Insights into the expanding phenotypic spectrum of inherited disorders of biogenic amines

. 2021 Sep 20 ; 12 (1) : 5529. [epub] 20210920

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34545092
Odkazy

PubMed 34545092
PubMed Central PMC8452745
DOI 10.1038/s41467-021-25515-5
PII: 10.1038/s41467-021-25515-5
Knihovny.cz E-zdroje

Inherited disorders of neurotransmitter metabolism are rare neurodevelopmental diseases presenting with movement disorders and global developmental delay. This study presents the results of the first standardized deep phenotyping approach and describes the clinical and biochemical presentation at disease onset as well as diagnostic approaches of 275 patients from the registry of the International Working Group on Neurotransmitter related Disorders. The results reveal an increased rate of prematurity, a high risk for being small for gestational age and for congenital microcephaly in some disorders. Age at diagnosis and the diagnostic delay are influenced by the diagnostic methods applied and by disease-specific symptoms. The timepoint of investigation was also a significant factor: delay to diagnosis has decreased in recent years, possibly due to novel diagnostic approaches or raised awareness. Although each disorder has a specific biochemical pattern, we observed confounding exceptions to the rule. The data provide comprehensive insights into the phenotypic spectrum of neurotransmitter disorders.

1st Department of Pediatrics Aristotle University of Thessaloniki Egnatia St 106 Thessaloniki Greece

1st Department of Pediatrics of the University of Athens Aghia Sofia Hospital Athens Greece

Children's Hospital University Medical Center Hamburg Eppendorf Hamburg Germany

Childrenś Department Division of Child Neurology Oslo University Hospital Rikshospitalet Pb 4956 Nydalen Oslo Norway

Clinic for Pediatrics 1 Medical University of Innsbruck Innsbruck Austria

Computational Oncology Molecular Diagnostics Program National Center for Tumor Diseases DKFZ Heidelberg Germany

Çukurova University Faculty of Medicine Department of Pediatrics Division of Pediatric Metabolism and Nutrition Adana Turkey

Department of Human Neuroscience Unit of Child Neurology and Psychiatry Università degli Studi di Roma La Sapienza Rome Italy

Department of Neurology Donders Institute for Brain Cognition and Behaviour Radboud University Medical Center Nijmegen The Netherlands

Department of Neurology Washington University School of Medicine St Louis MO USA

Department of Pediatric Immunology Hematology and Oncology Heidelberg University Hospital Heidelberg Germany

Department of Pediatrics and Adolescent Medicine The Hong Kong Childrenś Hospital Hong Kong Hong Kong

Department of Pediatrics and Inherited Metabolic Disorders 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Pediatrics AOU Città della Salute e della Scienza Torino Italy

Department of Pediatrics Pediatric Neurology Unit UZ Brussel VUB Brussels Belgium

Department of Pediatrics University of Alberta Glenrose Rehabilitation Hospital Edmonton AB Canada

Developmental Neurosciences UCL Great Ormond Street Institute of Child Health and Department of Neurology Great Ormond Street Hospital London UK

Division of Clinical and Metabolic Genetics Department of Pediatrics University of Toronto The Hospital for Sick Children 555 University Avenue Toronto Toronto ON Canada

German Cancer Consortium Heidelberg Germany

Hacettepe University Faculty of Medicine Department of Pediatrics Section of Metabolism Ankara Turkey

Heidelberg Institute for Stem cell Technology and Experimental Medicine Heidelberg Germany

Inborn Errors of Metabolism and Child Neurology Unit Department of Pediatrics Hospital Germans Trias i Pujol Badalona and Faculty of Medicine Universitat Autònoma de Barcelona Barcelona Spain

Inborn errors of metabolism Unit Department of Neurology Institut de Recerca Sant Joan de Déu and CIBERER ISCIII Barcelona Spain

Pediatric Neurology Unit Department of Pediatrics University Hospital Reina Sofía IMIBIC and CIBERER Córdoba Spain

U O C Malattie Metaboliche Ereditarie Dipartimento della Salute della Donna e del Bambino Azienda Ospedaliera Universitaria di Padova Campus Biomedico Pietro d'Abano Padova Italy

UCSD Departments of Neuroscience and Pediatrics; Rady Children's Hospital Division of Neurology Rady Children's Institute for Genomic Medicine San Diego CA USA

University Children's Hospital Heidelberg Dietmar Hopp Metabolic Center Heidelberg Germany

University Children's Hospital Heidelberg Division of Child Neurology and Metabolic Disorders Heidelberg Germany

University of British Columbia Department of Pediatrics Division of Biochemical Genetics BC Children's Hospital Vancouver BC Canada

Zobrazit více v PubMed

Nestler, E. J., Hyman, S. E., Holtzman, D. M. & Malenka, R. C. Molecular neuropharmacology: a foundation for clinical neuroscience (2015).

