Long-term trends in the body condition of parents and offspring of Tengmalm's owls under fluctuating food conditions and climate change
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34556766
PubMed Central
PMC8460639
DOI
10.1038/s41598-021-98447-1
PII: 10.1038/s41598-021-98447-1
Knihovny.cz E-zdroje
- MeSH
- datové soubory jako téma MeSH
- klimatické změny MeSH
- lesy MeSH
- populační dynamika statistika a číselné údaje trendy MeSH
- predátorské chování MeSH
- roční období MeSH
- rozmnožování MeSH
- sledování ekologických parametrů statistika a číselné údaje MeSH
- Stringiformes fyziologie MeSH
- tělesná výkonnost fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Finsko MeSH
Physical condition is important for the ability to resist various parasites and diseases as well as in escaping predators thus contributing to reproductive success, over-winter survival and possible declines in wildlife populations. However, in-depth research on trends in body condition is rare because decades-long datasets are not available for a majority of species. We analysed the long-term dataset of offspring covering 34 years, male parents (40 years) and female parents (42 years) to find out whether the decline of Tengmalm's owl population in western Finland is attributable to either decreased adult and/or juvenile body condition in interaction with changing weather conditions and density estimates of main foods. We found that body condition of parent owl males and females declined throughout the 40-year study period whereas the body condition of owlets at the fledging stage very slightly increased. The body condition of parent owls increased with augmenting depth of snow cover in late winter (January to March), and that of offspring improved with increasing precipitation in late spring (May to June). We conclude that the decreasing trend of body condition of parent owl males and females is important factor probably inducing reduced adult survival and reduced reproduction success thus contributing to the long-term decline of the Tengmalm's owl study population. The very slightly increasing trend of body condition of offspring is obviously not able to compensate the overall decline of Tengmalm's owl population, because the number of offspring in turn simultaneously decreased considerably in the long-term. The ongoing climate change appeared to work in opposite ways in this case because declining depth of snow cover will make the situation worse but increased precipitation will improve. We suggest that the main reasons for long-term decline of body condition of parent owls are interactive or additive effects of reduced food resources and increased overall predation risk due to habitat degradation (loss and fragmentation of mature and old-growth forests due to clear-felling) subsequently leading to decline of Tengmalm's owl study population.
Department of Ethology Institute of Animal Science Prague Czech Republic
Independent Researcher Tampere Finland
Section of Ecology Department of Biology University of Turku Turku Finland
Zobrazit více v PubMed
Brommer JE, Pietiäinen H, Kolunen H. Reproduction and survival in a variable environment: Ural owls (Strix uralensis) and the three-year vole cycle. Auk. 2002;119:544–550. doi: 10.1642/0004-8038(2002)119[0544:rasiav]2.0.co;2. DOI
Begon M, Townsend CR, Harper JL. Ecology, Individuals, Populations and Communities. 4. Blackwell; 2006.
Chang AM, Wiebe KL. Body condition in snowy owls wintering on the prairies is greater in females and older individuals and may contribute to sex-biased mortality. Auk. 2016;133:738–746. doi: 10.1642/auk-16-60.1. DOI
McLean N, van der Jeugd HP, van de Pol M. High intra-specific variation in avian body condition responses to climate limits generalisation across species. PLoS ONE. 2018;13:e0192401. doi: 10.1371/journal.pone.0192401. PubMed DOI PMC
McLean NM, van der Jeugd HP, van Turnhout CAM, Lefcheck JS, van de Pol M. Reduced avian body condition due to global warming has little reproductive or population consequences. Oikos. 2020;129:714–730. doi: 10.1111/oik.06802. DOI
Aubry LM, et al. Climate change, phenology, and habitat degradation: Drivers of gosling body condition and juvenile survival in lesser snow geese. Glob. Change Biol. 2013;19:149–160. doi: 10.1111/gcb.12013. PubMed DOI
Gardner JL, Amano T, Sutherland WJ, Clayton M, Peters A. Individual and demographic consequences of reduced body condition following repeated exposure to high temperatures. Ecology. 2016;97:786–795. doi: 10.1890/15-0642.1. PubMed DOI
Newton I. Population Limitation in Birds. Academic Press; 1998.
