Acute and chronic effects of high-intensity interval training (HIIT) on postexercise intramuscular lipid metabolism in rats
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu hodnotící studie, časopisecké články
PubMed
34505529
PubMed Central
PMC8820523
DOI
10.33549/physiolres.934722
PII: 934722
Knihovny.cz E-zdroje
- MeSH
- kosterní svaly metabolismus MeSH
- krysa rodu Rattus MeSH
- metabolismus lipidů * MeSH
- náhodné rozdělení MeSH
- triglyceridy metabolismus MeSH
- vysoce intenzivní intervalový trénink * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Názvy látek
- triglyceridy MeSH
Recovery from exercise refers to the period between the end of a bout of exercise and the subsequent return to a resting or recovered state. It is a dynamic period in which many physiological changes occur. A large amount of research has evaluated the effect of training on intramuscular lipid metabolism. However, data are limited regarding intramuscular lipid metabolism during the recovery period. In this study, lipid metabolism-related proteins were examined after a single bout of exercise in a time-dependent way to explore the mechanism of how exercise induces intramuscular lipid metabolism adaptation. Firstly, all rats in the exercise group underwent a five-week training protocol (HIIT, five times/week), and then performed a more intense HIIT session after 72 h of the last-time five-week training. After that, rats were sampled in a time-dependent way, including 0 h, 6 h, 12 h, 24 h, 48 h, 72 h, and 96 h following the acute training session. Our results discovered that five weeks of HIIT increased the content of intramuscular triglyceride (IMTG) and enhanced the lipolytic and lipogenesis-related proteins in skeletal muscle. Furthermore, IMTG content decreased immediately post HIIT and gradually increased to baseline levels 48 h postexercise, continuing to over-recover up to 96 h postexercise. Following acute exercise, lipolytic-related proteins showed an initial increase (6-12 h) before decreasing during recovery. Conversely, lipogenesis-related proteins decreased following exercise (6-12 h), then increased in the recovery period. Based on the changes, we speculate that skeletal muscle is predominated by lipid oxidative at the first 12 h postexercise. After this period, lipid synthesis-related proteins increased, which may be the result of body recovery. Together, these results may provide insight into how the lipid metabolism-related signaling changes after chronic and acute HIIT and how protein levels lipid metabolism correlates to IMTG recovery.
Zobrazit více v PubMed
ALTAREJOS JY, MONTMINY M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol. 2011;12:141–151. doi: 10.1038/nrm3072. PubMed DOI PMC
BENZIANE B, BURTON TJ, SCANLAN B, GALUSKA D, CANNY BJ, CHIBALIN AV, ZIERATH JR, STEPTO NK. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab. 2008;295:E1427–E1438. doi: 10.1152/ajpendo.90428.2008. PubMed DOI
BERGMAN BC, GOODPASTER BH. Exercise and muscle lipid content, composition, and localization: Influence on muscle insulin sensitivity. Diabetes. 2020;69:848–858. doi: 10.2337/dbi18-0042. PubMed DOI
BORSHEIM E, BAHR R. Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports Med. 2003;33:1037–1060. doi: 10.2165/00007256-200333140-00002. PubMed DOI
BRANDT N, GUNNARSSON TP, HOSTRUP M, TYBIRK J, NYBO L, PILEGAARD H, BANGSBO J. Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1alpha mRNA response in human skeletal muscle. Physiol Rep. 2016;4:E12844. doi: 10.14814/phy2.12844. PubMed DOI PMC