Ng J, Papandreou A, Heales SJ, Kurian MA. Monoamine neurotransmitter disorders–clinical advances and future perspectives. Nat. Rev. Neurol. 2015;11:567–584. doi: 10.1038/nrneurol.2015.172. PubMed DOI

Jung-Klawitter, S. & Kuseyri Hubschmann, O. Analysis of catecholamines and pterins in inborn errors of monoamine neurotransmitter metabolism-from past to future. Cells8, 867 (2019). PubMed PMC

Jaggi L, et al. Outcome and long-term follow-up of 36 patients with tetrahydrobiopterin deficiency. Mol. Genet. Metab. 2008;93:295–305. doi: 10.1016/j.ymgme.2007.10.004. PubMed DOI

Opladen T, Hoffmann GF, Blau N. An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalaninaemia. J. Inherit. Metab. Dis. 2012;35:963–973. doi: 10.1007/s10545-012-9506-x. PubMed DOI

Ponzone, A., Ferraris, S., Baglieri, S. & Spada, M. Treatment of tetrahydrobiopterin deficiencies. In PKU and BH4: Advances in Phenylketonuria and Tetrahydrobiopterin (ed. Blau, N.) 612–637 (SPS Verlagsgesellschaft, Heilbronn, 2006).

Brun L, et al. Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology. 2010;75:64–71. doi: 10.1212/WNL.0b013e3181e620ae. PubMed DOI

Serrano M, Perez-Duenas B, Montoya J, Ormazabal A, Artuch R. Genetic causes of cerebral folate deficiency: clinical, biochemical and therapeutic aspects. Drug Discov. Today. 2012;17:1299–1306. doi: 10.1016/j.drudis.2012.07.008. PubMed DOI

Pearl PL, et al. Clinical spectrum of succinic semialdehyde dehydrogenase deficiency. Neurology. 2003;60:1413–1417. doi: 10.1212/01.WNL.0000059549.70717.80. PubMed DOI

Swanson MA, et al. Biochemical and molecular predictors for prognosis in nonketotic hyperglycinemia. Ann. Neurol. 2015;78:606–618. doi: 10.1002/ana.24485. PubMed DOI PMC

Opladen T, et al. The International Working Group on Neurotransmitter related Disorders (iNTD): a worldwide research project focused on primary and secondary neurotransmitter disorders. Mol. Genet Metab. Rep. 2016;9:61–66. doi: 10.1016/j.ymgmr.2016.09.006. PubMed DOI PMC

Zorzi G, et al. Detection of sepiapterin in CSF of patients with sepiapterin reductase deficiency. Mol. Genet. Metab. 2002;75:174–177. doi: 10.1006/mgme.2001.3273. PubMed DOI

Kuseyri O, et al. Pregnancy management and outcome in patients with four different tetrahydrobiopterin disorders. J. Inherit. Metab. Dis. 2018;41:849–863. doi: 10.1007/s10545-018-0169-0. PubMed DOI

Beck S, et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull. World Health Organ. 2010;88:31–38. doi: 10.2471/BLT.08.062554. PubMed DOI PMC

Lee AC, et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. The Lancet. Glob. Health. 2013;1:e26–e36. PubMed PMC

Ruiz M, et al. Mother’s education and the risk of preterm and small for gestational age birth: a DRIVERS meta-analysis of 12 European cohorts. J. Epidemiol. Community Health. 2015;69:826–833. doi: 10.1136/jech-2014-205387. PubMed DOI PMC

Opladen T, et al. Consensus guideline for the diagnosis and treatment of tetrahydrobiopterin (BH4) deficiencies. Orphanet J. Rare Dis. 2020;15:126. doi: 10.1186/s13023-020-01379-8. PubMed DOI PMC

Smith I, Dhondt J-L. Birthweight in pateints with defective biopterin metabolism. Lancet. 1985;325:818. doi: 10.1016/S0140-6736(85)91474-6. PubMed DOI

Willemsen MA, et al. Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain. 2010;133:1810–1822. doi: 10.1093/brain/awq087. PubMed DOI

Douglas G, et al. A requirement for Gch1 and tetrahydrobiopterin in embryonic development. Dev. Biol. 2015;399:129–138. doi: 10.1016/j.ydbio.2014.12.025. PubMed DOI PMC