Dunn PO, Møller AP. Effects of Climate Change on Birds. 2. Oxford University Press; 2019.
Crossin GT, et al. A carryover effect of migration underlies individual variation in reproductive readiness and extreme egg size dimorphism in Macaroni penguins. Am. Nat. 2010;176:357–366. doi: 10.1086/655223. PubMed DOI
Clausen KK, Madsen J, Tombre IM. Carry-over or compensation? The impact of winter harshness and post-winter body condition on spring-fattening in a migratory goose species. PLoS ONE. 2015;10(7):e0132312. doi: 10.1371/journal.pone.0132312. PubMed DOI PMC
Selonen V, Wistbacka R, Korpimäki E. Food abundance and weather modify reproduction of two arboreal squirrel species. J. Mammal. 2016;97:1376–1384. doi: 10.1093/jmammal/gyw096. DOI
Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S. Carry-over effects as drivers of fitness differences in animals. J. Anim. Ecol. 2011;80:4–18. doi: 10.1111/j.1365-2656.2010.01740.x. PubMed DOI
O'Connor CM, Norris DR, Crossin GT, Cooke SJ. Biological carryover effects: Linking common concepts and mechanisms in ecology and evolution. Ecosphere. 2014;5:1–11. doi: 10.1890/es13-00388.1. DOI
Montreuil-Spencer C, Schoenemann K, Lendvai AZ, Bonier F. Winter corticosterone and body condition predict breeding investment in a nonmigratory bird. Behav. Ecol. 2019;30:1642–1652. doi: 10.1093/beheco/arz129. DOI
Korpimäki E. Body mass of breeding Tengmalm's owls Aegolius funereus: Seasonal, between-year, site and age-related variation. Ornis Scand. 1990;21:169–178. doi: 10.2307/3676776. DOI
Dijkstra C, Daan S, Meijer T, Cave AJ, Foppen RPB. Daily and seasonal-variations in body-mass of the kestrel in relation to food availability and reproduction. Ardea. 1988;76:127–140.
Pietiäinen H, Kolunen H. Female body condition and breeding of the Ural owl Strix uralensis. Funct. Ecol. 1993;7:726–735. doi: 10.2307/2390195. DOI
Wijnandts H. Ecological energetics of the long-eared owl (Asio otus) Ardea. 1984;72:1–92.
Korpimäki E, Hakkarainen H. Fluctuating food supply affects the cluch size of Tengmalm’s owl independent of laying date. Oecologia. 1991;85:543–552. doi: 10.1007/BF00323767. PubMed DOI
Korpimäki E, Wiehn J. Clutch size of kestrels: Seasonal decline and experimental evidence for food limitation under fluctuating food conditions. Oikos. 1998;83:259–272. doi: 10.2307/3546837. DOI
Pietiäinen H. Seasonal and individual variation in the production of offspring in the Ural owl Strix uralensis. J. Anim. Ecol. 1989;58:905–920. doi: 10.2307/5132. DOI
Wellicome, T. I. Effects of food on reproduction in burrowing owls (Athene cunicularia) during three stages of the breeding season (Ph.D. dissertation). (University of Alberta, 2000).
Ilmonen P, et al. Parental effort and blood parasitism in Tengmalm's owl: Effects of natural and experimental variation in food abundance. Oikos. 1999;86:79–86. doi: 10.2307/3546571. DOI
Santangeli A, Hakkarainen H, Laaksonen T, Korpimäki E. Home range size is determined by habitat composition but feeding rate by food availability in male Tengmalm's owls. Anim. Behav. 2012;83:1115–1123. doi: 10.1016/j.anbehav.2012.02.002. DOI
Griebel RL, Savidge JA. Factors related to body condition of nestling burrowing owls in Buffalo Gap National Grassland, South Dakota. Wilson Bull. 2003;115:477–480. doi: 10.1676/02-094. DOI
Valkama J, Korpimäki E, Holm A, Hakkarainen H. Hatching asynchrony and brood reduction in Tengmalm's owl Aegolius funereus: The role of temporal and spatial variation in food abundance. Oecologia. 2002;133:334–341. doi: 10.1007/s00442-002-1033-2. PubMed DOI
König C, Weick F. Owls of the World. 2. Yale University Press; 2008.