BUCHHEIT M, LAURSEN PB. High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Med. 2013;43:313–338. doi: 10.1007/s40279-013-0029-x. PubMed DOI
CORBET C, BASTIEN E, SANTIAGO De JESUS JP, DIERGE E, MARTHERUS R, VANDER LINDEN C, DOIX B, DEGAVRE C, GUILBAUD C, PETIT L, MICHIELS C, DESSY C, LARONDELLE Y, FERON O. TGFbeta2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells. Nat Commun. 2020;11:454. doi: 10.1038/s41467-019-14262-3. PubMed DOI PMC
DOBRZYN P, PYRKOWSKA A, JAZUREK M, SZYMANSKI K, LANGFORT J, DOBRZYN A. Endurance training-induced accumulation of muscle triglycerides is coupled to upregulation of stearoyl-CoA desaturase 1. J Appl Physiol (1985) 2010;109:1653–1661. doi: 10.1152/japplphysiol.00598.2010. PubMed DOI
EBERLE D, HEGARTY B, BOSSARD P, FERRE P, FOUFELLE F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 2004;86:839–848. doi: 10.1016/j.biochi.2004.09.018. PubMed DOI
EGAN B, ZIERATH JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162–184. doi: 10.1016/j.cmet.2012.12.012. PubMed DOI
GREEN HJ, HELYAR R, BALL-BURNETT M, KOWALCHUK N, SYMON S, FARRANCE B. Metabolic adaptations to training precede changes in muscle mitochondrial capacity. J Appl Physiol (1985) 1992;72:484–491. doi: 10.1152/jappl.1992.72.2.484. PubMed DOI
HALLIWILL JR, BUCK TM, LACEWELL AN, ROMERO SA. Postexercise hypotension and sustained postexercise vasodilatation: what happens after we exercise? Exp Physiol. 2013;98:7–18. doi: 10.1113/expphysiol.2011.058065. PubMed DOI
HARGREAVES M, SPRIET LL. Exercise metabolism: Fuels for the fire. Cold Spring Harb Perspect Med. 2018;8:A029744. doi: 10.1101/cshperspect.a029744. PubMed DOI PMC
HAWLEY JA, HARGREAVES M, JOYNER MJ, ZIERATH JR. Integrative biology of exercise. Cell. 2014;159:738–749. doi: 10.1016/j.cell.2014.10.029. PubMed DOI
HUANG KH, HAO L, SMITH PB, ROGERS CJ, PATTERSON AD, ROSS AC. Lipid emulsion added to a liquid high-carbohydrate diet and voluntary running exercise reduce lipogenesis and ameliorate early-stage hepatic steatosis in mice. J Nutr. 2017;147:746–753. doi: 10.3945/jn.116.245951. PubMed DOI
HUGHES DC, ELLEFSEN S, BAAR K. Adaptations to endurance and strength training. Cold Spring Harb Perspect Med. 2018;8:A029769. doi: 10.1101/cshperspect.a029769. PubMed DOI PMC
JOSEPH JS, AYELESO AO, MUKWEVHO E. Role of exercise-induced calmodulin protein kinase (CaMK)II activation in the regulation of omega-6 fatty acids and lipid metabolism genes in rat skeletal muscle. Physiol Res. 2017;66:969–977. doi: 10.33549/physiolres.933509. PubMed DOI
KIENS B. Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev. 2006;86:205–243. doi: 10.1152/physrev.00023.2004. PubMed DOI
KIENS B, RICHTER EA. Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans. Am J Physiol. 1998;275:E332–E337. doi: 10.1152/ajpendo.1998.275.2.E332. PubMed DOI
KNOBLOCH M, BRAUN SM, ZURKIRCHEN L, Von SCHOULTZ C, ZAMBONI N, ARAUZO-BRAVO MJ, KOVACS WJ, KARALAY O, SUTER U, MACHADO RA, ROCCIO M, LUTOLF MP, SEMENKOVICH CF, JESSBERGER S. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature. 2013;493:226–230. doi: 10.1038/nature11689. PubMed DOI PMC
LUNDSGAARD AM, FRITZEN AM, KIENS B. The importance of fatty acids as nutrients during post-exercise recovery. Nutrients. 2020;12:280. doi: 10.3390/nu12020280. PubMed DOI PMC
MORIFUJI M, SAKAI K, SANBONGI C, SUGIURA K. Dietary whey protein downregulates fatty acid synthesis in the liver, but upregulates it in skeletal muscle of exercise-trained rats. Nutrition. 2005;21:1052–1058. doi: 10.1016/j.nut.2005.01.010. PubMed DOI
