Insights into the expanding phenotypic spectrum of inherited disorders of biogenic amines
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34545092
PubMed Central
PMC8452745
DOI
10.1038/s41467-021-25515-5
PII: 10.1038/s41467-021-25515-5
Knihovny.cz E-zdroje
- MeSH
- biogenní aminy metabolismus MeSH
- fenotyp MeSH
- genetické nemoci vrozené diagnóza patologie MeSH
- kojenec MeSH
- lidé MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- těhotenství MeSH
- vedení porodu MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biogenní aminy MeSH
Inherited disorders of neurotransmitter metabolism are rare neurodevelopmental diseases presenting with movement disorders and global developmental delay. This study presents the results of the first standardized deep phenotyping approach and describes the clinical and biochemical presentation at disease onset as well as diagnostic approaches of 275 patients from the registry of the International Working Group on Neurotransmitter related Disorders. The results reveal an increased rate of prematurity, a high risk for being small for gestational age and for congenital microcephaly in some disorders. Age at diagnosis and the diagnostic delay are influenced by the diagnostic methods applied and by disease-specific symptoms. The timepoint of investigation was also a significant factor: delay to diagnosis has decreased in recent years, possibly due to novel diagnostic approaches or raised awareness. Although each disorder has a specific biochemical pattern, we observed confounding exceptions to the rule. The data provide comprehensive insights into the phenotypic spectrum of neurotransmitter disorders.
1st Department of Pediatrics Aristotle University of Thessaloniki Egnatia St 106 Thessaloniki Greece
1st Department of Pediatrics of the University of Athens Aghia Sofia Hospital Athens Greece
Children's Hospital University Medical Center Hamburg Eppendorf Hamburg Germany
Clinic for Pediatrics 1 Medical University of Innsbruck Innsbruck Austria
Department of Neurology Washington University School of Medicine St Louis MO USA
Department of Pediatrics AOU Città della Salute e della Scienza Torino Italy
Department of Pediatrics Pediatric Neurology Unit UZ Brussel VUB Brussels Belgium
Department of Pediatrics University of Alberta Glenrose Rehabilitation Hospital Edmonton AB Canada
German Cancer Consortium Heidelberg Germany
Heidelberg Institute for Stem cell Technology and Experimental Medicine Heidelberg Germany
University Children's Hospital Heidelberg Dietmar Hopp Metabolic Center Heidelberg Germany
Zobrazit více v PubMed
Nestler, E. J., Hyman, S. E., Holtzman, D. M. & Malenka, R. C. Molecular neuropharmacology: a foundation for clinical neuroscience (2015).
Ng J, Papandreou A, Heales SJ, Kurian MA. Monoamine neurotransmitter disorders–clinical advances and future perspectives. Nat. Rev. Neurol. 2015;11:567–584. doi: 10.1038/nrneurol.2015.172. PubMed DOI
Jung-Klawitter, S. & Kuseyri Hubschmann, O. Analysis of catecholamines and pterins in inborn errors of monoamine neurotransmitter metabolism-from past to future. Cells8, 867 (2019). PubMed PMC
Jaggi L, et al. Outcome and long-term follow-up of 36 patients with tetrahydrobiopterin deficiency. Mol. Genet. Metab. 2008;93:295–305. doi: 10.1016/j.ymgme.2007.10.004. PubMed DOI
Opladen T, Hoffmann GF, Blau N. An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalaninaemia. J. Inherit. Metab. Dis. 2012;35:963–973. doi: 10.1007/s10545-012-9506-x. PubMed DOI
Ponzone, A., Ferraris, S., Baglieri, S. & Spada, M. Treatment of tetrahydrobiopterin deficiencies. In PKU and BH4: Advances in Phenylketonuria and Tetrahydrobiopterin (ed. Blau, N.) 612–637 (SPS Verlagsgesellschaft, Heilbronn, 2006).