Thomas SA, Matsumoto AM, Palmiter RD. Noradrenaline is essential for mouse fetal development. Nature. 1995;374:643–646. doi: 10.1038/374643a0. PubMed DOI

Zhou QY, Quaife CJ, Palmiter RD. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature. 1995;374:640–643. doi: 10.1038/374640a0. PubMed DOI

Homma D, et al. Partial biopterin deficiency disturbs postnatal development of the dopaminergic system in the brain. J. Biol. Chem. 2011;286:1445–1452. doi: 10.1074/jbc.M110.159426. PubMed DOI PMC

Jiang X, et al. A novel GTPCH deficiency mouse model exhibiting tetrahydrobiopterin-related metabolic disturbance and infancy-onset motor impairments. Metabolism. 2019;94:96–104. doi: 10.1016/j.metabol.2019.02.001. PubMed DOI

Sumi-Ichinose C, et al. Catecholamines and serotonin are differently regulated by tetrahydrobiopterin. A study from 6-pyruvoyltetrahydropterin synthase knockout mice. J. Biol. Chem. 2001;276:41150–41160. doi: 10.1074/jbc.M102237200. PubMed DOI

Yang S, et al. A murine model for human sepiapterin-reductase deficiency. Am. J. Hum. Genet. 2006;78:575–587. doi: 10.1086/501372. PubMed DOI PMC

Xu F, et al. Disturbed biopterin and folate metabolism in the Qdpr-deficient mouse. FEBS Lett. 2014;588:3924–3931. doi: 10.1016/j.febslet.2014.09.004. PubMed DOI

Korner G, et al. Brain catecholamine depletion and motor impairment in a Th knock-in mouse with type B tyrosine hydroxylase deficiency. Brain. 2015;138:2948–2963. doi: 10.1093/brain/awv224. PubMed DOI

Lee NC, et al. Regulation of the dopaminergic system in a murine model of aromatic L-amino acid decarboxylase deficiency. Neurobiol. Dis. 2013;52:177–190. doi: 10.1016/j.nbd.2012.12.005. PubMed DOI

Elzaouk L, et al. Dwarfism and low insulin-like growth factor-1 due to dopamine depletion in Pts-/- mice rescued by feeding neurotransmitter precursors and H4-biopterin. J. Biol. Chem. 2003;278:28303–28311. doi: 10.1074/jbc.M303986200. PubMed DOI

Pearson, T. S., et al. AADC deficiency from infancy to adulthood: symptoms and developmental outcome in an international cohort of 63 patients. J. Inherit. Metab. Dis.43, 1121 (2020). PubMed PMC

Wassenberg T, et al. Consensus guideline for the diagnosis and treatment of aromatic l-amino acid decarboxylase (AADC) deficiency. Orphanet J. Rare Dis. 2017;12:12. doi: 10.1186/s13023-016-0522-z. PubMed DOI PMC

Friedman J, et al. Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy. Ann. Neurol. 2012;71:520–530. doi: 10.1002/ana.22685. PubMed DOI

Lopez-Laso E, et al. Dopa-responsive infantile hypokinetic rigid syndrome due to dominant guanosine triphosphate cyclohydrolase 1 deficiency. J. Neurol. Sci. 2007;256:90–93. doi: 10.1016/j.jns.2007.02.007. PubMed DOI

Crabtree MJ, Channon KM. Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease. Nitric oxide: Biol. Chem. 2011;25:81–88. doi: 10.1016/j.niox.2011.04.004. PubMed DOI PMC

Gao, L. et al. Sepiapterin reductase regulation of endothelial tetrahydrobiopterin and nitric oxide bioavailability. Am. J. Physiol. Heart Circ. Physiol. 297, H331-H339 (2009). PubMed PMC

Jayakumar AR, Sujatha R, Paul V, Puviarasan K, Jayakumar R. Involvement of nitric oxide and nitric oxide synthase activity in anticonvulsive action. Brain Res. Bull. 1999;48:387–394. doi: 10.1016/S0361-9230(99)00011-8. PubMed DOI

Kovacs R, et al. Endogenous nitric oxide is a key promoting factor for initiation of seizure-like events in hippocampal and entorhinal cortex slices. J. Neurosci. 2009;29:8565–8577. doi: 10.1523/JNEUROSCI.5698-08.2009. PubMed DOI PMC

Greene RW. Role for neuronal nitric oxide synthase in sleep homeostasis and arousal. PNAS. 2013;110:19982–19983. doi: 10.1073/pnas.1319863110. PubMed DOI PMC

Xu F, et al. Disturbed biopterin and folate metabolism in the Qdpr-deficient mouse. FEBS Lett. 2014;588:3924–3931. doi: 10.1016/j.febslet.2014.09.004. PubMed DOI