MOSETI D, REGASSA A, KIM WK. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int J Mol Sci. 2016;17:124. doi: 10.3390/ijms17010124. PubMed DOI PMC
PILEGAARD H, SALTIN B, NEUFER PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol. 2003;546:851–858. doi: 10.1113/jphysiol.2002.034850. PubMed DOI PMC
RATNER C, MADSEN AN, KRISTENSEN LV, SKOV LJ, PEDERSEN KS, MORTENSEN OH, KNUDSEN GM, RAUN K, HOLST B. Impaired oxidative capacity due to decreased CPT1b levels as a contributing factor to fat accumulation in obesity. Am J Physiol Regul Integr Comp Physiol. 2015;308:R973–R982. doi: 10.1152/ajpregu.00219.2014. PubMed DOI
RAY HAMIDIE RD, YAMADA T, ISHIZAWA R, SAITO Y, MASUDA K. Curcumin treatment enhances the effect of exercise on mitochondrial biogenesis in skeletal muscle by increasing cAMP levels. Metabolism. 2015;64:1334–1347. doi: 10.1016/j.metabol.2015.07.010. PubMed DOI
SPINA RJ, CHI MM, HOPKINS MG, NEMETH PM, LOWRY OH, HOLLOSZY JO. Mitochondrial enzymes increase in muscle in response to 7–10 days of cycle exercise. J Appl Physiol (1985) 1996;80:2250–2254. doi: 10.1152/jappl.1996.80.6.2250. PubMed DOI
TAKAHASHI H, ALVES CRR, STANFORD KI, MIDDELBEEK RJW, PASQUALE N, RYAN RE, XUE R, SAKAGUCHI M, LYNES MD, SO K, MUL JD, LEE MY, BALAN E, PAN H, DREYFUSS JM, HIRSHMAN MF, AZHAR M, HANNUKAINEN JC, NUUTILA P, KALLIOKOSKI KK, NIELSEN S, PEDERSEN BK, KAHN CR, TSENG YH, GOODYEAR LJ. TGF-beta2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nat Metab. 2019;1:291–303. doi: 10.1038/s42255-018-0030-7. PubMed DOI PMC
THOMSON DM, WINDER WW. AMP-activated protein kinase control of fat metabolism in skeletal muscle. Acta Physiol (Oxf) 2009;196:147–154. doi: 10.1111/j.1748-1716.2009.01973.x. PubMed DOI PMC
TSILOULIS T, WATT MJ. Exercise and the regulation of adipose tissue metabolism. Prog Mol Biol Transl Sci. 2015;135:175–201. doi: 10.1016/bs.pmbts.2015.06.016. PubMed DOI
Van LOON LJ, KOOPMAN R, STEGEN JH, WAGENMAKERS AJ, KEIZER HA, SARIS WH. Intramyocellular lipids form an important substrate source during moderate intensity exercise in endurance-trained males in a fasted state. J Physiol. 2003;553:611–625. doi: 10.1113/jphysiol.2003.052431. PubMed DOI PMC
WATT MJ, HEIGENHAUSER GJ, SPRIET LL. Intramuscular triacylglycerol utilization in human skeletal muscle during exercise: is there a controversy? J Appl Physiol (1985) 2002;93:1185–1195. doi: 10.1152/japplphysiol.00197.2002. PubMed DOI
WIDRICK JJ, STELZER JE, SHOEPE TC, GARNER DP. Functional properties of human muscle fibers after short-term resistance exercise training. Am J Physiol Regul Integr Comp Physiol. 2002;283:R408–R416. doi: 10.1152/ajpregu.00120.2002. PubMed DOI
YAN Y, WANG ZB, TANG CK. PPARs mediate the regulation of energy metabolism by long-chain fatty acids. (Article in Chinese) Sheng Li Ke Xue Jin Zhan. 2016;47:1–6. PubMed
ZACHAREWICZ E, HESSELINK MKC, SCHRAUWEN P. Exercise counteracts lipotoxicity by improving lipid turnover and lipid droplet quality. J Intern Med. 2018;284:505–518. doi: 10.1111/joim.12729. PubMed DOI
ZHENG F, CAI Y. Concurrent exercise improves insulin resistance and nonalcoholic fatty liver disease by upregulating PPAR-gamma and genes involved in the beta-oxidation of fatty acids in ApoE-KO mice fed a high-fat diet. Lipids Health Dis. 2019;18:6. doi: 10.1186/s12944-018-0933-z. PubMed DOI PMC
ZIAALDINI MM, HOSSEINI SR, FATHI M. Mitochondrial adaptations in aged skeletal muscle: effect of exercise training. Physiol Res. 2017;66:1–14. doi: 10.33549/physiolres.933329. PubMed DOI