Brun L, et al. Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology. 2010;75:64–71. doi: 10.1212/WNL.0b013e3181e620ae. PubMed DOI
Serrano M, Perez-Duenas B, Montoya J, Ormazabal A, Artuch R. Genetic causes of cerebral folate deficiency: clinical, biochemical and therapeutic aspects. Drug Discov. Today. 2012;17:1299–1306. doi: 10.1016/j.drudis.2012.07.008. PubMed DOI
Pearl PL, et al. Clinical spectrum of succinic semialdehyde dehydrogenase deficiency. Neurology. 2003;60:1413–1417. doi: 10.1212/01.WNL.0000059549.70717.80. PubMed DOI
Swanson MA, et al. Biochemical and molecular predictors for prognosis in nonketotic hyperglycinemia. Ann. Neurol. 2015;78:606–618. doi: 10.1002/ana.24485. PubMed DOI PMC
Opladen T, et al. The International Working Group on Neurotransmitter related Disorders (iNTD): a worldwide research project focused on primary and secondary neurotransmitter disorders. Mol. Genet Metab. Rep. 2016;9:61–66. doi: 10.1016/j.ymgmr.2016.09.006. PubMed DOI PMC
Zorzi G, et al. Detection of sepiapterin in CSF of patients with sepiapterin reductase deficiency. Mol. Genet. Metab. 2002;75:174–177. doi: 10.1006/mgme.2001.3273. PubMed DOI
Kuseyri O, et al. Pregnancy management and outcome in patients with four different tetrahydrobiopterin disorders. J. Inherit. Metab. Dis. 2018;41:849–863. doi: 10.1007/s10545-018-0169-0. PubMed DOI
Beck S, et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull. World Health Organ. 2010;88:31–38. doi: 10.2471/BLT.08.062554. PubMed DOI PMC
Lee AC, et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. The Lancet. Glob. Health. 2013;1:e26–e36. PubMed PMC
Ruiz M, et al. Mother’s education and the risk of preterm and small for gestational age birth: a DRIVERS meta-analysis of 12 European cohorts. J. Epidemiol. Community Health. 2015;69:826–833. doi: 10.1136/jech-2014-205387. PubMed DOI PMC
Opladen T, et al. Consensus guideline for the diagnosis and treatment of tetrahydrobiopterin (BH4) deficiencies. Orphanet J. Rare Dis. 2020;15:126. doi: 10.1186/s13023-020-01379-8. PubMed DOI PMC
Smith I, Dhondt J-L. Birthweight in pateints with defective biopterin metabolism. Lancet. 1985;325:818. doi: 10.1016/S0140-6736(85)91474-6. PubMed DOI
Willemsen MA, et al. Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain. 2010;133:1810–1822. doi: 10.1093/brain/awq087. PubMed DOI
Douglas G, et al. A requirement for Gch1 and tetrahydrobiopterin in embryonic development. Dev. Biol. 2015;399:129–138. doi: 10.1016/j.ydbio.2014.12.025. PubMed DOI PMC
Thomas SA, Matsumoto AM, Palmiter RD. Noradrenaline is essential for mouse fetal development. Nature. 1995;374:643–646. doi: 10.1038/374643a0. PubMed DOI
Zhou QY, Quaife CJ, Palmiter RD. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature. 1995;374:640–643. doi: 10.1038/374640a0. PubMed DOI
Homma D, et al. Partial biopterin deficiency disturbs postnatal development of the dopaminergic system in the brain. J. Biol. Chem. 2011;286:1445–1452. doi: 10.1074/jbc.M110.159426. PubMed DOI PMC
Jiang X, et al. A novel GTPCH deficiency mouse model exhibiting tetrahydrobiopterin-related metabolic disturbance and infancy-onset motor impairments. Metabolism. 2019;94:96–104. doi: 10.1016/j.metabol.2019.02.001. PubMed DOI
Sumi-Ichinose C, et al. Catecholamines and serotonin are differently regulated by tetrahydrobiopterin. A study from 6-pyruvoyltetrahydropterin synthase knockout mice. J. Biol. Chem. 2001;276:41150–41160. doi: 10.1074/jbc.M102237200. PubMed DOI