Mikkola H. Owls of Europe. Poyser; 1983.
Korpimäki E. On the Ecology and Biology of Tengmalm's Owl (Aegolius funereus) in Southern Ostrobothnia and Soumenselkä, Western Finland. University of Oulu; 1981. pp. 1–84.
Korpimäki E. Diet of breeding Tengmalm’s owls Aegolius funereus: Long-term changes and year-to-year variation under cyclic food conditions. Ornis Fenn. 1988;65:21–30.
Korpimäki E, Hakkarainen H. The Boreal Owl: Ecology, Behaviour and Conservation of a Forest-Dwelling Predator. Cambridge University Press; 2012.
Kouba M, Bartoš L, Šindelář J, Šťastný K. Alloparental care and adoption in Tengmalm's owl (Aegolius funereus) J. Ornithol. 2017;158:185–191. doi: 10.1007/s10336-016-1381-z. DOI
Eldegard K, Sonerud GA. Experimental increase in food supply influences the outcome of within-family conflicts in Tengmalm's owl. Behav. Ecol. Sociobiol. 2010;64:815–826. doi: 10.1007/s00265-009-0898-z. DOI
Eldegard K, Sonerud GA. Sex roles during post-fledging care in birds: Female Tengmalm's owls contribute little to food provisioning. J. Ornithol. 2012;153:385–398. doi: 10.1007/s10336-011-0753-7. DOI
Kouba M, Bartoš L, Šťastný K. Differential movement patterns of juvenile Tengmalm's owls (Aegolius funereus) during the post-fledging dependence period in two years with contrasting prey abundance. PLoS ONE. 2013;8(7):e67034. doi: 10.1371/journal.pone.0067034. PubMed DOI PMC
Korpimäki E. Fluctuating food abundance determines the lifetime reproductive success of male Tengmalm’s owls. J. Anim. Ecol. 1992;61:103–111. doi: 10.2307/5513. DOI
Kouba M, Bartoš L, Korpimäki E, Zárybnická M. Factors affecting the duration of nestling period and fledging order in Tengmalm's owl (Aegolius funereus): Effect of wing length and hatching sequence. PLoS ONE. 2015;10(3):e0121641. doi: 10.1371/journal.pone.0121641. PubMed DOI PMC
Björklund H, Saurola P, Valkama J. Petolintuvuosi 2019 oli kohtalainen (Summary: Breeding and population trends of common raptors and owls in Finland in 2019) Yearb. Linnut Mag. 2020;2019:44–59.
Kouba M, Bartoš L, Bartošová J, Hongisto K, Korpimäki E. Interactive influences of fluctuations of main food resources and climate change on long-term population decline of Tengmalm’s owls in the boreal forest. Sci. Rep. 2020;10:20429. doi: 10.1038/s41598-41020-77531-y. PubMed DOI PMC
Ferrero JJ, Grande JM, Negro JJ. Copulation behavior of a potentially double-brooded bird of prey, the black-winged kite (Elanus caeruleus) J. Raptor Res. 2003;37:1–7.
Sergio F. From individual behaviour to population pattern: Weather-dependent foraging and breeding performance in black kites. Anim. Behav. 2003;66:1109–1117. doi: 10.1006/anbe.2003.2303. DOI
Korpimäki E. Effects of age on breeding performance of Tengmalm's owl Aegolius funereus in western Finland. Ornis Scand. 1988;19:21–26. doi: 10.2307/3676522. DOI
Laaksonen T, Korpimäki E, Hakkarainen H. Interactive effects of parental age and environmental variation on the breeding performance of Tengmalm's owls. J. Anim. Ecol. 2002;71:23–31. doi: 10.1046/j.0021-8790.2001.00570.x. DOI
Korpimäki E. Highlights from a long-term study of Tengmalm’s owls: Cyclic fluctuations in vole abundance govern mating systems, population dynamics and demography. Brit. Birds. 2020;113:316–333.
