Low winter precipitation, but not warm autumns and springs, threatens mountain butterflies in middle-high mountains
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
34532158
PubMed Central
PMC8404571
DOI
10.7717/peerj.12021
PII: 12021
Knihovny.cz E-resources
- Keywords
- Alpine environments, Butterfly monitoring, Climate change, Development, Phenology, Precipitation, Snow, Temperature, Winter,
- Publication type
- Journal Article MeSH
Low-elevation mountains represent unique model systems to study species endangered by climate warming, such as subalpine and alpine species of butterflies. We aimed to test the effect of climate variables experienced by Erebia butterflies during their development on adult abundances and phenology, targeting the key climate factors determining the population dynamics of mountain insects. We analysed data from a long-term monitoring of adults of two subalpine and alpine butterfly species, Erebia epiphron and E. sudetica (Nymphalidae: Satyrinae) in the Jeseník Mts and Krkonoše Mts (Czech Republic). Our data revealed consistent patterns in their responses to climatic conditions. Lower precipitation (i.e., less snow cover) experienced by overwintering larvae decreases subsequent adult abundances. Conversely, warmer autumns and warmer and drier springs during the active larval phase increase adult abundances and lead to earlier onset and extended duration of the flight season. The population trends of these mountain butterflies are stable or even increasing. On the background of generally increasing temperatures within the mountain ranges, population stability indicates dynamic equilibrium of positive and detrimental consequences of climate warming among different life history stages. These contradictory effects warn against simplistic predictions of climate change consequences on mountain species based only on predicted increases in average temperature. Microclimate variability may facilitate the survival of mountain insect populations, however the availability of suitable habitats will strongly depend on the management of mountain grasslands.
Faculty of Science Palacký University Olomouc Olomouc Czech Republic
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Institute of Entomology Czech Academy of Sciences Biology Centre Ceske Budejovice Czech Republic
Jeseníky Protected Landscape Area Administration Jesenik Czech Republic
See more in PubMed
Ayers MP, Scriber JM. Local adaptation to regional climates in Papilio canadensis (Lepidoptera, Papilionidae) Ecological Monographs. 1994;64:465–482.
Barrio IC, Bueno CG, Hik DS. Warming the tundra: reciprocal responses of invertebrate herbivores and plants. Oikos. 2016;125:20–28.
Bauerfeind SS, Fischer K. Increased temperature reduces herbivore host-plant quality. Global Change Biology. 2013;19:3272–3282. PubMed
Bila K, Sipos J, Kindlmann P, Kuras T. Consequences for selected high-elevation butterflies and moths from the spread of Pinus mugo into the alpine zone in the High Sudetes Mountains. PeerJ. 2016;4:e2094. PubMed PMC
Boggs CL, Murphy DD. Community composition in mountain ecosystems: climatic determinants of montane butterfly distribution. Global Ecology and Biogeography Letters. 1997;6:39–48.
Bubova T, Kulma M, Vrabec V, Nowicki P. Adult longevity and its relationship with conservation status in European butterflies. Journal of Insect Conservation. 2016;20(6):1021–1032. doi: 10.1007/s10841-016-9936-0. DOI
Buckley LB, Kingsolver JG. The demographic impacts of shifts in climate means and extremes on alpine butterflies. Functional Ecology. 2012;26(4):969–977. doi: 10.1111/j.1365-2435.2012.01969.x. DOI
Bures L. Fenomén Velká kotlina 3. Voda, sníh a laviny. [The Velká Kotlina cirque phenomenon 3. Water, snow and avalanches] Živa. 2018;3:16–20.
Chirichella R, Stephens PA, Mason THE, Apollonio M. Contrasting effects of climate change on alpine chamois. Journal of Wildlife Management. 2020;85(1):109–120. doi: 10.1002/jwmg.21962. DOI
Cizek O, Malkiewicz A, Beneš J, Tarnawski D. Denní motýli v Krkonoších, atlas rozšíření – Motyle dzienne w Karkonoszach, atlas rozmieszczenia. Správa KRNAP & Direkcja KPN; 2015. p. 328. Vrchlabi, Czech Republic and Jelenia Góra, Poland.