Yang S, et al. A murine model for human sepiapterin-reductase deficiency. Am. J. Hum. Genet. 2006;78:575–587. doi: 10.1086/501372. PubMed DOI PMC
Xu F, et al. Disturbed biopterin and folate metabolism in the Qdpr-deficient mouse. FEBS Lett. 2014;588:3924–3931. doi: 10.1016/j.febslet.2014.09.004. PubMed DOI
Korner G, et al. Brain catecholamine depletion and motor impairment in a Th knock-in mouse with type B tyrosine hydroxylase deficiency. Brain. 2015;138:2948–2963. doi: 10.1093/brain/awv224. PubMed DOI
Lee NC, et al. Regulation of the dopaminergic system in a murine model of aromatic L-amino acid decarboxylase deficiency. Neurobiol. Dis. 2013;52:177–190. doi: 10.1016/j.nbd.2012.12.005. PubMed DOI
Elzaouk L, et al. Dwarfism and low insulin-like growth factor-1 due to dopamine depletion in Pts-/- mice rescued by feeding neurotransmitter precursors and H4-biopterin. J. Biol. Chem. 2003;278:28303–28311. doi: 10.1074/jbc.M303986200. PubMed DOI
Pearson, T. S., et al. AADC deficiency from infancy to adulthood: symptoms and developmental outcome in an international cohort of 63 patients. J. Inherit. Metab. Dis.43, 1121 (2020). PubMed PMC
Wassenberg T, et al. Consensus guideline for the diagnosis and treatment of aromatic l-amino acid decarboxylase (AADC) deficiency. Orphanet J. Rare Dis. 2017;12:12. doi: 10.1186/s13023-016-0522-z. PubMed DOI PMC
Friedman J, et al. Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy. Ann. Neurol. 2012;71:520–530. doi: 10.1002/ana.22685. PubMed DOI
Lopez-Laso E, et al. Dopa-responsive infantile hypokinetic rigid syndrome due to dominant guanosine triphosphate cyclohydrolase 1 deficiency. J. Neurol. Sci. 2007;256:90–93. doi: 10.1016/j.jns.2007.02.007. PubMed DOI
Crabtree MJ, Channon KM. Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease. Nitric oxide: Biol. Chem. 2011;25:81–88. doi: 10.1016/j.niox.2011.04.004. PubMed DOI PMC
Gao, L. et al. Sepiapterin reductase regulation of endothelial tetrahydrobiopterin and nitric oxide bioavailability. Am. J. Physiol. Heart Circ. Physiol. 297, H331-H339 (2009). PubMed PMC
Jayakumar AR, Sujatha R, Paul V, Puviarasan K, Jayakumar R. Involvement of nitric oxide and nitric oxide synthase activity in anticonvulsive action. Brain Res. Bull. 1999;48:387–394. doi: 10.1016/S0361-9230(99)00011-8. PubMed DOI
Kovacs R, et al. Endogenous nitric oxide is a key promoting factor for initiation of seizure-like events in hippocampal and entorhinal cortex slices. J. Neurosci. 2009;29:8565–8577. doi: 10.1523/JNEUROSCI.5698-08.2009. PubMed DOI PMC
Greene RW. Role for neuronal nitric oxide synthase in sleep homeostasis and arousal. PNAS. 2013;110:19982–19983. doi: 10.1073/pnas.1319863110. PubMed DOI PMC
Xu F, et al. Disturbed biopterin and folate metabolism in the Qdpr-deficient mouse. FEBS Lett. 2014;588:3924–3931. doi: 10.1016/j.febslet.2014.09.004. PubMed DOI
Pope S, Artuch R, Heales S, Rahman S. Cerebral folate deficiency: analytical tests and differential diagnosis. J. Inherit. Metab. Dis. 2019;42:655–672. doi: 10.1002/jimd.12092. PubMed DOI
Kuseyri Hübschmann, O., et al. Brain MR patterns in inherited disorders of monoamine neurotransmitters: an analysis of 70 patients. J. Inherit. Metab. Dis.44, 1070 (2021). PubMed
