kinashi H, Mochizuki S, Keiichiro Hiratsu MS, Ishii T, Fuminori Sugino KY, Kinashi H. 2003. The large linear plasmid pSLA2-L of Streptomyces rochei has an unusually condensed gene organization for secondary metabolism. Mol Microbiol 48:1501–1510. doi:10.1046/j.1365-2958.2003.03523.x. PubMed DOI
Wu J, Li L, Deng Z, Zabriskie TM, He X. 2012. Analysis of the mildiomycin biosynthesis gene cluster in Streptoverticillum remofaciens ZJU5119 and characterization of MilC, a hydroxymethyl cytosyl-glucuronic acid synthase. Chembiochem 13:1613–1621. doi:10.1002/cbic.201200173. PubMed DOI
Sharkey LKR, Edwards TA, O’Neill AJ. 2016. ABC-F proteins mediate antibiotic resistance through ribosomal protection. mBio 7:e01975-15. doi:10.1128/mBio.01975-15. PubMed DOI PMC
Ousalem F, Singh S, Chesneau O, Hunt JF, Boël G. 2019. ABC-F proteins in mRNA translation and antibiotic resistance. Res Microbiol 170:435–447. doi:10.1016/j.resmic.2019.09.005. PubMed DOI
Chen B, Boël G, Hashem Y, Ning W, Fei J, Wang C, Gonzalez RL, Hunt JF, Frank J, Gonzalez RL, Jr.. 2014. EttA regulates translation by binding the ribosomal E site and restricting ribosome-tRNA dynamics. Nat Struct Mol Biol 21:152–159. doi:10.1038/nsmb.2741. PubMed DOI PMC
Boël G, Smith PC, Ning W, Englander MT, Chen B, Hashem Y, Testa AJ, Fischer JJ, Wieden H, Frank J, Gonzalez RL, Jr, Hunt JF, Gonzalez RL. 2014. The ABC-F protein EttA gates ribosome entry into the translation elongation cycle. Nat Struct Mol Biol 21:143–151. doi:10.1038/nsmb.2740. PubMed DOI PMC
Murina V, Kasari M, Takada H, Hinnu M, Saha CK, Grimshaw JW, Seki T, Reith M, Putrinš M, Tenson T, Strahl H, Hauryliuk V, Atkinson GC. 2019. ABCF ATPases involved in protein synthesis, ribosome assembly and antibiotic resistance: structural and functional diversification across the tree of life. J Mol Biol 431:3568–3590. doi:10.1016/j.jmb.2018.12.013. PubMed DOI PMC
Koberská M, Kopecký J, Olsovská J, Jelínková M, Ulanova D, Man P, Flieger M, Janata J. 2008. Sequence analysis and heterologous expression of the lincomycin biosynthetic cluster of the type strain Streptomyces lincolnensis ATCC 25466. Folia Microbiol (Praha) 53:395–401. doi:10.1007/s12223-008-0060-8. PubMed DOI
Hou B, Lin Y, Wu H, Guo M, Petkovic H, Tao L, Zhu X, Ye J, Zhang H. 2018. The novel transcriptional regulator LmbU promotes lincomycin biosynthesis through regulating expression of its target genes in Streptomyces lincolnensis. J Bacteriol 200:e00447-17. PubMed PMC
Hou B, Zhu X, Kang Y, Wang R, Wu H, Ye J, Zhang H. 2019. LmbU, a cluster-situated regulator for lincomycin, consists of a DNA-binding domain, an auto-inhibitory domain, and forms homodimer. Front Microbiol 10:989. doi:10.3389/fmicb.2019.00989. PubMed DOI PMC
Gomez-Escribano JP, Bibb MJ. 2011. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb Biotechnol 4:207–215. doi:10.1111/j.1751-7915.2010.00219.x. PubMed DOI PMC
Janata J, Kamenik Z, Gazak R, Kadlcik S, Najmanova L. 2018. Biosynthesis and incorporation of an alkylproline-derivative (APD) precursor into complex natural products. Nat Prod Rep 35:257–289. doi:10.1039/c7np00047b. PubMed DOI
Kang Y, Wang Y, Hou B, Wang R, Ye J, Zhu X, Wu H, Zhang H. 2019. AdpAlin, a pleiotropic transcriptional regulator, is involved in the cascade regulation of lincomycin biosynthesis in Streptomyces lincolnensis. Front Microbiol 10:2428. doi:10.3389/fmicb.2019.02428. PubMed DOI PMC