Peig J, Green AJ. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos. 2009;118:1883–1891. doi: 10.1111/j.1600-0706.2009.17643.x. DOI
Korpimäki E, Norrdahl K, Huitu O, Klemola T. Predator-induced synchrony in population oscillations of coexisting small mammal species. Proc. R. Soc. B-Biol. Sci. 2005;272:193–202. doi: 10.1098/rspb.2004.2860. PubMed DOI PMC
Huitu O, Norrdahl K, Korpimäki E. Landscape effects on temporal and spatial properties of vole population fluctuations. Oecologia. 2003;135:209–220. doi: 10.1007/s00442-002-1171-6. PubMed DOI
Schreiber-Gregory, D. N. & Jackson, H. M. Multicollinearity: What is it, why should we care, and how can it be controlled. In Proc. SAS R Global Forum 2017, Conference Paper 1404 (2017).
Zuur A, Ieno EN, Smith GM. Analyzing Ecological Data. Springer; 2007.
Tao J, Littel R, Patetta M, Truxillo C, Wolfinger R. Mixed Model Analyses Using the SAS System Course Notes. SAS Institute Inc.; 2002.
Burnham KP, Anderson DR. Model Selection and Inference: A Practical Information-Theoretical Approach. Springer; 1998.
Akaike H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974;19:716–723. doi: 10.1109/TAC.1974.1100705. DOI
Vaida F, Blanchard S. Conditional Akaike information for mixed-effects models. Biometrika. 2005;92:351–370. doi: 10.1093/biomet/92.2.351. DOI
Ward EJ. A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools. Ecol. Model. 2008;211:1–10. doi: 10.1016/j.ecolmodel.2007.10.030. DOI
Schwarz G. Estimating the dimension of a model. Ann. Stat. 1978;6:461–464. doi: 10.1214/aos/1176344136. DOI
Christensen, W. Agreeing to disagree: Using SAS to make reasoned decisions when information criteria select different models. In SAS Conference Proceedings: Western Users of SAS Software 2018. September 5–7, 2018, Sacramento, California, Paper 099–2018 (2018).
Posada D, Buckley TR. Model selection and model averaging in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 2004;53:793–808. doi: 10.1080/10635150490522304. PubMed DOI
Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2. Springer; 2002.
Buckland ST, Burnham KP, Augustin NH. Model selection: An integral part of inference. Biometrics. 1997;53:603–618. doi: 10.2307/2533961. DOI
Wagenmakers EJ, Farrell S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 2004;11:192–196. doi: 10.3758/bf03206482. PubMed DOI
Lack D. The Natural Regulation of Animal Numbers. Oxford University Press; 1954.
Korpela K, et al. Nonlinear effects of climate on boreal rodent dynamics: Mild winters do not negate high-amplitude cycles. Glob. Change Biol. 2013;19:697–710. doi: 10.1111/gcb.12099. PubMed DOI
Wiehn J, Korpimäki E. Food limitation on brood size: Experimental evidence in the Eurasian kestrel. Ecology. 1997;78:2043–2050. doi: 10.2307/2265943. DOI
Korpimäki E, Lagerström M. Survival and natal dispersal of fledglings of Tengmalm's owl in relation to fluctuating food conditions and hatching date. J. Anim. Ecol. 1988;57:433–441. doi: 10.2307/4915. DOI
Norris KJ. Female choice and the quality of parental care in the great tit Parus major. Behav. Ecol. Sociobiol. 1990;27:275–281. doi: 10.1007/BF00164900. DOI
Naef-Daenzer B, Widmer F, Nuber M. Differential post-fledging survival of great and coal tits in relation to their condition and fledging date. J. Anim. Ecol. 2001;70:730–738. doi: 10.1046/j.0021-8790.2001.00533.x. DOI
Grüebler MU, Naef-Daenzer B. Postfledging parental effort in barn swallows: Evidence for a trade-off in the allocation of time between broods. Anim. Behav. 2008;75:1877–1884. doi: 10.1016/j.anbehav.2007.12.002. DOI