Corcos D, Cerretti P, Mei M, Vigna Taglianti A, Paniccia D, Santoiemma G, De Biase A, Marini L. Predator and parasitoid insects along elevational gradients: role of temperature and habitat diversity. Oecologia. 2018;188(1):193–202. doi: 10.1007/s00442-018-4169-4. PubMed DOI
Culler LE, Ayres MP, Virginia RA. In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster. Proceedings of the Royal Society B Biological Sciences. 2015;282:20151549. PubMed PMC
Cuvelier S, Dinca V. New data regarding the butterflies (Lepidoptera: Rhopalocera) of Romania, with additional comments (general distribution in Romania, habitat preferences, threats and protection) for ten localized Romanian species. Phegea. 2007;35:93–115.
Davies WJ. Multiple temperature effects on phenology and body size in wild butterflies predict a complex response to climate change. Ecology. 2019;100:e02612. PubMed
Dray S. On the number of principal components: a test of dimensionality based on measurements of similarity between matrices. Computational Statistics & Data Analysis. 2008;52:2228–2237.
Ellers J, Boggs CL. Functional ecological implications of intraspecific differences in wing melanization in Colias butterflies. Biological Journal of the Linnean Society. 2004;82:79–87.
Ehl S, Ebertshauser M, Gros P, Schmitt T. Population demography of alpine butterflies: Boloria pales and Boloria napaea (Lepidoptera: Nymphalidae) and their specific adaptations to high mountain environments. Acta Oecologica. 2017;85:53–61.
Ewing SR, Menéndez R, Schofield L, Bradbury RB. Vegetation composition and structure are important predictors of oviposition site selection in an alpine butterfly, the Mountain Ringlet Erebia epiphron. Journal of Insect Conservation. 2020;24:445–457.
Forrest JRK, Thomson JD. An examination of synchrony between insect emergence and flowering in Rocky Mountain meadows. Ecological Monographs. 2011;81:469–491.
Franco AMA, Hill JK, Kitschke C, Collingham YC, Roy DB, Fox R, Huntley B, Thomas CD. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Global Change Biology. 2006;12:1545–1553.
Freeman BG, Lee-Yaw JA, Sunday JM, Hargreaves AL. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Global Ecology and Biogeography. 2018;27:1268–1276.
Garcia-Gonzalez R. Management of Natura 2000 habitats. 6170 Alpine and subalpine calcareous grasslands. European Commission; 2008.
Gonzalez-Tokman D, Cordoba-Aguilar A, Dattilo W, Lira-Noriega A, Sanchez-Guillen RA, Villalobos F. Insect responses to heat: physiological mechanisms, evolution and. ecological implications in a warming world. Biological Reviews. 2020;95:802–821. PubMed
Grill A, Polic D, Guariento E, Fiedler K. Permeability of habitat edges for Ringlet butterflies (Lepidoptera, Nymphalidae, Erebia Dalman 1816) in an alpine landscape. Nota Lepidopterologica. 2020;43:29–41.
Gutiérrez D, Wilson RJ. Intra-and interspecific variation in the responses of insect phenology to climate. Journal of Animal Ecology. 2020;90:248–259. PubMed
Hanski I. Metapopulation ecology. Oxford: Oxford University Press; 1999.
Harrell FE., Jr . Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. Cham: Springer; 2015.
Hartig F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.1.0. 2016. https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html
Haubrich K, Schmitt T. Cryptic differentiation in alpine-endemic, high-altitude butterflies reveals down-slope glacial refugia. Molecular Ecology. 2007;16:3643–3658. PubMed
Hinojosa JC, Monasterio Y, Escobes R, Dinca V, Vila R. Erebia epiphron and Erebia orientalis: sibling butterfly species with contrasting histories. Biological Journal of the Linnean Society. 2018;126:338–348.
Huang JJ. Effects of soil temperature and snow cover on the mortality of overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) International Journal of Biometeorology. 2016;60:977–989. PubMed
Janowitz SA, Fischer K. Opposing effects of heat stress on male vs. female reproductive success in Bicyclus anynana butterflies. Journal of Thermal Biology. 2011;36:283–287.
Junker M, Wagner S, Gros P, Schmitt T. Changing demography and dispersal behaviour: ecological adaptations in an alpine butterfly. Oecologia. 2010;164:971–980. PubMed
Karl I, Stoks R, De Block M, Janowitz SA, Fischer K. Temperature extremes and butterfly fitness: conflicting evidence from life history and immune function. Global Change Biology. 2011;17:676–687.
Kasak J, Mazalova M, Sipos J, Kuras T. Dwarf pine: invasive plant threatens biodiversity of alpine beetles. Biodiversity and Conservation. 2015;24:2399–2415.
Kaspar J, Hosek J, Treml V. How wind affects growth in treeline Picea abies. Alpine Botany. 2017;127:109–120.
Kleckova I, Konvicka M, Klecka J. Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: importance of fine-scale habitat heterogeneity. Journal of Thermal Biology. 2014;41:50–58. PubMed
Kleckova I, Vrba P, Konvicka M. Quantitative evidence for spatial variation in the biennial life cycle of the mountain butterfly Erebia euryale (Lepidoptera: Nymphalidae) in the Czech Republic. European Journal of Entomology. 2015;112:114–119.
Klockmann M, Fischer K. Strong reduction in diapause survival under warm and humid overwintering conditions in a temperate-zone butterfly. Population Ecology. 2019;61:150–159.
Klockmann M, Wallmeyer L, Fischer K. Variation in adult stress resistance does not explain vulnerability to climate change in copper butterflies. Insect Science. 2018;25:894–904. PubMed
Konvicka M, Benes J, Cizek O, Kuras T, Kleckova I. Has the currently warming climate affected populations of the mountain ringlet butterfly, Erebia epiphron (Lepidoptera: Nymphalidae), in low-elevation mountains? European Journal of Entomology. 2016;113:295–301.
Konvicka M, Mihaly CV, Rakosy L, Benes J, Schmitt T. Survival of cold-adapted species in isolated mountains: the population genetics of the Sudeten ringlet, Erebia sudetica sudetica, in the Jesenik Mts., Czech Republic. Journal of Insect Conservation. 2014;18:153–161.
Kukal O, Dawson TE. Temperature and food quality influences feeding behavior, assimilation efficiency and growth rate of arctic woolly-bear caterpillars. Oecologia. 1989;79:526–532. PubMed
Kuras T, Benes J, Fric Z, Konvicka M. Dispersal patterns of endemic alpine butterflies with contrasting population structure. Population Ecology. 2003;45(2):115–123. doi: 10.1007/s10144-003-0144-x. DOI
Kuras T, Benes J, Konvicka M, Honc L. Life histories of Erebia sudetica sudetica and E. epiphron silesiana with description of immature stages (Lepidoptera Nymphalidae, Satyrinae) Atalanta. 2001;32:187–196 + xii.
Kuzelova H, Treml V. Landscape-scale variability of air and soil temperature related to tree growth in the treeline ecotone. Alpine Botany. 2020;130(1):75–87. doi: 10.1007/s00035-020-00233-8. DOI
Lindestad O, Schmalensee L, Lehmann P, Gotthard K. Variation in butterfly diapause duration in relation to voltinism suggests adaptation to autumn warmth, not winter cold. Functional Ecology. 2020;34(5):1029–1040. doi: 10.1111/1365-2435.13525. DOI
Long OM, Warren R, Price J, Brereton TM, Botham MS, Franco AMA. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk? Journal of Animal Ecology. 2017;86(1):108–116. doi: 10.1111/1365-2656.12594. PubMed DOI
McLaughlin JF, Hellmann JJ, Boggs CL, Ehrlich PR. The route to extinction: population dynamics of a threatened butterfly. Oecologia. 2002;132(4):538–548. doi: 10.1007/s00442-002-0997-2. PubMed DOI
Migala K, Urban G, Tomczyński K. Long-term air temperature variation in the Karkonosze mountains according to atmospheric circulation. Theoretical and Applied Climatology. 2016;125(1–2):337–351. doi: 10.1007/s00704-015-1468-0. DOI
Minter M, Dasmahapatra KK, Thomas CD, Morecroft MD, Tonhasca A, Schmitt T, Siozios S, Hill JK. Past, current, and potential future distributions of unique genetic diversity in a cold-adapted mountain butterfly. Ecology and Evolution. 2020;10(20):11155–11168. doi: 10.1002/ece3.6755. PubMed DOI PMC
Nieto-Sanchez S, Gutierrez D, Wilson RJ. Long-term change and spatial variation in butterfly communities over an elevational gradient: driven by climate, buffered by habitat. Diversity and Distribution. 2015;21(8):950–961. doi: 10.1111/ddi.12316. DOI
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. Vegan: community ecology package. R package version 2.5-6. 2019. https://CRAN.R-project.org/package=vegan https://CRAN.R-project.org/package=vegan
Pak D, Biddinger D, Bjornstad ON. Local and regional climate variables driving spring phenology of tortricid pests: a 36-year study. Ecological Entomology. 2019;44(3):367–379. doi: 10.1111/een.12712. DOI
Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Calzado RF, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollar J, Larsson P, Moiseev P, Moiseev D, Molau U, Mesa JM, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat J-P, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G. Recent plant diversity changes on Europe’s mountain summits. Science. 2012;336(6079):353–355. doi: 10.1126/science.1219033. PubMed DOI
Pena C, Witthauer H, Kleckova I, Fric Z, Wahlberg N. Adaptive radiations in butterflies: evolutionary history of the genus Erebia (Nymphalidae: Satyrinae) Biological Journal of the Linnean Society. 2015;116:449–467.
Polic D, Fiedler K, Nell C, Grill A. Mobility of ringlet butterflies in high-elevation alpine grassland: effects of habitat barriers, resources and age. Journal of Insect Conservation. 2016;18:1153–1161.
R Development Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018.
Radchuk V, Turlure C, Schtickzelle N. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. Journal of Animal Ecology. 2013;82:275–285. PubMed
Richards S, Whittingham M, Stephens P. Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework. Behavioral Ecology and Sociobiology. 2011;65:77–89.
Roland J, Filazzola A, Matter SF. Spatial variation in early-winter snow cover determines local dynamics in a network of alpine butterfly populations. Ecography. 2021;44:334–343.
Roland J, Matter SF. Encroaching forests decouple alpine butterfly dynamics. Proceedings of the National Academy of Sciences of The United States of America. 2007;104:13702–13704. PubMed PMC
Roland J, Matter SF. Pivotal effect of early-winter temperatures and snowfall on population growth of alpine Parnassius smintheus butterflies. Ecological Monographs. 2016;86:412–428.
Rothery P, Roy DB. Application of generalized additive models to butterfly transect count data. Journal of Applied Statistics. 2001;28:897–909.
Roy DB, Rothery P, Moss D, Pollard E, Thomas JA. Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. Journal of Animal Ecology. 2001;70:201–217.
Rytteri S. Thesis. Faculty of Biological and Environmental Sciences, University of Helsinki; 2021. Butterflies in changing weather conditions: implications for ecology and conservation.
Scalercio S, Bonacci T, Mazzei A, Pizzolotto R, Brandmayr P. Better up, worse down: bidirectional consequences of three decades of climate change on a relict population of Erebia cassioides. Journal of Insect Conservation. 2014;18:643–650.
Schmitt T, Cizek O, Konvicka M. Genetics of a butterfly relocation: large, small and introduced populations of the mountain endemic Erebia epiphron silesiana. Biological Conservation. 2005;123:11–18.
Schmitt T, Habel JC, Rodder D, Louy D. Effects of recent and past climatic shifts on the genetic structure of the high mountain yellow-spotted ringlet butterfly Erebia manto (Lepidoptera, Satyrinae): a conservation problem. Global Change Biology. 2014;20:2045–2061. PubMed
Sonderegger P. Die Erebien der Schweiz (Lepidoptera: Satyrinae, Genus Erebia) Biel: W. Gassmann; 2005. p. 712+73.
Stalhandske S, Gotthard K, Leimar O. Winter chilling speeds spring development of temperate butterflies. Journal of Animal Ecology. 2017;86:718–729. PubMed
Steenberg T, Ogaard L. Mortality in hibernating turnip moth larvae, Agrotis segetum, caused by Tolypocladium cylindrosporum. Mycological Research. 2000;104:87–91.
Stewart JE, Illan JG, Richards SA, Gutierrez D, Wilson RJ. Linking inter-annual variation in environment, phenology, and abundance for a montane butterfly community. Ecology. 2020;101:e02906. PubMed PMC
Symonds MRE, Moussalli A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology. 2011;65:13–21.
Tennet WJ. A checklist of the satyrine genus Erebia (Lepidoptera) (1758–2006) Zootaxa. 2008;1900:1–109.
Terblanche JS, Mitchell KA, Uys W, Short C, Boardman L. Thermal limits to survival and activity in two life stages of false codling moth Thaumatotibia leucotreta (Lepidoptera, Tortricidae) Physiological Entomology. 2017;42:379–388.
Treml V, Šenfeldr M, Chuman T, Ponocná T, Demková K. Twentieth century treeline ecotone advance in the Sudetes Mountains (Central Europe) was induced by agricultural land abandonment rather than climate change. Journal of Vegetation Science. 2016;27:1209–1221.
Turlure C, Choutt J, Baguette M, Van Dyck H. Microclimatic buffering and resource-based habitat in a glacial relict butterfly: significance for conservation under climate change. Global Change Biology. 2010;16:1883–1893.
Twardosz R, Cebulska M. Temporal variability of the highest and the lowest monthly precipitation totals in the Polish Carpathian Mountains (1881–2018) Theoretical and Applied Climatology. 2020;140:324–341.
Vrba P, Dolek M, Nedved O, Zahradnickova H, Cerrato C, Konvicka M. Overwintering of the boreal butterfly Colias palaeno in Central Europe. CryoLetters. 2014;35:247–254. PubMed
Vrba P, Konvicka M, Nedved O. Reverse altitudinal cline in cold hardiness among Erebia butterflies. CryoLetters. 2012;33:251–258. PubMed
Vrba P, Nedved O, Zahradnickova H, Konvicka M. More complex than expected: cold hardiness and the concentration of cryoprotectants in overwintering larvae of five Erebia butterflies (Lepidoptera: Nymphalidae) European Journal of Entomology. 2017a;114:470–480.
Watt WB, Wheat CW, Meyer EH, Martin JF. Adaptation at specific loci. VII. Natural selection, dispersal and the diversity of molecular-functional variation patterns among butterfly species complexes (Colias: Lepidoptera, Pieridae) Molecular Ecology. 2003;12:1265–1275. PubMed
Wilson RJ, Bennie J, Lawson CR, Pearson D, Ortuzar-Ugarte G, Gutierrez D. Population turnover, habitat use and microclimate at the contracting range margin of a butterfly. Journal of Insect Conservation. 2015;19:205–216.
Wilson RJ, Fox R. Insect responses to global change offer signposts for biodiversity and conservation. Ecological Entomology. 2020;46(4):699–717. doi: 10.1111/een.12970. DOI
Wipking W, Mengelkoch C. Control of alternate-year flight activities in high-alpine Ringlet butterflies (Erebia, Satyridae) and Burnet moths (Zygaena, Zygaenidae) from temperate environments. In: Danks HV, editor. Insect Life-Cycle Polymorphism: Theory, Evolution and Ecological Consequences for Seasonality and Diapause Control. Dordrecht: Kluwer Academic Publisher; 1994. pp. 313–347.
Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 2011;73(1):3–36. doi: 10.1111/j.1467-9868.2010.00749.x. DOI
Zeidler M, Sipos J, Banas M, Cernohorsky J. The successive trend of vegetation confirms the removal of non-indigenous woody species as an insufficient restoration action. Biodiversity and Conservation. 2021;30(3):699–717. doi: 10.1007/s10531-021-02113-x. DOI
Zografou K, Grill A, Wilson RJ, Halley JM, Adamidis GC, Kati V. Butterfly phenology in Mediterranean mountains using space-for-time substitution. Ecology and Evolution. 2020;10(2):928–939. doi: 10.1002/ece3.5951. PubMed DOI PMC
figshare
10.6084/m9.figshare.14642472.v2