Li J, Wang N, Tang Y, Cai X, Xu Y, Liu R, Wu H, Zhang B. 2019. Developmental regulator BldD directly regulates lincomycin biosynthesis in Streptomyces lincolnensis. Biochem Biophys Res Commun 518:548–553. doi:10.1016/j.bbrc.2019.08.079. PubMed DOI
Wang R, Kong F, Wu H, Hou B, Kang Y, Cao Y, Duan S, Ye J, Zhang H. 2020. Complete genome sequence of high-yield strain Streptomyces lincolnensis B48 and identification of crucial mutations contributing to lincomycin overproduction. Synth Syst Biotechnol 5:37–48. doi:10.1016/j.synbio.2020.03.001. PubMed DOI PMC
Xu Y, Tan G, Ke M, Li J, Tang Y, Meng S, Niu J, Wang Y, Liu R, Wu H, Bai L, Zhang L, Zhang B. 2018. Enhanced lincomycin production by co-overexpression of metK1 and metK2 in Streptomyces lincolnensis. J Ind Microbiol Biotechnol 45:345–448. doi:10.1007/s10295-018-2029-1. PubMed DOI
Elliot M, Damji F, Passantino R, Chater K, Leskiw B. 1998. The bldD gene of Streptomyces coelicolor A32: a regulatory gene involved in morphogenesis and antibiotic production. J Bacteriol 180:1549–1555. doi:10.1128/JB.180.6.1549-1555.1998. PubMed DOI PMC
Takano E, Tao M, Long F, Bibb MJ, Wang L, Li W, Buttner MJ, Bibb MJ, Deng ZX, Chater KF. 2003. A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Mol Microbiol 50:475–486. doi:10.1046/j.1365-2958.2003.03728.x. PubMed DOI
Lenart J, Vimberg V, Vesela L, Janata J, Novotna GB. 2015. Detailed mutational analysis of Vga(A) interdomain linker: implication for antibiotic resistance specificity and mechanism. Antimicrob Agents Chemother 59:1360–1364. doi:10.1128/AAC.04468-14. PubMed DOI PMC
Crowe-McAuliffe C, Murina V, Turnbull KJ, Kasari M, Mohamad M, Polte C, Takada H, Vaitkevicius K, Johansson J, Ignatova Z, Atkinson GC, O’Neill AJ, Hauryliuk V, Wilson DN. 2021. Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens. Nat Commun 12:3577. doi:10.1038/s41467-021-23753-1. PubMed DOI PMC
Johnston N, Mukhtar T, Wright G. 2002. Streptogramin antibiotics: mode of action and resistance. Curr Drug Targets 3:335–344. doi:10.2174/1389450023347678. PubMed DOI
Meng S, Wu H, Wang L, Zhang B, Bai L. 2017. Enhancement of antibiotic productions by engineered nitrate utilization in actinomycetes. Appl Microbiol Biotechnol 101:5341–5352. doi:10.1007/s00253-017-8292-7. PubMed DOI
Ohki R, Tateno K, Takizawa T, Aiso T, Murata M. 2005. Transcriptional termination control of a novel ABC transporter gene involved in antibiotic resistance in Bacillus subtilis. J Bacteriol 187:5946–5954. doi:10.1128/JB.187.17.5946-5954.2005. PubMed DOI PMC
Vimberg V, Cavanagh JP, Novotna M, Lenart J, Nguyen Thi Ngoc B, Vesela J, Pain M, Koberska M, Balikova Novotna G. 2020. Ribosome-mediated attenuation of vga(A) expression is shaped by the antibiotic resistance specificity of Vga(A) protein variants. Antimicrob Agents Chemother 64:e00666-20. doi:10.1128/AAC.00666-20. PubMed DOI PMC
Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N, Cossart P, Sorek R. 2016. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352:aad9822–189. doi:10.1126/science.aad9822. PubMed DOI PMC
Millman A, Dar D, Shamir M, Sorek R. 2017. Computational prediction of regulatory, premature transcription termination in bacteria. Nucleic Acids Res 45:886–893. doi:10.1093/nar/gkw749. PubMed DOI PMC
Almutairi MM, Park SR, Rose S, Hansen DA, Vázquez-Laslop N, Douthwaite S, Sherman DH, Mankin AS. 2015. Resistance to ketolide antibiotics by coordinated expression of rRNA methyltransferases in a bacterial producer of natural ketolides. Proc Natl Acad Sci U S A 112:12956–12961. doi:10.1073/pnas.1512090112. PubMed DOI PMC