Batllori M, et al. Urinary sulphatoxymelatonin as a biomarker of serotonin status in biogenic amine-deficient patients. Sci. Rep. 2017;7:14675–14675. doi: 10.1038/s41598-017-15063-8. PubMed DOI PMC
Assmann, B., Surtees, R. & Hoffmann, G. F. Approach to the diagnosis of neurotransmitter diseases exemplified by the differential diagnosis of childhood-onset dystonia. Ann. Neurol. 54, S18–S24 (2003). PubMed
Aitkenhead H, Heales SJ. Establishment of paediatric age-related reference intervals for serum prolactin to aid in the diagnosis of neurometabolic conditions affecting dopamine metabolism. Ann. Clin. Biochem. 2013;50:156–158. doi: 10.1258/acb.2012.012080. PubMed DOI
Capozzi A, Scambia G, Pontecorvi A, Lello S. Hyperprolactinemia: pathophysiology and therapeutic approach. Gynecol. Endocrinol. 2015;31:506–510. doi: 10.3109/09513590.2015.1017810. PubMed DOI
Tadic V, et al. Dopa-responsive dystonia revisited: diagnostic delay, residual signs, and nonmotor signs. Arch. Neurol. 2012;69:1558–1562. doi: 10.1001/archneurol.2012.574. PubMed DOI
Niederwieser A, et al. “Peripheral” tetrahydrobiopterin deficiency with hyperphenylalaninaemia due to incomplete 6-pyruvoyl tetrahydropterin synthase deficiency or heterozygosity. Eur. J. Pediatr. 1987;146:228–232. doi: 10.1007/BF00716465. PubMed DOI
Hyland K, Clayton PT. Aromatic amino acid decarboxylase deficiency in twins. J. Inherit. Metab. Dis. 1990;13:301–304. doi: 10.1007/BF01799380. PubMed DOI
Bartholomé K, Lüdecke B. Mutations in the tyrosine hydroxylase gene cause various forms of L-dopa-responsive dystonia. Adv. Pharm. 1998;42:48–49. doi: 10.1016/S1054-3589(08)60692-4. PubMed DOI
Bonafe L, Thony B, Penzien JM, Czarnecki B, Blau N. Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Am. J. Hum. Genet. 2001;69:269–277. doi: 10.1086/321970. PubMed DOI PMC
Vissers LELM, et al. A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology. Genet. Med. 2017;19:1055–1063. doi: 10.1038/gim.2017.1. PubMed DOI PMC
Wright CF, FitzPatrick DR, Firth HV. Paediatric genomics: diagnosing rare disease in children. Nat. Rev. Genet. 2018;19:253–268. doi: 10.1038/nrg.2017.116. PubMed DOI
Ng SB, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. 2010;42:30–35. doi: 10.1038/ng.499. PubMed DOI PMC
Ng SB, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461:272–276. doi: 10.1038/nature08250. PubMed DOI PMC
Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat. Rev. Genet. 2013;14:681–691. doi: 10.1038/nrg3555. PubMed DOI
Blau N, Barnes I, Dhondt JL. International database of tetrahydrobiopterin deficiencies. J. Inherit. Metab. Dis. 1996;19:8–14. doi: 10.1007/BF01799342. PubMed DOI
Chabra S. Clearing the confusion about completed weeks of gestation. J. Obstet. Gynecol. Neonatal. Nurs. 2014;43:269. doi: 10.1111/1552-6909.12298. PubMed DOI
Spong CY. Defining “term” pregnancy: Recommendations from the defining “term” pregnancy workgroup. JAMA. 2013;309:2445–2446. doi: 10.1001/jama.2013.6235. PubMed DOI
Leviton A, Holmes LB, Allred EN, Vargas J. Methodologic issues in epidemiologic studies of congenital microcephaly. Early Hum. Dev. 2002;69:91–105. doi: 10.1016/S0378-3782(02)00065-8. PubMed DOI
Sharma D, Shastri S, Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin. Med. Insights Pediatr. 2016;10:67–83. PubMed PMC
Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59. doi: 10.1186/1471-2431-13-59. PubMed DOI PMC