Phosphate-Based Self-Immolative Linkers for the Delivery of Amine-Containing Drugs
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-25137Y
Grantová Agentura České Republiky
21-23014S
Grantová Agentura České Republiky
SG-2018-1
Nadace Experientia
PubMed
34500595
PubMed Central
PMC8434617
DOI
10.3390/molecules26175160
PII: molecules26175160
Knihovny.cz E-zdroje
- Klíčová slova
- 31P-NMR spectroscopy, amine-containing drugs, phosphate-based linkers, prodrugs, self-immolative linkers,
- MeSH
- aminy chemie MeSH
- antibakteriální látky chemie MeSH
- ciprofloxacin chemie MeSH
- fosfáty chemie MeSH
- koncentrace vodíkových iontů MeSH
- kyselina mléčná chemie MeSH
- léčivé přípravky chemie MeSH
- prekurzory léčiv chemie MeSH
- systémy cílené aplikace léků metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminy MeSH
- antibakteriální látky MeSH
- ciprofloxacin MeSH
- fosfáty MeSH
- kyselina mléčná MeSH
- léčivé přípravky MeSH
- prekurzory léčiv MeSH
Amine-containing drugs often show poor pharmacological properties, but these disadvantages can be overcome by using a prodrug approach involving self-immolative linkers. Accordingly, we designed l-lactate linkers as ideal candidates for amine delivery. Furthermore, we designed linkers bearing two different cargos (aniline and phenol) for preferential amine cargo release within 15 min. Since the linkers carrying secondary amine cargo showed high stability at physiological pH, we used our strategy to prepare phosphate-based prodrugs of the antibiotic Ciprofloxacin. Therefore, our study will facilitate the rational design of new and more effective drug delivery systems for amine-containing drugs.
Zobrazit více v PubMed
Barbosa-Filho J.M., Piuvezam M.R., Moura M.D., Silva M.S., Lima K.V.B., da-Cunha E.V.L., Fechine I.M., Takemura O.S. Anti-inflammatory activity of alkaloids: A twenty-century review. Rev. Bras. Farmacogn. 2006;16:109–139. doi: 10.1590/S0102-695X2006000100020. DOI
Ballout F., Habli Z., Monzer A., Rahal O.N., Fatfat M., Gali-Muhtasib H. Bioactive Natural Products for the Management of Cancer: From Bench to Bedside. Springer; Singapore: 2019. Anticancer Alkaloids: Molecular Mechanisms and Clinical Manifestations; pp. 1–35.
Mohan K., Jeyachandran R. Alkaloids as anticancer agents. Ann. Phytomed. 2012;1:46–53.
Krishnan N., Devadasan V., Raman P. Plant-derived alkaloids as anti-viral agents. Int. J. Res. Pharm. Sci. 2020;11:6174–6182. doi: 10.26452/ijrps.v11i4.3291. DOI
Cushnie T.P.T., Cushnie B., Lamb A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents. 2014;44:377–386. doi: 10.1016/j.ijantimicag.2014.06.001. PubMed DOI
Sayhan H., Beyaz S.G., Çeliktaş A. Alkaloids—Alternatives in Synthesis, Modification and Application. InTechOpen; London, UK: 2017. The Local Anesthetic and Pain Relief Activity of Alkaloids. DOI
Krise J.P., Oliyai R. Prodrugs of Amines. In: Stella V., Borchardt R., Hageman M., Oliyai R., Maag H., Tilley J.E., editors. Prodrugs. Springer; New York, NY, USA: 2008. pp. 801–831.
Albert A. Chemical aspects of selective toxicity. Nature. 1958;182:421–423. doi: 10.1038/182421a0. PubMed DOI
Abet V., Filace F., Recio J., Alvarez-Builla J., Burgos C. Prodrug approach: An overview of recent cases. Eur. J. Med. Chem. 2017;127:810–827. doi: 10.1016/j.ejmech.2016.10.061. PubMed DOI
Rautio J., Kumpulainen H., Heimbach T., Oliyai R., Oh D., Järvinen T., Savolainen J. Prodrugs: Design and clinical applications. Nat. Rev. Drug Discov. 2008;7:255–270. doi: 10.1038/nrd2468. PubMed DOI
Simplício A.L., Clancy J.M., Gilmer J.F. Prodrugs for amines. Molecules. 2008;13:519–547. doi: 10.3390/molecules13030519. PubMed DOI PMC
Alouane A., Labruère R., Le Saux T., Schmidt F., Jullien L. Self-immolative spacers: Kinetic aspects, structure-property relationships, and applications. Angew. Chem.-Int. Ed. 2015;54:7492–7509. doi: 10.1002/anie.201500088. PubMed DOI
Gonzaga R.V., do Nascimento L.A., Santos S.S., Machado Sanches B.A., Giarolla J., Ferreira E.I. Perspectives About Self-Immolative Drug Delivery Systems. J. Pharm. Sci. 2020;109:3262–3281. doi: 10.1016/j.xphs.2020.08.014. PubMed DOI
Teicher B.A., Chari R.V.J. Antibody conjugate therapeutics: Challenges and potential. Clin. Cancer Res. 2011;17:6389–6397. doi: 10.1158/1078-0432.CCR-11-1417. PubMed DOI