Mak S, Xu Y, Nodwell JR. 2014. The expression of antibiotic resistance genes in antibiotic-producing bacteria. Mol Microbiol 93:391–402. doi:10.1111/mmi.12689. PubMed DOI
Kelemen GH, Zalacain M, Culebras E, Seno ET, Cundliffe E. 1994. Transcriptional attenuation control of the tylosin-resistance gene tlrA in Streptomyces fradiae. Mol Microbiol 14:833–842. doi:10.1111/j.1365-2958.1994.tb01319.x. PubMed DOI
Chancey ST, Bai X, Kumar N, Drabek EF, Daugherty SC, Colon T, Ott S, Sengamalay N, Sadzewicz L, Tallon LJ, Fraser CM, Tettelin H, Stephens DS. 2015. Transcriptional attenuation controls macrolide inducible efflux and resistance in Streptococcus pneumoniae and in other Gram-positive bacteria containing mef/mel (msr(D)) elements. PLoS One 10:e0116254. doi:10.1371/journal.pone.0116254. PubMed DOI PMC
Cai X, Teta R, Kohlhaas C, Crüsemann M, Ueoka R, Mangoni A, Freeman MF, Piel J. 2013. Manipulation of regulatory genes reveals complexity and fidelity in hormaomycin biosynthesis. Chem Biol 20:839–846. doi:10.1016/j.chembiol.2013.04.018. PubMed DOI
Dangel V, Harle J, Goerke C, Wolz C, Gust B, Pernodet J-L, Heide L. 2009. Transcriptional regulation of the novobiocin biosynthetic gene cluster. Microbiology (Reading) 155:4025–4035. doi:10.1099/mic.0.032649-0. PubMed DOI
Höfer I, Crüsemann M, Radzom M, Geers B, Flachshaar D, Cai X, Zeeck A, Piel J. 2011. Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite. Chem Biol 18:381–391. doi:10.1016/j.chembiol.2010.12.018. PubMed DOI
Sherwood EJ, Bibb MJ. 2013. The antibiotic planosporicin coordinates its own production in the actinomycete Planomonospora alba. Proc Natl Acad Sci USA 110:E2500-9. doi:10.1073/pnas.1305392110. PubMed DOI PMC
Xu YY, Willems A, Au-Yeung C, Tahlan K, Nodwell JR. 2012. A two-step mechanism for the activation of actinorhodin export and resistance in Streptomyces coelicolor. mBio 3:e00191-12. doi:10.1128/mBio.00191-12. PubMed DOI PMC
Daniel-Ivad M, Pimentel-Elardo S, Nodwell JR. 2018. Control of specialized metabolism by signaling and transcriptional regulation: opportunities for new platforms for drug discovery? Annu Rev Microbiol 72:25–48. doi:10.1146/annurev-micro-022618-042458. PubMed DOI
Ishizuka M, Imai Y, Mukai K, Shimono K, Hamauzu R, Ochi K, Hosaka T. 2018. A possible mechanism for lincomycin induction of secondary metabolism in Streptomyces coelicolor A3(2). Antonie Van Leeuwenhoek 111:705–716. doi:10.1007/s10482-018-1021-0. PubMed DOI
Kong D, Wang X, Nie J, Niu G. 2019. Regulation of antibiotic production by signaling molecules in Streptomyces. Front Microbiol 10:2927. doi:10.3389/fmicb.2019.02927. PubMed DOI PMC
Le TBK, Fiedler HP, Den Hengst CD, Ahn SK, Maxwell A, Buttner MJ. 2009. Coupling of the biosynthesis and export of the DNA gyrase inhibitor simocyclinone in Streptomyces antibioticus. Mol Microbiol 72:1462–1474. doi:10.1111/j.1365-2958.2009.06735.x. PubMed DOI
Ostash I, Ostash B, Luzhetskyy A, Bechthold A, Walker S, Fedorenko V. 2008. Coordination of export and glycosylation of landomycins in Streptomyces cyanogenus S136. FEMS Microbiol Lett 285:195–202. doi:10.1111/j.1574-6968.2008.01225.x. PubMed DOI
Crowe-McAuliffe C, Graf M, Huter P, Takada H, Abdelshahid M, Nováček J, Murina V, Atkinson GC, Hauryliuk V, Wilson DN. 2018. Structural basis for antibiotic resistance mediated by the Bacillus subtilis ABCF ATPase VmlR. Proc Natl Acad Sci USA 115:1–35. PubMed PMC
