The use of matrix-assisted laser desorption/ionization mass spectrometry in enzyme activity assays and its position in the context of other available methods
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
34549449
DOI
10.1002/mas.21733
Knihovny.cz E-zdroje
- Klíčová slova
- MALDI, assay, enzyme activity, intensity, internal standard, molecular probe,
- MeSH
- chromatografie kapalinová MeSH
- kinetika MeSH
- lasery * MeSH
- reprodukovatelnost výsledků MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Activity assays are indispensable for studying biochemical properties of enzymes. The purposes of measuring activity are wide ranging from a simple detection of the presence of an enzyme to kinetic experiments evaluating the substrate specificity, reaction mechanisms, and susceptibility to inhibitors. Common activity assay methods include spectroscopy, electrochemical sensors, or liquid chromatography coupled with various detection techniques. This review focuses on the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a growing and modern alternative, which offers high speed of analysis, sensitivity, versatility, possibility of automation, and cost-effectiveness. It may reveal reaction intermediates, side products or measure more enzymes at once. The addition of an internal standard or calculating the ratios of the substrate and product peak intensities and areas overcome the inherent inhomogeneous distribution of analyte and matrix in the sample spot, which otherwise results in a poor reproducibility. Examples of the application of MALDI-TOF MS for assaying hydrolases (including peptidases and β-lactamases for antibiotic resistance tests) and other enzymes are provided. Concluding remarks summarize advantages and challenges coming from the present experience, and draw future perspectives such as a screening of large libraries of chemical compounds for their substrate or inhibitory properties towards enzymes.
Zobrazit více v PubMed
Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Nature 1940;146:837. https://doi.org/10.1038/146837a0
Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature 2016;537:347-355. https://doi.org/10.1038/nature19949
Armstrong LA, Lange SM, Dee Cesare V, Matthews SP, Nirujogi RS, Cole I, Hope A, Cunningham F, Toth R, Mukherjee R, Bojkova D, Gruber F, Gray D, Wyatt PG, Cinatl J, Dikic I, Davies P, Kulathu Y. Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition by nanobodies. PLoS ONE 2021;16:e0253364. https://doi.org/10.1371/journal.pone.0253364
Arnosti C. Microbial extracellular enzymes and the marine carbon cycle. Annu. Rev. Marine Sci. 2011;3:401-425. https://doi.org/10.1146/annurev-marine-120709-142731
Bartolini B, Tipton KF, Bianchi L, Stephenson D, Cunningham C, Della Corte L. Determination of monoamine oxidase activity by HPLC with fluorimetric detection. Neurobiology (Bp) 1999;7:109-121.
Bayramoglu G, Salih B, Akbulut A, Arica MY, Biodegradation of Cibacron Blue 3GA by insolubilized laccase and identification of enzymatic byproduct using MALDI-ToF-MS: toxicity assessment studies by Daphnia magna and Chlorella vulgaris, Ecotoxicol. Environ. Safe. 2019;170:453-460. https://doi.org/10.1016/j.ecoenv.2018.12.014
Beloqui A, Sanchez-Ruiz A, Martin-Lomas M, Reichardt NC. A surface-based mass spectrometry method for screening glycosidase specificity in environmental samples. Chem. Commun. 2012;48:1701-1703. https://doi.org/10.1039/c2cc16537f
Blake DA, McLean NV. A colorimetric assay for the measurement of D-glucose consumption by cultured cells. Anal. Biochem. 1989;177:156-160. https://doi.org/10.1016/0003-2697(89)90031-6
Börnsen KO. Influence of salts, buffers, detergents, solvents, and matrices on MALDI-MS protein analysis in complex mixtures. Methods Mol. Biol. 2000;146:387-404. https://doi.org/10.1385/1-59259-045-4:387
Brasseur C, Bauwens J, Tarayre C, Mattéotti C, Thonart P, Destain J, Francis F, Haubruge E, Portetelle D, Vandenbol M, Focant JF, De Pauw E. MALDI-TOF MS analysis of cellodextrins and xylo-oligosaccharides produced by hindgut homogenates of Reticulitermes santonensis. Molecules 2014;19:4578-4594. https://doi.org/10.3390/molecules19044578
Bungert D, Bastian S, Heckmann-Pohl DM, Giffhorn F, Heinzle E, Tholey A. Screening of sugar converting enzyme using quantitative MALDI-ToF mass spectrometry. Biotechnol. Lett. 2004;26:1025-1030. https://doi.org/10.1023/B:BILE.0000032965.18721.62
Bungert D, Heinzle E, Tholey A. Quantitative matrix-assisted laser desorption/ionization mass spectrometry for the determination of enzyme activities. Anal. Biochem. 2004;326:167-175. https://doi.org/10.1016/j.ab.2003.11.013
Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 h. J. Clin. Microbiol. 2011;49:3321-3324. https://doi.org/10.1128/JCM.00287-11
Bush K. Past and present pespectives on β-lactamases. Antimicrob. Agents Chemother. 2018;62:e01076-18. https://doi.org/10.1128/AAC.01076-18
Carlin G, Djursäter R, Smedegård G, Gerdin B. 1985. Effect of anti-inflammatory drugs on xanthine oxidase and xanthine oxidase induced depolymerization of hyaluronic acid. Agents Actions 1985;16:377-384. https://doi.org/10.1007/BF01982876
Chang HL, Su KY, Goodman SD, Yen RS, Cheng WC, Yang YC, Lin LI, Chang SY, Fang W. Measurement of uracil-DNA glycosylase activity by matrix assisted laser desorption/ionization time-of-flight mass spectrometry technique. DNA Repair 2021;97:103028. https://doi.org/10.1016/j.dnarep.2020.103028
Chong PM, McCorrister SJ, Unger MS, Boyd DA, Mulvey MR, Westmacott GR. MALDI-TOF MS detection of carbapenemase activity in clinical isolates of Enterobacteriaceae spp., Pseudomonas aeruginosa, and Acinetobacter baumannii compared against the Carba-NP assay. J. Microbiol. Methods 2015;111:21-23. https://doi.org/10.1016/j.mimet.2015.01.024
Clark Jr. LC, Wolf R, Granger D, Taylor Z. Continuous recording of blood oxygen tensions by polarography. J. Appl. Physiol. 1953;6:189-193. https://doi.org/10.1152/jappl.1953.6.3.189
Cooper RDG. The carbacephems: a new beta-lactam antibiotic class. Am. J. Med. 1992;92:S2-S6. https://doi.org/10.1016/0002-9343(92)90600-g
Correa-Martínez CL, Idelevich EA, Sparbier K, Kostrzewa M, Becker K. Rapid detection of extended-spectrum β-lactamases (ESBL) and AmpC β-lactamases in Enterobacterales: development of a screening panel using the MALDI-TOF MS-based direct-on-target microdroplet growth assay. Front. Microbiol. 2019;10:13. https://doi.org/10.3389/fmicb.2019.00013
Correa-Martínez CL, Idelevich EA, Sparbier K, Kuczius T, Kostrzewa M, Becker K. Development of a MALDI-TOF MS-based screening panel for accelerated differential detection of carbapenemases in Enterobacterales using the direct-on-target microdroplet growth assay. Sci. Rep. 2020;10:4988. https://doi.org/10.1038/s41598-020-61890-7
De Cesare V, Johnson C, Barlow V, Hastie J, Knebel A, Trost M. The MALDI-TOF E2/E3 ligase assay as universal tool for drug discovery in the ubiquitin pathway. Cell Chem. Biol. 2018;25:1117-1127. https://doi.org/10.1016/j.chembiol.2018.06.004
Del Río LA, Ortega MG, López AL, Gorgé JL. A more sensitive modification of the catalase assay with the Clark oxygen electrode. Application to the kinetic study of the pea leaf enzyme. Anal. Biochem. 1977;80:409-415. https://doi.org/10.1016/0003-2697(77)90662-5
Deng Z, Ye M, Bian Y, Liu Z, Liu F, Wang C, Qin H, Zou H. Multiplex isotope dimethyl labeling of substrate peptides for high throughput kinase activity assay via quantitative MALDI MS. Chem. Commun. 2014;50:13960-13962. https://doi.org/10.1039/c4cc04906c
Elased KM, Cool DR, Morris M. Novel mass spectrometric methods for evaluation of plasma angiotensin converting enzyme 1 and renin activity. Hypertension 2005;46:953-959. https://doi.org/10.1161/01.HYP.0000174601.30793.b1
Elased KM, Cunha TS, Gurley SB, Coffman TM, Morris M. New mass spectrometric assay for angiotensin-converting enzyme 2 activity. Hypertension 2006;47:1010-1017. https://doi.org/10.1161/01.HYP.0000215588.38536.30
Erich K, Reinle K, Müller T, Munteanu B, Sammour DA, Hinsenkamp I, Gutting T, Burgermeister E, Findeisen P, Ebert MP, Krijgsveld J, Hopf C. Spatial distribution of endogenous tissue protease activity in gastric carcinoma mapped by MALDI mass spectrometry imaging. Mol. Cell. Proteomics 2018;18:151-161. https://doi.org/10.1074/mcp.RA118.000980
Filandr F, Man P, Halada P, Chang H, Ludwig R, Kracher D. The H2O2-dependent activity of a fungal lytic polysaccharide monooxygenase investigated with a turbidimetric assay. Biotechnol. Biofuels 2020;13:37. https://doi.org/10.1186/s13068-020-01673-4
Finehout EJ, Lee KH. An introduction to mass spectrometry applications in biological research. Biochem. Mol. Biol. Edu. 2004;32:93-100. https://doi.org/10.1002/bmb.2004.494032020331
Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 1929;10:226-236.
Galuszka P, Šebela M, Luhová L, Zajoncová L, Frébort I, Strnad M, Peč P. Cytokinins as inhibitors of plant amine oxidase. J. Enzym. Inhib. 1998;13:457-463. https://doi.org/10.3109/14756369809020549
Gao H, Leary JA. Multiplex inhibitor screening and kinetic constant determination for yeast hexokinase using mass spectrometry based assays, J. Am. Soc. Mass Spectrom. 2003;14:173-181. https://doi.org/10.1016/S1044-0305(02)00867-X
Gardner QA, Younas H, Akhtar M. Studies on the regioselectivity and kinetics of the action of trypsin on proinsulin and its derivatives using mass spectrometry. Biochim. Biophys. Acta 2013;1834:182-190. https://doi.org/10.1016/j.bbapap.2012.09.004
Gaucher-Wieczorek F, Guérineau V, Touboul D, Thétiot-Laurent S, Pelissier F, Badet-Denisot MA, Badet B, Durand P. Evaluation of synthase and hemisynthase activities of glucosamine-6-phosphate synthase by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem. 2014;458:61-65. https://doi.org/10.1016/j.ab.2014.04.033
Ge X, Sirich TL, Beyer MK, Desaire H, Leary JA. A strategy for the determination of enzyme kinetics using electrospray ionization with an ion trap mass spectrometer. Anal. Chem. 2001;73:5078-5082. https://doi.org/10.1021/ac0105890
Gil-Serrano J, Cardona V, Luengo O, Guilarte M, Sala-Cunill A, Galvan-Blasco P, Labrador-Horrillo M. Anaphylactic shock to meropenem with ertapenem tolerance: a case report. J. Allergy Clin. Immunol. Pract. 2019;7:2057-2058. https://doi.org/10.1016/j.jaip.2019.01.052
Goddard JP, Raymond JL. Recent advances in enzyme assays. Trends Biotechnol. 2004;22:363-370. https://doi.org/10.1016/j.tibtech.2004.04.005
Greis KD. Mass spectrometry for enzyme assays and inhibitor screening: an emerging application in pharmaceutical research. Mass Spectrom. Rev. 2007;26:324-339. https://doi.org/10.1002/mas.20127
Greis KD, Zhou S, Burt TM, Carr AN, Dolan E, Easwaran V, Evdokimov A, Kawamoto R, Roesgen J, Davis GF. MALDI-TOF MS as a label-free approach to rapid inhibitor screening. J. Am. Soc. Mass Spectrom. 2006;17:815-822. https://doi.org/10.1016/j.jasms.2006.02.019
Gros L, Saparbaev MK, Laval J. Enzymology of the repair of free radicals-induced DNA damage. Oncogene 2002;21:8905-8925. https://doi.org/10.1038/sj.onc.1206005
Guilbault GG, Brignac Jr. P, Zimmer M. Homovanillic acid as a fluorometric substrate for oxidative enzymes. Analytical applications of the peroxidase, glucose oxidase, and xanthine oxidase systems. Anal. Chem. 1968;40:190-196. https://doi.org/10.1021/ac60257a002
Guillarme D, Ruta J, Rudaz S, Veuthey JL. 2010. New trends in fast and high-resolution liquid chromatography: a critical comparison of existing approaches. Anal. Bioanal. Chem. 2010;397:1069-1082. https://doi.org/10.1007/s00216-009-3305-8
Guitot K, Scarabelli S, Drujon T, Bolbach G, Amoura M, Burlina F, Jeltsch A, Sagan S, Guianvarc'h D. Label-free measurement of histone lysine methyltransferases activity by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem. 2014;456:25-31. https://doi.org/10.1016/j.ab.2014.04.006
Guitot K, Drujon T, Burlina F, Sagan S, Beaupierre S, Pamlard O, Dodd RH, Guillou C, Bolbach G, Sachon E, Guianvarc'h D. A direct label-free MALDI-TOF mass spectrometry based assay for the characterization of inhibitors of protein lysine methyltransferases. Anal. Bioanal. Chem. 2017;409:3767-3777. https://doi.org/10.1007/s00216-017-0319-5
Halim VA, Muck A, Hartl M, Ibáñez AJ, Giri A, Erfurth F, Baldwin IT, Svatoš A. A dual fluorescent/MALDI chip platform for analyzing enzymatic activity and for protein profiling. Proteomics 2009;9:171-181. https://doi.org/10.1002/pmic.200800390
Hassiepen U, Eidhoff U, Meder G, Bulber JF, Hein A, Bodendorf U, Lorthiois E, Martoglio B. A sensitive fluorescence intensity assay for deubiquitinating proteases using ubiquitin-rhodamine110-glycine as substrate. Anal. Biochem. 2007;371:201-207. https://doi.org/10.1016/j.ab.2007.07.034
Havlicek V, Lemr K, Schug KA. Current trends in microbial diagnostics based on mass spectrometry. Anal. Chem. 2013;15:790-797. https://doi.org/10.1021/ac3031866
Heeb MJ, Gabriel O. Enzyme localization in gels. Methods Enzymol. 1984;104:416-439. https://doi.org/10.1016/s0076-6879(84)04109-4
Herraiz T, Flores A, Fernández L. Analysis of monoamine oxidase (MAO) enzymatic activity by high-performance liquid chromatography-diode array detection combined with an assay of oxidation with a peroxidase and its application to MAO inhibitors from foods and plants. J. Chromatogr. B 2018;1073:136-144. https://doi.org/10.1016/j.jchromb.2017.12.004
Hooff GP, van Kampen JJA, Meesters RJW, van Belkum A, Goessens WHF, Luider TM. Characterization of β-lactamase enzyme activity in bacterial lysates using MALDI-mass spectrometry. J. Proteome Res. 2012;11:79-84. https://doi.org/10.1021/pr200858r
Hou TY, Chiang-Ni C, Teng SH. Current status of MALDI-TOF mass spectrometry in clinical microbiology. J. Food Drug Anal. 2019;27:404-414. https://doi.org/10.1016/j.jfda.2019.01.001
Hrabák J, Chudáčková E, Walková R. Matrix-assisted laser desorption ionization-time of flight (MALDITOF) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin. Microb. Rev. 2013;26:103-114. https://doi.org/10.1128/CMR.00058-12
Hrabák J, Walková R, Študentová V, Chudáčková E, Bergerová T. Carbapenemase activity detection by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry. J. Clin. Microbiol. 2011;49:3222-3227. https://doi.org/10.1128/JCM.00984-11
Hu L, Jiang G, Xu S, Pan C, Zou H. Monitoring enzyme reaction and screening enzyme inhibitor based on MALDI-TOF-MS platform with a matrix of oxidized carbon nanotubes. J. Am. Soc. Mass Spectrom. 2006;17:1616-1619. https://doi.org/10.1016/j.jasms.2006.07.005
Hu J, Liu F, Ju H. Peptide code-on-a-microplate for protease activity analysis via MALDI-TOF mass spectrometric quantitation. Anal. Chem. 2015;87:4409-4414. https://doi.org/10.1021/acs.analchem.5b00230
Hu J, Liu F, Feng N, Ju H. Peptide codes for multiple protease activity assay via high-resolution mass spectrometric quantitation. Rapid Commun. Mass. Spectrom. 2016;30:196-201. https://doi.org/10.1002/rcm.7631
Humeny A, Beck C, Becker CM, Jeltsch A. Detection and analysis of enzymatic DNA methylation of oligonucleotide substrates by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Anal. Biochem. 2003;313:160-166. https://doi.org/10.1016/s0003-2697(02)00568-7
Idelevich EA, Sparbier K, Kostrzewa M, Becker K. Rapid detection of antibiotic resistance by MALDI-TOF mass spectrometry using a novel direct-on-target microdroplet growth assay. Clin. Microbiol. Infect. 2018;24:738-743. https://doi.org/10.1016/j.cmi.2017.10.016
Jankowski J, Stephan N, Knobloch M, Fischer S, Schmaltz D, Zidek W, Schlüter H. Mass-spectrometry-linked screening of protein fractions for enzymatic activities-a tool for functional genomics. Anal. Biochem. 2001;290:324-329. https://doi.org/10.1006/abio.2001.5001
John RA. 2002. Photometric Assays. In: Eisenthal R, Danson MJ, editors. Enzyme Assays. 2nd Edition (The Practical Approach Series No. 257). New York: Oxford University Press. p 49-78.
Jung JS, Popp C, Sparbier K, Lange C, Kostrzewa M, Schubert S. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid detection of β-lactam resistance in Enterobacteriaceae derived from blood cultures. J. Clin. Microbiol. 2014;52:924-930. https://doi.org/10.1128/JCM.02691-13
Kang MJ, Tholey A, Heinzle E. Application of automated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the measurement of enzyme activities. Rapid Commun. Mass Spectrom. 2001;15:1327-1333. https://doi.org/10.1002/rcm.376
Kang MJ, Tholey A, Heinzle E. Quantitation of low molecular mass substrates and products of enzyme catalyzed reactions using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2000;14:1972-1978. https://doi.org/10.1002/1097-0231(20001115)14:21%3C1972::AID-RCM119%3E3.0.CO;2-5
Komander D. The emerging complexity of protein ubiquitination. Biochem. Soc. Trans. 2009;37:937-953. https://doi.org/10.1042/BST0370937
Kong KF, Schneper L, Mathee K. Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS 2010;118:1-36. https://doi.org/10.1111/j.1600-0463.2009.02563.x
Kostrzewa M, Sparbier K, Maier T, Schubert S. MALDI-TOF M: an upcoming tool for rapid detection of antibiotic resistance in microorganisms. Proteomics Clin. Appl. 2013;7:767-778. https://doi.org/10.1002/prca.201300042
Kruger NJ. Errors and artifacts in coupled spectrophotometric assays of enzyme activity, Phytochemistry 1995;38:1065-1071. https://doi.org/10.1016/0031-9422(94)00787-T
Kumar A, Christian GD. Assay of L-tyrosine in serum by amperometric measurement of tyrosinase-catalyzed oxygen consumption. Clin. Chem. 1975;21:325-329.
Kurien BT, Patel NC, Porter AC, Kurono S, Matsumoto H, Wang H, Scofield RH. Determination of prolidase activity using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem. 2004;331:224-229. https://doi.org/10.1016/j.ab.2004.04.043
Lakowicz JR. 2006. Principles of Fluorescence Spectroscopy. 3rd Edition. Boston: Springer. 954 p.
Laloue M, Fox JE. Cytokinin oxidase from wheat: Partial purification and general properties. Plant Physiol. 1989;90:899-906. https://doi.org/10.1104/pp.90.3.899
Li J, Liu X, Chu H, Fu X, Li T, Hu L, Xing S, Li G, Gu J, Zhao ZJ. Specific dephosphorylation of Janus Kinase 2 by protein tyrosine phosphatases. Proteomics 2015;15:68-76. https://doi.org/10.1002/pmic.201400146
Li H, Luo W, Lin J, Lin Z, Zhang Y. Assay of plasma semicarbazide-sensitive amine oxidase and determination of its endogenous substrate methylamine by liquid chromatography. J. Chromatogr. B. 2004;810:277-282. https://doi.org/10.1016/j.jchromb.2004.08.011
Li Y, Ogata Y, Freeze HH, Scott CR, Tureček F, Gelb MG. Affinity capture and elution/electrospray ionization mass spectrometry assay of phosphomannomutase and phosphomannose isomerase for the multiplex analysis of congenital disorders of glycosylation types Ia and Ib. Anal. Chem. 2003;75:42-48. https://doi.org/10.1021/ac0205053
Liesener A, Karst U. Monitoring enzymatic conversions by mass spectrometry: a critical review. Anal. Bioanal. Chem. 2005;382:1451-1464. https://doi.org/10.1007/s00216-005-3305-2
Liigand J, Wang T, Kellogg J, Smedsgaard J, Cech N, Kruve A. Quantification for non-targeted LC/MS screening without standard substances. Sci. Rep. 2020;10:5808. https://doi.org/10.1038/s41598-020-62573-z
Ling L, Xiao C, Wang S, Guo L, Guo X. A pyrene linked peptide probe for quantitative analysis of protease activity via MALDI-TOF-MS. Talanta 2019;200:236-241. https://doi.org/10.1016/j.talanta.2019.03.055
Liu Y, Li Y, Liu J, Deng C, Zhang X. High throughput enzyme inhibitor screening by functionalized magnetic carbonaceous microspheres and graphene oxide-based MALDI-TOF-MS. J. Am. Soc. Mass Spectrom. 2011;22:2188-2198. https://doi.org/10.1007/s13361-011-0231-8
Lössl P, van den Waterbeemd M, Heck AJR. The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J. 2016;35:2634-2657. https://doi.org/10.15252/embj.201694818
Lü S, Luo Q, Li X, Wu J, Liu J, Xiong S, Feng YQ, Wang F. Inhibitor screening of protein kinases using MALDI-TOF MS combined with separation and enrichment of phosphopeptides by TiO2 nanoparticle deposited capillary column. Analyst 2010;135:2858-2863. https://doi.org/10.1039/c0an00339e
Machálková M, Schejbal J, Glatz Z, Preisler Z. A label-free MALDI TOF MS-based method for studying the kinetics and inhibitor screening of the Alzheimer's disease drug target β-secretase. Anal. Bioanal. Chem. 2018;410:7441-7448. https://doi.org/10.1007/s00216-018-1354-6
Maillard LT, Guérinau V, Badet-Denisot MA, Badet B, Laprévote O, Durand P. Monitoring enzyme-catalyzed production of glucosamine-6P by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a new enzymatic assay for glucosamine-6P synthase. Rapid Commun. Mass Spectrom. 2006;20:666-672. https://doi.org/10.1002/rcm.2361
Manchenko GP. 2003. Handbook on the Detection of Enzymes on Electrophoretic Gels. 2nd Edition. Boca Raton: CRC Press. 553 p.
Mayerhöfer TG, Popp J. Beer's law-why absorbance depends (almost) linearly on concentration. ChemPhysChem 2019;20:511-515. https://doi.org/10.1002/cphc.201801073
McKee CJ, Hines HB, Ulrich RG. Analysis of protein tyrosine phosphatase interactions with microarrayed phosphopeptide substrate using. Anal. Biochem. 2013;442:62-67. https://doi.org/10.1016/j.ab.2013.07.031
Min DH, Su J, Mrksich M. Profiling kinase activities by using a peptide chip and mass spectrometry. Angew. Chem. Int. Ed. Engl. 2004;43:5973-5977. https://doi.org/10.1002/anie.200461061
Mirande C, Canard I, Buffet Croix Blanche S, Charrier JP, van Belkum A, Welker M, Chatellier, S. Rapid detection of carbapenemase activity: benefits and weaknesses of MALDI-TOF MS. Eur. J. Clin. Microbiol. Infect. Dis. 2015;34:2225-2234. https://doi.org/10.1007/s10096-015-2473-z
Mörsky P. Turbidimetric determination of lysozyme with Micrococcus lysodeikticus cells: reexamination of reaction conditions. Anal. Biochem. 1983;128:77-85. https://doi.org/10.1016/0003-2697(83)90347-0
Negelein E, Haas E. Über die Wirkungweise des Zwischenferments. Biochem. Z. 1935;282:206-220.
O'Rourke MB, Djordjevic SP, Padula MP. The quest for improved reproducibility in MALDI mass spectrometry. Mass Spectrom. Rev. 2016;37:217-228. https://doi.org/10.1002/mas.21515
Ouyang F, Yu T, Gu C, Wang G, Shi R, Lv R, Wu E, Ma C, Guo R, Li J, Zaczek A, Liu J. Sensitive detection of caspase-3 enzymatic activities and inhibitor screening by mass spectrometry with dual maleimide labelling quantitation. Analyst 2019;144:6751-6759. https://doi.org/10.1039/c9an01458f
Oviaño M, Bou G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the rapid detection of antimicrobial resistance mechanisms and beyond. Clin. Microbiol. Rev. 2019;32:e00037-18. https://doi.org/10.1128/CMR.00037-18
Park JM, Kim JI, Noh JY, Kim M, Kang MJ, Pyun JC. A highly sensitive carbapenemase assay using laser desorption/ionization mass spectrometry based on a parylene-matrix chip. Enzyme Microb. Technol. 2017;104:56-68. https://doi.org/10.1016/j.enzmictec.2017.05.010
Patrie SM, Roth MJ, Plymire DA, Maresh E, Zhang J. Measurement of blood protease kinetic parameters with self-assembled monolayer ligand binding assays and label-free MALDI-TOF MS. Anal. Chem. 2013;85:10597-10604. https://doi.org/10.1021/ac402739z
Petković M, Müller J, Müller M, Schiller J, Arnold K, Arnhold J. Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for monitoring the digestion of phosphatidylcholine by pancreatic phospholipase A2. Anal. Biochem. 2002;308:61-70. https://doi.org/10.1016/s0003-2697(02)00236-1
Pourceau G, Chevolot Y, Goudot A, Giroux F, Meyer A, Moulés V, Lina B, Cecioni S, Vidal S, Yu H, Chen X, Ferraris O, Praly JP, Souteyrand E, Vasseur JJ, Morvan F. Measurement of enzymatic activity and specificity of human and avian influenza neuraminidases from whole virus by glycoarray and MALDI-TOF mass spectrometry. ChemBioChem 2011;12:2071-2080. https://doi.org/10.1002/cbic.201100128
Price NJ, Naumann TA. A high-throughput matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry-based assay of chitinase activity. Anal. Biochem. 2011;411:94-99. https://doi.org/10.1016/j.ab.2010.12.027
Puapaiboon U, Jai-nhuknan J, Cowan JA. Characterization of a multi-functional metal-mediated nuclease by MALDI-TOF mass spectrometry. Nucleic Acids Res. 2001;29:3652-3656. https://doi.org/10.1093/nar/29.17.3652
Ritorto MS, Ewan R, Perez-Oliva AB, Knebel A, Buhrlage SJ, Wightman M, Kelly SM, Wood NT, Virdee S, Gray NS, Morrice NA, Alessi DR, Trost M. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat. Commun. 2014;5:4673. https://doi.org/10.1038/ncomms5763
Sabbagh B, Costina V, Buchheidt D, Reinwald M, Neumaier M, Findeisen P. Functional protease profiling for laboratory based diagnosis of invasive aspergillosis. Int. J. Oncol. 2015;47:143-150. https://doi.org/10.3892/ijo.2015.2984
Sanchez-Ruiz A, Serna S, Ruiz N, Martin-Lomas M, Reichardt NC. MALDI-TOF mass spectrometric analysis of enzyme activity and lectin trapping on an array of N-glycans. Angew. Chem. Int. Ed. Engl. 2011;50:1801-1804. https://doi.org/10.1002/anie.201006304
Savary BJ, Vasu P, Cameron RG, McCollum TG, Nuñez A. 2013. Structural characterization of the thermally tolerant pectin methylesterase purified from Citrus sinensis fruit and its gene sequence. J. Agric. Food. Chem. 61:12711-12719. https://doi.org/10.1021/jf403914u
Schlüter H, Jankowski J, Rykl J, Thiemann J, Belgardt S, Zidek W, Wittmann B, Pohl T. Detection of protease activities with the mass-spectrometry-assisted enzyme-screening (MES) system. Anal. Bioanal. Chem. 2003;377:1102-1107. https://doi.org/10.1007/s00216-003-2211-8
Scholle MD, Liu C, Deval J, Gurard-Levin ZA. Label-free screening of SARS-CoV-2 NSP14 exonuclease activity using SAMDI mass spectrometry. SLAS Discov. 2021;26:766-774. https://doi.org/10.1177/24725552211008854
Šebela M, Luhová L, Brauner F, Galuszka P, Radová A, Peč P. Light microscopic localisation of aminoaldehyde dehydrogenase activity in plant tissues using nitroblue tetrazolium-based staining method. Plant Physiol. Biochem. 2001;39:831-839. https://doi.org/10.1016/S0981-9428(01)01304-3
Šebela M, Štosová T, Havliš J, Wielsch N, Thomas H, Zdráhal Z, Shevchenko A. Thermostable trypsin conjugates for high-throughput proteomics: synthesis and performance evaluation. Proteomics 2006;6:2959-2963. https://doi.org/10.1002/pmic.200500576
Simon RP, Winter M, Kleiner C, Ries R, Schnapp G, Heimann A, Li J, Zuvela-Jelaska L, Bretschneider T, Luippold AH, Reindl W, Bischoff D, Büttner FH. MALDI-TOF mass spectrometry-based high-throughput screening for inhibitors of the cytosolic DNA sensor cGAS. SLAS Discov. 2020;25:372-383. https://doi.org/10.1177/2472555219880185
Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015;6:791. https://doi.org/10.3389/fmicb.2015.00791
Šlachtová V, Šebela M, Torfs E, Oorts L, Cappoen D, Berka K, Bazgier V, Brulíková L. Novel thiazolidinedione-hydroxamates as inhibitors of Mycobacterium tuberculosis virulence factor Zmp1. Eur. J. Med. Chem. 2020;185:111812. https://doi.org/10.1016/j.ejmech.2019.111812
Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against β-lactam antibiotics. J. Clin. Microbiol. 2012;50:927-937. https://doi.org/10.1128/JCM.05737-11
Su J, Bringer MR, Ismagilov RF, Mrksich M. Combining microfluidic networks and peptide arrays for multi-enzyme assays. J. Am. Chem. Soc. 2005;127:7280-7281. https://doi.org/10.1021/ja051371o
Swartz M. HPLC detectors: a brief review. J. Liq. Chrom. Relat. Tech. 2010;33:1130-1150. https://doi.org/10.1080/10826076.2010.484356
Syal K, Mo M, Yu H, Iriya R, Jing W, Guodong S, Wang S, Grys TE, Haydel SE, Tao N. Current and emerging techniques for antibiotic susceptibility tests. Theranostics 2017;7:1795-1805. https://doi.org/10.7150/thno.19217
Szájli E, Fehér T, Medzihradszky K. Investigating the quantitative nature of MALDI-TOF MS. Mol. Cell. Proteomics 2008;7:2410-2418. https://doi.org/10.1074/mcp.M800108-MCP200
Tipton KF. 2002. Principles of enzyme assay and kinetic studies. In: Eisenthal R, Danson MJ, editors. Enzyme Assays. 2nd Edition (The Practical Approach Series No. 257). New York: Oxford University Press. p 1-47.
Torsi G, Chiavari G, Laghi C, Asmundsdottir AM, Fagioli F, Vecchietti R. Determination of the absolute number of moles ofan analyte in a flow-through system from peak-area measurements. J. Chromatogr. A. 1989;482:207-214. https://doi.org/10.1016/S0021-9673(01)93221-2
van Leeuwen HC, Klychnikov OI, Menks MA, Kuijper EJ, Drijfhout JW, Hensbergen PJ. Clostridium difficile sortase recognizes a (S/P)PXTG sequence motif and can accommodate diaminopimelic acid as a substrate for transpeptidation. FEBS Lett. 2014;588:4325-4333. https://doi.org/10.1016/j.febslet.2014.09.041
van Munster JM, Thomas B, Riese M, Davis AL, Gray CJ, Archer DB, Flitsch SL. Application of carbohydrate arrays coupled with mass spectrometry to detect activity of plant-polysaccharide degradative enzymes from the fungus Aspergillus niger. Sci. Rep. 2017;7:43117. https://doi.org/10.1038/srep43117
Verchot LV, Borelli T. Application of para-nitrophenol (pNP) enzyme assays in degraded tropical soils. Soil Biol. Biochem. 2005;37:625-633. https://doi.org/10.1016/j.soilbio.2004.09.005
Versari A, Parpinello GP, Fabiani A. Comparison of two quantitation methods in HPLC: Standardless versus calibration with external standards. Application to the analysis of amino acids in fruit juices. J. Chrom. Sci. 2007;45:515-518. https://doi.org/10.1093/chromsci/45.8.515
Vosyka O, Vinothkumar KR, Wolf EV, Brouwer AJ, Liskamp RMJ, Verhelst SHL. Activity-based probes for rhomboid proteases discovered in a mass spectrometry-based assay, Proc. Natl. Acad. Sci. U.S.A. 2013;110:2472-2477. https://doi.org/10.1073/pnas.1215076110
Wang D, Baudys J, Barr JR, Kalb SR. Improved sensitivity for the qualitative and quantitative analysis of active ricin by MALDI-TOF mass spectrometry. Anal. Chem. 2016;88:6867-6872. https://doi.org/10.1021/acs.analchem.6b01486
Wang S, Xiao C, Guo L, Ling L, Li M, Li H, Guo X. Rapidly quantitative analysis of γ-glutamyltranspeptidase activity in the lysate and blood via a rational design of the molecular probe by matrix-assisted laser desorption ionization mass spectrometry. Talanta 2019;205:120141. https://doi.org/10.1016/j.talanta.2019.120141
Wang L, Zhang Y, Xiao S, Hu G, Che B, Qing H, Li Y, Zhuang L, Deng Y. LC-MS method for determining the activity of semicarbazide-sensitive amine oxidase in rodents. Anal. Methods 2012;4:1383-1388. https://doi.org/10.1039/c2ay05914b
Watson DS, Jambunathan K, Askew DS, Kodukula K, Galande AK. Robust substrate profiling method reveals striking differences in specificities of serum and lung fluid proteases. Biotechniques 2011;51:95-104. https://doi.org/10.2144/000113717
Wilkinson JH, Baron DN, Moss DW, Walker PG. Standardization of clinical enzyme assays: a reference method for aspartate and alanine transaminases. J. Clin. Path. 1972;25:940-944. https://doi.org/10.1136/jcp.25.11.940
Winter M, Bretschneider T, Thamm S, Kleiner C, Grabowski D, Chandler S, Ries R, Kley JT, Fowler D, Bartlett C, Binetti R, Broadwater J, Luippold AH, Bischoff D, Büttner FH. Chemical derivatization enables MALDI-TOF-based high-throughput screening for microbial trimethylamine (TMA)-lyase inhibitors. SLAS Discov. 2019;24:766-777. https://doi.org/10.1177/2472555219838216
Wise R. The carbapenems and penem antibiotics-a brief review. Antimicrob. Newsletter 1990;7:73-78. https://doi.org/10.1016/0738-1751(90)90045-E
Woodard SL, Mayor JM, Bailey MR, Barker DK, Love RT, Lane JR, Delaney DE, McComas-Wagner JM, Mallubhotla HD, Hood EE, Dangott LJ, Tichy SE, Howard JA. Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol. Appl. Biochem. 2003;38:123-130. https://doi.org/10.1042/BA20030026
Yamamoto H, Sawaguchi Y, Kimura M. The determination of protease specificity in mouse tisssue extracts by MALDI-TOF mass spectrometry: manipulating pH to cause specificity changes. JoVE 2018;135:e57469. https://doi.org/10.3791/57469
Yang H, Chan AL, LaVallo V, Cheng Q. Quantitation of alpha-glucosidase activity using fluorinated carbohydrate array and MALDI-TOF MS. ACS Appl. Mater. Interfaces 2016:8:2872-2878. https://doi.org/10.1021/acsami.5b12518
You SH, Lim HD, Cheong DE, Kim ES, Kim GJ. Rapid and sensitive detection of NADPH via mBFP-mediated enhancement of its fluorescence. PLoS ONE 2019;14:e0212061. https://doi.org/10.1371/journal.pone.0212061
Zhou Y, Kang L, Niu X, Wang J, Liu Z, Yuan S. Purification, characterization and physiological significance of a chitinase from the pilei of Coprinopsis cinerea fruiting bodies. FEMS Microbiol. Lett. 2016;363:fnw120. https://doi.org/10.1093/femsle/fnw120
Zhou X, Turecek F, Scott CR, Gelb MH. Quantification of cellular acid sphingomyelinase and galactocerebroside beta-galactosidase activities by electrospray ionization mass spectrometry. Clin. Chem. 2001;47:874-881. https://doi.org/10.1093/clinchem/47.5.874
Zhou G, Yan X, Wu D, Kron SJ. Photocleavable peptide-conjugated magnetic beads for protein kinase assays by MALDI-TOF MS. Bioconjugate Chem. 2010;21:1917-1924. https://doi.org/10.1021/bc1003058