Egron D., Lefebvre I., Périgaud C., Beltran T., Pompon A., Gosselin G., Aubertin A.M., Imbach J.L. Anti-HIV pronucleotides: Decomposition pathways and correlation with biological activities. Bioorg. Med. Chem. Lett. 1998;8:1045–1050. doi: 10.1016/S0960-894X(98)00158-9. PubMed DOI
Wei Y., Qiu G., Lei B., Qin L., Chu H., Lu Y., Zhu G., Gao Q., Huang Q., Qian G., et al. Oral Delivery of Propofol with Methoxymethylphosphonic Acid as the Delivery Vehicle. J. Med. Chem. 2017;60:8580–8590. doi: 10.1021/acs.jmedchem.7b01133. PubMed DOI
Mehellou Y., Rattan H.S., Balzarini J. The ProTide Prodrug Technology: From the Concept to the Clinic. J. Med. Chem. 2018;61:2211–2226. doi: 10.1021/acs.jmedchem.7b00734. PubMed DOI PMC
Ray A.S., Fordyce M.W., Hitchcock M.J.M. Tenofovir alafenamide: A novel prodrug of tenofovir for the treatment of Human Immunodeficiency Virus. Antivir. Res. 2016;125:63–70. doi: 10.1016/j.antiviral.2015.11.009. PubMed DOI
McQuaid T., Savini C., Seyedkazemi S. Sofosbuvir, a significant paradigm change in hcv treatment. J. Clin. Transl. Hepatol. 2015;3:27–35. PubMed PMC
Siegel D., Hui H.C., Doerffler E., Clarke M.O., Chun K., Zhang L., Neville S., Carra E., Lew W., Ross B., et al. Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. J. Med. Chem. 2017;60:1648–1661. doi: 10.1021/acs.jmedchem.6b01594. PubMed DOI
Klán P., Šolomek T., Bochet C.G., Blanc A., Givens R., Rubina M., Popik V., Kostikov A., Wirz J. Photoremovable protecting groups in chemistry and biology: Reaction mechanisms and efficacy. Chem. Rev. 2013;113:119–191. doi: 10.1021/cr300177k. PubMed DOI PMC
Procházková E., Šimon P., Straka M., Filo J., Majek M., Cigáň M., Baszczyňski O. Phosphate Linkers with Traceable Cyclic Intermediates for Self-Immolation Detection and Monitoring. Chem. Commun. 2020;57:211–214. doi: 10.1039/D0CC06928K. PubMed DOI
Zhang S., Wang H., Shen Y., Zhang F., Seetho K., Zou J., Taylor J.S.A., Dove A.P., Wooley K.L. A simple and efficient synthesis of an acid-labile polyphosphoramidate by organobase-catalyzed ring-opening polymerization and transformation to polyphosphoester ionomers by acid treatment. Macromolecules. 2013;46:5141–5149. doi: 10.1021/ma400675m. PubMed DOI PMC
Procházková E., Filo J., Cigáň M., Baszczyňski O. Sterically-Controlled Self-Immolation in Phosphoramidate Linkers Triggered by Light. Eur. J. Org. Chem. 2020;2020:897–906. doi: 10.1002/ejoc.201901882. DOI
Šimon P., Tichotová M., Gallardo M.G., Procházková E., Baszczynski O. Phosphate-Based Self-Immolative Linkers for Tunable Double Cargo Release. Chem. A Eur. J. doi: 10.1002/chem.202101805. in press. PubMed DOI
Mulliez M., Wolf R. Contraste entre la phosphorylation des alcools et des amines par les 2-4 dioxo, oxa-1, aza-3 phospholanes-2. Bull. Soc. Chim. Fr. 1986:101–108.
Jafar N.N.A., Majeed N.S. Microwave-assisted synthesis and biological activity of ester, carbothioate and carbohydrazide derivative compounds of the drug Ciprofloxacin. J. Chem. Pharm. Sci. 2017;10:515–521.
Albert A., Goldacre R., Phillips J. 455. The strength of heterocyclic bases. J. Chem. Soc. 1948:2240–2249. doi: 10.1039/jr9480002240. DOI
Dudkin S.M., Ledneva R.K., Shabarova Z.A., Prokofiev M.A. Hydrolysis of uridine-5′ N-aryl and N-alkyl phosphoramidates by ribonucleoside-5′ phosphoramidase. FEBS Lett. 1971;16:48–50. doi: 10.1016/0014-5793(71)80682-8. PubMed DOI
Beltran T., Egron D., Pompon A., Lefebvre I., Périgaud C., Gosselin G., Aubertin A.M., Imbach J.L. Rational design of a new series of pronucleotide. Bioorg. Med. Chem. Lett. 2001;11:1775–1777. doi: 10.1016/S0960-894X(01)00299-2. PubMed DOI
Drontle D. Designing a Pronucleotide Stratagem: Lessons from Amino Acid Phosphoramidates of Anticancer and Antiviral Pyrimidines. Mini Rev. Med. Chem. 2004;4:409–419. doi: 10.2174/1389557043403945. PubMed DOI
Kanzian T., Nigst T.A., Maier A., Pichl S., Mayr H. Nucleophilic Reactivities of Primary and Secondary Amines in Acetonitrile. Eur. J. Org. Chem. 2009:6379–6638. doi: 10.1002/ejoc.200900925. DOI
Sachin K., Kim E.M., Cheong S.J., Jeong H.J., Lim S.T., Sohn M.H., Kim D.W. Synthesis of N 4′-[18F]fluoroalkylated ciprofloxacin as a potential bacterial infection imaging agent for PET study. Bioconjug. Chem. 2010;21:2282–2288. doi: 10.1021/bc1002983. PubMed DOI