Pope S, Artuch R, Heales S, Rahman S. Cerebral folate deficiency: analytical tests and differential diagnosis. J. Inherit. Metab. Dis. 2019;42:655–672. doi: 10.1002/jimd.12092. PubMed DOI

Kuseyri Hübschmann, O., et al. Brain MR patterns in inherited disorders of monoamine neurotransmitters: an analysis of 70 patients. J. Inherit. Metab. Dis.44, 1070 (2021). PubMed

Batllori M, et al. Urinary sulphatoxymelatonin as a biomarker of serotonin status in biogenic amine-deficient patients. Sci. Rep. 2017;7:14675–14675. doi: 10.1038/s41598-017-15063-8. PubMed DOI PMC

Assmann, B., Surtees, R. & Hoffmann, G. F. Approach to the diagnosis of neurotransmitter diseases exemplified by the differential diagnosis of childhood-onset dystonia. Ann. Neurol. 54, S18–S24 (2003). PubMed

Aitkenhead H, Heales SJ. Establishment of paediatric age-related reference intervals for serum prolactin to aid in the diagnosis of neurometabolic conditions affecting dopamine metabolism. Ann. Clin. Biochem. 2013;50:156–158. doi: 10.1258/acb.2012.012080. PubMed DOI

Capozzi A, Scambia G, Pontecorvi A, Lello S. Hyperprolactinemia: pathophysiology and therapeutic approach. Gynecol. Endocrinol. 2015;31:506–510. doi: 10.3109/09513590.2015.1017810. PubMed DOI

Tadic V, et al. Dopa-responsive dystonia revisited: diagnostic delay, residual signs, and nonmotor signs. Arch. Neurol. 2012;69:1558–1562. doi: 10.1001/archneurol.2012.574. PubMed DOI

Niederwieser A, et al. “Peripheral” tetrahydrobiopterin deficiency with hyperphenylalaninaemia due to incomplete 6-pyruvoyl tetrahydropterin synthase deficiency or heterozygosity. Eur. J. Pediatr. 1987;146:228–232. doi: 10.1007/BF00716465. PubMed DOI

Hyland K, Clayton PT. Aromatic amino acid decarboxylase deficiency in twins. J. Inherit. Metab. Dis. 1990;13:301–304. doi: 10.1007/BF01799380. PubMed DOI

Bartholomé K, Lüdecke B. Mutations in the tyrosine hydroxylase gene cause various forms of L-dopa-responsive dystonia. Adv. Pharm. 1998;42:48–49. doi: 10.1016/S1054-3589(08)60692-4. PubMed DOI

Bonafe L, Thony B, Penzien JM, Czarnecki B, Blau N. Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Am. J. Hum. Genet. 2001;69:269–277. doi: 10.1086/321970. PubMed DOI PMC

Vissers LELM, et al. A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology. Genet. Med. 2017;19:1055–1063. doi: 10.1038/gim.2017.1. PubMed DOI PMC

Wright CF, FitzPatrick DR, Firth HV. Paediatric genomics: diagnosing rare disease in children. Nat. Rev. Genet. 2018;19:253–268. doi: 10.1038/nrg.2017.116. PubMed DOI

Ng SB, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. 2010;42:30–35. doi: 10.1038/ng.499. PubMed DOI PMC

Ng SB, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461:272–276. doi: 10.1038/nature08250. PubMed DOI PMC

Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat. Rev. Genet. 2013;14:681–691. doi: 10.1038/nrg3555. PubMed DOI

Blau N, Barnes I, Dhondt JL. International database of tetrahydrobiopterin deficiencies. J. Inherit. Metab. Dis. 1996;19:8–14. doi: 10.1007/BF01799342. PubMed DOI

Chabra S. Clearing the confusion about completed weeks of gestation. J. Obstet. Gynecol. Neonatal. Nurs. 2014;43:269. doi: 10.1111/1552-6909.12298. PubMed DOI

Spong CY. Defining “term” pregnancy: Recommendations from the defining “term” pregnancy workgroup. JAMA. 2013;309:2445–2446. doi: 10.1001/jama.2013.6235. PubMed DOI

Leviton A, Holmes LB, Allred EN, Vargas J. Methodologic issues in epidemiologic studies of congenital microcephaly. Early Hum. Dev. 2002;69:91–105. doi: 10.1016/S0378-3782(02)00065-8. PubMed DOI

Sharma D, Shastri S, Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin. Med. Insights Pediatr. 2016;10:67–83. PubMed PMC

Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59. doi: 10.1186/1471-2431-13-59. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace