Long-term trends in the body condition of parents and offspring of Tengmalm's owls under fluctuating food conditions and climate change

. 2021 Sep 23 ; 11 (1) : 18893. [epub] 20210923

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34556766
Odkazy

PubMed 34556766
PubMed Central PMC8460639
DOI 10.1038/s41598-021-98447-1
PII: 10.1038/s41598-021-98447-1
Knihovny.cz E-zdroje

Physical condition is important for the ability to resist various parasites and diseases as well as in escaping predators thus contributing to reproductive success, over-winter survival and possible declines in wildlife populations. However, in-depth research on trends in body condition is rare because decades-long datasets are not available for a majority of species. We analysed the long-term dataset of offspring covering 34 years, male parents (40 years) and female parents (42 years) to find out whether the decline of Tengmalm's owl population in western Finland is attributable to either decreased adult and/or juvenile body condition in interaction with changing weather conditions and density estimates of main foods. We found that body condition of parent owl males and females declined throughout the 40-year study period whereas the body condition of owlets at the fledging stage very slightly increased. The body condition of parent owls increased with augmenting depth of snow cover in late winter (January to March), and that of offspring improved with increasing precipitation in late spring (May to June). We conclude that the decreasing trend of body condition of parent owl males and females is important factor probably inducing reduced adult survival and reduced reproduction success thus contributing to the long-term decline of the Tengmalm's owl study population. The very slightly increasing trend of body condition of offspring is obviously not able to compensate the overall decline of Tengmalm's owl population, because the number of offspring in turn simultaneously decreased considerably in the long-term. The ongoing climate change appeared to work in opposite ways in this case because declining depth of snow cover will make the situation worse but increased precipitation will improve. We suggest that the main reasons for long-term decline of body condition of parent owls are interactive or additive effects of reduced food resources and increased overall predation risk due to habitat degradation (loss and fragmentation of mature and old-growth forests due to clear-felling) subsequently leading to decline of Tengmalm's owl study population.

Zobrazit více v PubMed

Brommer JE, Pietiäinen H, Kolunen H. Reproduction and survival in a variable environment: Ural owls (Strix uralensis) and the three-year vole cycle. Auk. 2002;119:544–550. doi: 10.1642/0004-8038(2002)119[0544:rasiav]2.0.co;2. DOI

Begon M, Townsend CR, Harper JL. Ecology, Individuals, Populations and Communities. 4. Blackwell; 2006.

Chang AM, Wiebe KL. Body condition in snowy owls wintering on the prairies is greater in females and older individuals and may contribute to sex-biased mortality. Auk. 2016;133:738–746. doi: 10.1642/auk-16-60.1. DOI

McLean N, van der Jeugd HP, van de Pol M. High intra-specific variation in avian body condition responses to climate limits generalisation across species. PLoS ONE. 2018;13:e0192401. doi: 10.1371/journal.pone.0192401. PubMed DOI PMC

McLean NM, van der Jeugd HP, van Turnhout CAM, Lefcheck JS, van de Pol M. Reduced avian body condition due to global warming has little reproductive or population consequences. Oikos. 2020;129:714–730. doi: 10.1111/oik.06802. DOI

Aubry LM, et al. Climate change, phenology, and habitat degradation: Drivers of gosling body condition and juvenile survival in lesser snow geese. Glob. Change Biol. 2013;19:149–160. doi: 10.1111/gcb.12013. PubMed DOI

Gardner JL, Amano T, Sutherland WJ, Clayton M, Peters A. Individual and demographic consequences of reduced body condition following repeated exposure to high temperatures. Ecology. 2016;97:786–795. doi: 10.1890/15-0642.1. PubMed DOI

Newton I. Population Limitation in Birds. Academic Press; 1998.

Dunn PO, Møller AP. Effects of Climate Change on Birds. 2. Oxford University Press; 2019.

Crossin GT, et al. A carryover effect of migration underlies individual variation in reproductive readiness and extreme egg size dimorphism in Macaroni penguins. Am. Nat. 2010;176:357–366. doi: 10.1086/655223. PubMed DOI

Clausen KK, Madsen J, Tombre IM. Carry-over or compensation? The impact of winter harshness and post-winter body condition on spring-fattening in a migratory goose species. PLoS ONE. 2015;10(7):e0132312. doi: 10.1371/journal.pone.0132312. PubMed DOI PMC

Selonen V, Wistbacka R, Korpimäki E. Food abundance and weather modify reproduction of two arboreal squirrel species. J. Mammal. 2016;97:1376–1384. doi: 10.1093/jmammal/gyw096. DOI

Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S. Carry-over effects as drivers of fitness differences in animals. J. Anim. Ecol. 2011;80:4–18. doi: 10.1111/j.1365-2656.2010.01740.x. PubMed DOI

O'Connor CM, Norris DR, Crossin GT, Cooke SJ. Biological carryover effects: Linking common concepts and mechanisms in ecology and evolution. Ecosphere. 2014;5:1–11. doi: 10.1890/es13-00388.1. DOI

Montreuil-Spencer C, Schoenemann K, Lendvai AZ, Bonier F. Winter corticosterone and body condition predict breeding investment in a nonmigratory bird. Behav. Ecol. 2019;30:1642–1652. doi: 10.1093/beheco/arz129. DOI

Korpimäki E. Body mass of breeding Tengmalm's owls Aegolius funereus: Seasonal, between-year, site and age-related variation. Ornis Scand. 1990;21:169–178. doi: 10.2307/3676776. DOI

Dijkstra C, Daan S, Meijer T, Cave AJ, Foppen RPB. Daily and seasonal-variations in body-mass of the kestrel in relation to food availability and reproduction. Ardea. 1988;76:127–140.

Pietiäinen H, Kolunen H. Female body condition and breeding of the Ural owl Strix uralensis. Funct. Ecol. 1993;7:726–735. doi: 10.2307/2390195. DOI

Wijnandts H. Ecological energetics of the long-eared owl (Asio otus) Ardea. 1984;72:1–92.

Korpimäki E, Hakkarainen H. Fluctuating food supply affects the cluch size of Tengmalm’s owl independent of laying date. Oecologia. 1991;85:543–552. doi: 10.1007/BF00323767. PubMed DOI

Korpimäki E, Wiehn J. Clutch size of kestrels: Seasonal decline and experimental evidence for food limitation under fluctuating food conditions. Oikos. 1998;83:259–272. doi: 10.2307/3546837. DOI

Pietiäinen H. Seasonal and individual variation in the production of offspring in the Ural owl Strix uralensis. J. Anim. Ecol. 1989;58:905–920. doi: 10.2307/5132. DOI

Wellicome, T. I. Effects of food on reproduction in burrowing owls (Athene cunicularia) during three stages of the breeding season (Ph.D. dissertation). (University of Alberta, 2000).

Ilmonen P, et al. Parental effort and blood parasitism in Tengmalm's owl: Effects of natural and experimental variation in food abundance. Oikos. 1999;86:79–86. doi: 10.2307/3546571. DOI

Santangeli A, Hakkarainen H, Laaksonen T, Korpimäki E. Home range size is determined by habitat composition but feeding rate by food availability in male Tengmalm's owls. Anim. Behav. 2012;83:1115–1123. doi: 10.1016/j.anbehav.2012.02.002. DOI

Griebel RL, Savidge JA. Factors related to body condition of nestling burrowing owls in Buffalo Gap National Grassland, South Dakota. Wilson Bull. 2003;115:477–480. doi: 10.1676/02-094. DOI

Valkama J, Korpimäki E, Holm A, Hakkarainen H. Hatching asynchrony and brood reduction in Tengmalm's owl Aegolius funereus: The role of temporal and spatial variation in food abundance. Oecologia. 2002;133:334–341. doi: 10.1007/s00442-002-1033-2. PubMed DOI

König C, Weick F. Owls of the World. 2. Yale University Press; 2008.

Mikkola H. Owls of Europe. Poyser; 1983.

Korpimäki E. On the Ecology and Biology of Tengmalm's Owl (Aegolius funereus) in Southern Ostrobothnia and Soumenselkä, Western Finland. University of Oulu; 1981. pp. 1–84.

Korpimäki E. Diet of breeding Tengmalm’s owls Aegolius funereus: Long-term changes and year-to-year variation under cyclic food conditions. Ornis Fenn. 1988;65:21–30.

Korpimäki E, Hakkarainen H. The Boreal Owl: Ecology, Behaviour and Conservation of a Forest-Dwelling Predator. Cambridge University Press; 2012.

Kouba M, Bartoš L, Šindelář J, Šťastný K. Alloparental care and adoption in Tengmalm's owl (Aegolius funereus) J. Ornithol. 2017;158:185–191. doi: 10.1007/s10336-016-1381-z. DOI

Eldegard K, Sonerud GA. Experimental increase in food supply influences the outcome of within-family conflicts in Tengmalm's owl. Behav. Ecol. Sociobiol. 2010;64:815–826. doi: 10.1007/s00265-009-0898-z. DOI

Eldegard K, Sonerud GA. Sex roles during post-fledging care in birds: Female Tengmalm's owls contribute little to food provisioning. J. Ornithol. 2012;153:385–398. doi: 10.1007/s10336-011-0753-7. DOI

Kouba M, Bartoš L, Šťastný K. Differential movement patterns of juvenile Tengmalm's owls (Aegolius funereus) during the post-fledging dependence period in two years with contrasting prey abundance. PLoS ONE. 2013;8(7):e67034. doi: 10.1371/journal.pone.0067034. PubMed DOI PMC

Korpimäki E. Fluctuating food abundance determines the lifetime reproductive success of male Tengmalm’s owls. J. Anim. Ecol. 1992;61:103–111. doi: 10.2307/5513. DOI

Kouba M, Bartoš L, Korpimäki E, Zárybnická M. Factors affecting the duration of nestling period and fledging order in Tengmalm's owl (Aegolius funereus): Effect of wing length and hatching sequence. PLoS ONE. 2015;10(3):e0121641. doi: 10.1371/journal.pone.0121641. PubMed DOI PMC

Björklund H, Saurola P, Valkama J. Petolintuvuosi 2019 oli kohtalainen (Summary: Breeding and population trends of common raptors and owls in Finland in 2019) Yearb. Linnut Mag. 2020;2019:44–59.

Kouba M, Bartoš L, Bartošová J, Hongisto K, Korpimäki E. Interactive influences of fluctuations of main food resources and climate change on long-term population decline of Tengmalm’s owls in the boreal forest. Sci. Rep. 2020;10:20429. doi: 10.1038/s41598-41020-77531-y. PubMed DOI PMC

Ferrero JJ, Grande JM, Negro JJ. Copulation behavior of a potentially double-brooded bird of prey, the black-winged kite (Elanus caeruleus) J. Raptor Res. 2003;37:1–7.

Sergio F. From individual behaviour to population pattern: Weather-dependent foraging and breeding performance in black kites. Anim. Behav. 2003;66:1109–1117. doi: 10.1006/anbe.2003.2303. DOI

Korpimäki E. Effects of age on breeding performance of Tengmalm's owl Aegolius funereus in western Finland. Ornis Scand. 1988;19:21–26. doi: 10.2307/3676522. DOI

Laaksonen T, Korpimäki E, Hakkarainen H. Interactive effects of parental age and environmental variation on the breeding performance of Tengmalm's owls. J. Anim. Ecol. 2002;71:23–31. doi: 10.1046/j.0021-8790.2001.00570.x. DOI

Korpimäki E. Highlights from a long-term study of Tengmalm’s owls: Cyclic fluctuations in vole abundance govern mating systems, population dynamics and demography. Brit. Birds. 2020;113:316–333.

Peig J, Green AJ. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos. 2009;118:1883–1891. doi: 10.1111/j.1600-0706.2009.17643.x. DOI

Korpimäki E, Norrdahl K, Huitu O, Klemola T. Predator-induced synchrony in population oscillations of coexisting small mammal species. Proc. R. Soc. B-Biol. Sci. 2005;272:193–202. doi: 10.1098/rspb.2004.2860. PubMed DOI PMC

Huitu O, Norrdahl K, Korpimäki E. Landscape effects on temporal and spatial properties of vole population fluctuations. Oecologia. 2003;135:209–220. doi: 10.1007/s00442-002-1171-6. PubMed DOI

Schreiber-Gregory, D. N. & Jackson, H. M. Multicollinearity: What is it, why should we care, and how can it be controlled. In Proc. SAS R Global Forum 2017, Conference Paper 1404 (2017).

Zuur A, Ieno EN, Smith GM. Analyzing Ecological Data. Springer; 2007.

Tao J, Littel R, Patetta M, Truxillo C, Wolfinger R. Mixed Model Analyses Using the SAS System Course Notes. SAS Institute Inc.; 2002.

Burnham KP, Anderson DR. Model Selection and Inference: A Practical Information-Theoretical Approach. Springer; 1998.

Akaike H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974;19:716–723. doi: 10.1109/TAC.1974.1100705. DOI

Vaida F, Blanchard S. Conditional Akaike information for mixed-effects models. Biometrika. 2005;92:351–370. doi: 10.1093/biomet/92.2.351. DOI

Ward EJ. A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools. Ecol. Model. 2008;211:1–10. doi: 10.1016/j.ecolmodel.2007.10.030. DOI

Schwarz G. Estimating the dimension of a model. Ann. Stat. 1978;6:461–464. doi: 10.1214/aos/1176344136. DOI

Christensen, W. Agreeing to disagree: Using SAS to make reasoned decisions when information criteria select different models. In SAS Conference Proceedings: Western Users of SAS Software 2018. September 5–7, 2018, Sacramento, California, Paper 099–2018 (2018).

Posada D, Buckley TR. Model selection and model averaging in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 2004;53:793–808. doi: 10.1080/10635150490522304. PubMed DOI

Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2. Springer; 2002.

Buckland ST, Burnham KP, Augustin NH. Model selection: An integral part of inference. Biometrics. 1997;53:603–618. doi: 10.2307/2533961. DOI

Wagenmakers EJ, Farrell S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 2004;11:192–196. doi: 10.3758/bf03206482. PubMed DOI

Lack D. The Natural Regulation of Animal Numbers. Oxford University Press; 1954.

Korpela K, et al. Nonlinear effects of climate on boreal rodent dynamics: Mild winters do not negate high-amplitude cycles. Glob. Change Biol. 2013;19:697–710. doi: 10.1111/gcb.12099. PubMed DOI

Wiehn J, Korpimäki E. Food limitation on brood size: Experimental evidence in the Eurasian kestrel. Ecology. 1997;78:2043–2050. doi: 10.2307/2265943. DOI

Korpimäki E, Lagerström M. Survival and natal dispersal of fledglings of Tengmalm's owl in relation to fluctuating food conditions and hatching date. J. Anim. Ecol. 1988;57:433–441. doi: 10.2307/4915. DOI

Norris KJ. Female choice and the quality of parental care in the great tit Parus major. Behav. Ecol. Sociobiol. 1990;27:275–281. doi: 10.1007/BF00164900. DOI

Naef-Daenzer B, Widmer F, Nuber M. Differential post-fledging survival of great and coal tits in relation to their condition and fledging date. J. Anim. Ecol. 2001;70:730–738. doi: 10.1046/j.0021-8790.2001.00533.x. DOI

Grüebler MU, Naef-Daenzer B. Postfledging parental effort in barn swallows: Evidence for a trade-off in the allocation of time between broods. Anim. Behav. 2008;75:1877–1884. doi: 10.1016/j.anbehav.2007.12.002. DOI

Jones TM, Ward MP, Benson TJ, Brawn JD. Variation in nestling body condition and wing development predict cause-specific mortality in fledgling dickcissels. J. Avian Biol. 2017;48:439–447. doi: 10.1111/jav.01143. DOI

Magrath RD. Nestling weight and juvenile survival in the blackbird, Turdus merula. J. Anim. Ecol. 1991;60:335–351. doi: 10.2307/5464. DOI

Naef-Daenzer B, Grüebler MU. Post-fledging survival of altricial birds: Ecological determinants and adaptation. J. Field Ornithol. 2016;87:227–250. doi: 10.1111/jofo.12157. DOI

Winkler DW, Luo MK, Rakhimberdiev E. Temperature effects on food supply and chick mortality in tree swallows (Tachycineta bicolor) Oecologia. 2013;173:129–138. doi: 10.1007/s00442-013-2605-z. PubMed DOI PMC

Hylton RA, Frederick PC, de la Fuente TE, Spalding MG. Effects of nestling health on postfledging survival of wood storks. Condor. 2006;108:97–106. doi: 10.1650/0010-5422(2006)108[0097:Eonhop]2.0.Co;2. DOI

Imlay TL, Mann HAR, Leonard ML. No effect of insect abundance on nestling survival or mass for three aerial insectivores. Avian Conserv. Ecol. 2017 doi: 10.5751/ace-01092-120219. DOI

Nooker JK, Dunn PO, Whittingham LA. Effects of food abundance, weather, and female condition on reproduction in tree swallows (Tachycineta bicolor) Auk. 2005;122:1225–1238. doi: 10.1642/0004-8038(2005)122[1225:eofawa]2.0.co;2. DOI

Perrig M, Gruebler MU, Keil H, Naef-Daenzer B. Experimental food supplementation affects the physical development, behaviour and survival of little owl Athene noctua nestlings. Ibis. 2014;156:755–767. doi: 10.1111/ibi.12171. DOI

Perrig M, Gruebler MU, Keil H, Naef-Daenzer B. Post-fledging survival of little owls Athene noctua in relation to nestling food supply. Ibis. 2017;159:532–540. doi: 10.1111/ibi.12477. DOI

McDonald PG, Olsen PD, Cockburn A. Sex allocation and nestling survival in a dimorphic raptor: Does size matter? Behav. Ecol. 2005;16:922–930. doi: 10.1093/beheco/ari071. DOI

Morosinotto C, et al. Fledging mass is color morph specific and affects local recruitment in a wild bird. Am. Nat. 2020;196:609–619. doi: 10.1086/710708. PubMed DOI

Overskaug K, Bolstad JP, Sunde P, Øien IJ. Fledgling behavior and survival in northern tawny owls. Condor. 1999;101:169–174. doi: 10.2307/1370460. DOI

Todd LD, Poulin RG, Wellicome TI, Brigham RM. Post-fledging survival of burrowing owls in Saskatchewan. J. Wildl. Manage. 2003;67:512–519. doi: 10.2307/3802709. DOI

Cox WA, Thompson FR, Cox AS, Faaborg J. Post-fledging survival in passerine birds and the value of post-fledging studies to conservation. J. Wildl. Manage. 2014;78:183–193. doi: 10.1002/jwmg.670. DOI

Korpimäki E. Timing of breeding of Tengmalm's owl Aegolius funereus in relation to vole dynamics in western Finland. Ibis. 1987;129:58–68. doi: 10.1111/j.1474-919X.1987.tb03159.x. DOI

Pigeault R, Cozzarolo CS, Glaizot O, Christe P. Effect of age, haemosporidian infection and body condition on pair composition and reproductive success in great tits Parus major. Ibis. 2020;162:613–626. doi: 10.1111/ibi.12774. DOI

Hakkarainen H, Korpimäki E. The effect of female body-size on clutch volume of Tengmalm's owls Aegolius funereus in varying food conditions. Ornis Fenn. 1993;70:189–195.

Hanauska-Brown LA, Dufty AM, Roloff GJ. Blood chemistry, cytology, and body condition in adult northern goshawks (Accipiter gentilis) J. Raptor Res. 2003;37:299–306.

Chastel O, Weimerskirch H, Jouventin P. Body condition and seabird reproductive performance: A study of three petrel species. Ecology. 1995;76:2240–2246. doi: 10.2307/1941698. DOI

Grilli MG, Pari M, Ibanez A. Poor body conditions during the breeding period in a seabird population with low breeding success. Mar. Biol. 2018 doi: 10.1007/s00227-018-3401-4. DOI

Toland B. Hunting success of some Missouri raptors. Wilson Bull. 1986;98:116–125.

Masoero G, Morosinotto C, Laaksonen T, Korpimäki E. Food hoarding of an avian predator: Sex- and age-related differences under fluctuating food conditions. Behav. Ecol. Sociobiol. 2018 doi: 10.1007/s00265-00018-02571-x. DOI

Masoero G, Laaksonen T, Morosinotto C, Korpimäki E. Age and sex differences in numerical responses, dietary shifts, and total responses of a generalist predator to population dynamics of main prey. Oecologia. 2020;192:699–711. doi: 10.1007/s00442-020-04607-x. PubMed DOI PMC

Norrdahl K, Korpimäki E. Changes in population structure and reproduction during a 3-year population cycle of voles. Oikos. 2002;96:331–345. doi: 10.1034/j.1600-0706.2002.970319.x. PubMed DOI

Merritt JF, Lima M, Bozinovic F. Seasonal regulation in fluctuating small mammal populations: Feedback structure and climate. Oikos. 2001;94:505–514. doi: 10.1034/j.1600-0706.2001.940312.x. DOI

Solonen T. Overwinter population change of small mammals in southern Finland. Ann. Zool. Fenn. 2006;43:295–302.

Haapakoski M, Ylönen H. Snow evens fragmentation effects and food determines overwintering success in ground-dwelling voles. Ecol. Res. 2013;28:307–315. doi: 10.1007/s11284-012-1020-y. DOI

Berlioz J, Bergman G, editors. Proc., XII International Ornithological Congress, Helsinki 5–12. Tilgmannin Kirjapaino; 1960. pp. 586–591.

Fraixedas S, Linden A, Lehikoinen A. Population trends of common breeding forest birds in southern Finland are consistent with trends in forest management and climate change. Ornis Fenn. 2015;92:187–203.

Virkkala R. Long-term decline of southern boreal forest birds: Consequence of habitat alteration or climate change? Biodivers. Conserv. 2016;25:151–167. doi: 10.1007/s10531-015-1043-0. DOI

Björklund H, Valkama J, Tomppo E, Laaksonen T. Habitat effects on the breeding performance of three forest-dwelling hawks. PLoS ONE. 2015;10(9):e0137877. doi: 10.1371/journal.pone.0137877. PubMed DOI PMC

Koskimäki J, et al. Are habitat loss, predation risk and climate related to the drastic decline in a Siberian flying squirrel population? A 15-year study. Popul. Ecol. 2014;56:341–348. doi: 10.1007/s10144-013-0411-4. DOI

Suzuki N, Parker KL. Proactive conservation of high-value habitat for woodland caribou and grizzly bears in the boreal zone of British Columbia, Canada. Biol. Conserv. 2019;230:91–103. doi: 10.1016/j.biocon.2018.12.013. DOI

Venier LA, et al. Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests. Environ. Rev. 2014;22:457–490. doi: 10.1139/er-2013-0075. DOI

Thomas JW, et al. A Conservation Strategy for the Northern Spotted Owl. US Government Printing Office 791-171/20026; 1990.

Laaksonen T, Lehikoinen A. Population trends in boreal birds: Continuing declines in agricultural, northern, and long-distance migrant species. Biol. Conserv. 2013;168:99–107. doi: 10.1016/j.biocon.2013.09.007. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...