Su W, Kumar V, Ding Y, Ero R, Serra A, Lee BST, Wong ASW, Shi J, Sze SK, Yang L, Gao Y-G. 2018. Ribosome protection by antibiotic resistance ATP-binding cassette protein. Proc Natl Acad Sci USA 115:5157–5162. doi:10.1073/pnas.1803313115. PubMed DOI PMC
Krishnan A, Burroughs AM, Iyer LM, Aravind L. 2020. Comprehensive classification of ABC ATPases and their functional radiation in nucleoprotein dynamics and biological conflict systems. Nucleic Acids Res 48:10045–10075. doi:10.1093/nar/gkaa726. PubMed DOI PMC
Hobbs G, Frazer CM, Gardner DCJ, Cullum JA, Oliver SG. 1989. Dispersed growth of Streptomyces in liquid culture. Appl Microbiol Biotechnol 31:272–277. doi:10.1007/BF00258408. DOI
Najmanova L, Ulanova D, Jelinkova M, Kamenik Z, Kettnerova E, Koberska M, Gazak R, Radojevic B, Janata J. 2014. Sequence analysis of porothramycin biosynthetic gene cluster. Folia Microbiol (Praha) 59:543–552. doi:10.1007/s12223-014-0339-x. PubMed DOI PMC
Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces genetics. John Innes Centre, Ltd, Norwich, England.
Gust B, Chandra G, Jakimowicz D, Yuqing T, Bruton CJ, Chater KF. 2004. λRed-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv Appl Microbiol 54:107–128. doi:10.1016/S0065-2164(04)54004-2. PubMed DOI
Gust B, Challis GL, Fowler K, Kieser T, Chater KF. 2003. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546. doi:10.1073/pnas.0337542100. PubMed DOI PMC
Gregory MA, Till R, Smith MCM. 2003. Integration site for Streptomyces phage ϕBT1 and development of site-specific integrating vectors. J Bacteriol 185:5320–5323. doi:10.1128/JB.185.17.5320-5323.2003. PubMed DOI PMC
Huang J, Shi J, Molle V, Sohlberg B, Weaver D, Bibb MJ, Karoonuthaisiri N, Lih CJ, Kao CM, Buttner MJ, Cohen SN. 2005. Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol Microbiol 58:1276–1287. doi:10.1111/j.1365-2958.2005.04879.x. PubMed DOI
Zhang Y, Werling U, Edelmann W. 2012. SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res 40:e55. doi:10.1093/nar/gkr1288. PubMed DOI PMC
Carter KK, Valdes JJ, Bentley WE. 2012. Pathway engineering via quorum sensing and sRNA riboregulators: interconnected networks and controllers. Metab Eng 14:281–288. doi:10.1016/j.ymben.2011.11.006. PubMed DOI
Masuda T, Tomita M, Ishihama Y. 2008. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res 7:731–740. doi:10.1021/pr700658q. PubMed DOI
Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, Coon JJ. 2014. The one hour yeast proteome. Mol Cell Proteomics 13:339–347. doi:10.1074/mcp.M113.034769. PubMed DOI PMC
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526. doi:10.1074/mcp.M113.031591. PubMed DOI PMC
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740. doi:10.1038/nmeth.3901. PubMed DOI
Basu A, Yap M-N, Doisy EA. 2016. Ribosome hibernation factor promotes staphylococcal survival and differentially represses translation. Nucleic Acids Res 44:4881–4893. doi:10.1093/nar/gkw180. PubMed DOI PMC
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz Ş, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A, Vizcaíno JA. 2019. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47:D442–D450. doi:10.1093/nar/gky1106. PubMed DOI PMC
Reese MG. 2001. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 26:51–56. doi:10.1016/s0097-8485(01)00099-7. PubMed DOI
Di Salvo M, Pinatel E, Talà A, Fondi M, Peano C, Alifano P. 2018. G4PromFinder: an algorithm for predicting transcription promoters in GC-rich bacterial genomes based on AT-rich elements and G-quadruplex motifs. BMC Bioinformatics 19:36. doi:10.1186/s12859-018-2049-x. PubMed DOI PMC