Jones TM, Ward MP, Benson TJ, Brawn JD. Variation in nestling body condition and wing development predict cause-specific mortality in fledgling dickcissels. J. Avian Biol. 2017;48:439–447. doi: 10.1111/jav.01143. DOI
Magrath RD. Nestling weight and juvenile survival in the blackbird, Turdus merula. J. Anim. Ecol. 1991;60:335–351. doi: 10.2307/5464. DOI
Naef-Daenzer B, Grüebler MU. Post-fledging survival of altricial birds: Ecological determinants and adaptation. J. Field Ornithol. 2016;87:227–250. doi: 10.1111/jofo.12157. DOI
Winkler DW, Luo MK, Rakhimberdiev E. Temperature effects on food supply and chick mortality in tree swallows (Tachycineta bicolor) Oecologia. 2013;173:129–138. doi: 10.1007/s00442-013-2605-z. PubMed DOI PMC
Hylton RA, Frederick PC, de la Fuente TE, Spalding MG. Effects of nestling health on postfledging survival of wood storks. Condor. 2006;108:97–106. doi: 10.1650/0010-5422(2006)108[0097:Eonhop]2.0.Co;2. DOI
Imlay TL, Mann HAR, Leonard ML. No effect of insect abundance on nestling survival or mass for three aerial insectivores. Avian Conserv. Ecol. 2017 doi: 10.5751/ace-01092-120219. DOI
Nooker JK, Dunn PO, Whittingham LA. Effects of food abundance, weather, and female condition on reproduction in tree swallows (Tachycineta bicolor) Auk. 2005;122:1225–1238. doi: 10.1642/0004-8038(2005)122[1225:eofawa]2.0.co;2. DOI
Perrig M, Gruebler MU, Keil H, Naef-Daenzer B. Experimental food supplementation affects the physical development, behaviour and survival of little owl Athene noctua nestlings. Ibis. 2014;156:755–767. doi: 10.1111/ibi.12171. DOI
Perrig M, Gruebler MU, Keil H, Naef-Daenzer B. Post-fledging survival of little owls Athene noctua in relation to nestling food supply. Ibis. 2017;159:532–540. doi: 10.1111/ibi.12477. DOI
McDonald PG, Olsen PD, Cockburn A. Sex allocation and nestling survival in a dimorphic raptor: Does size matter? Behav. Ecol. 2005;16:922–930. doi: 10.1093/beheco/ari071. DOI
Morosinotto C, et al. Fledging mass is color morph specific and affects local recruitment in a wild bird. Am. Nat. 2020;196:609–619. doi: 10.1086/710708. PubMed DOI
Overskaug K, Bolstad JP, Sunde P, Øien IJ. Fledgling behavior and survival in northern tawny owls. Condor. 1999;101:169–174. doi: 10.2307/1370460. DOI
Todd LD, Poulin RG, Wellicome TI, Brigham RM. Post-fledging survival of burrowing owls in Saskatchewan. J. Wildl. Manage. 2003;67:512–519. doi: 10.2307/3802709. DOI
Cox WA, Thompson FR, Cox AS, Faaborg J. Post-fledging survival in passerine birds and the value of post-fledging studies to conservation. J. Wildl. Manage. 2014;78:183–193. doi: 10.1002/jwmg.670. DOI
Korpimäki E. Timing of breeding of Tengmalm's owl Aegolius funereus in relation to vole dynamics in western Finland. Ibis. 1987;129:58–68. doi: 10.1111/j.1474-919X.1987.tb03159.x. DOI
Pigeault R, Cozzarolo CS, Glaizot O, Christe P. Effect of age, haemosporidian infection and body condition on pair composition and reproductive success in great tits Parus major. Ibis. 2020;162:613–626. doi: 10.1111/ibi.12774. DOI
Hakkarainen H, Korpimäki E. The effect of female body-size on clutch volume of Tengmalm's owls Aegolius funereus in varying food conditions. Ornis Fenn. 1993;70:189–195.
Hanauska-Brown LA, Dufty AM, Roloff GJ. Blood chemistry, cytology, and body condition in adult northern goshawks (Accipiter gentilis) J. Raptor Res. 2003;37:299–306.
Chastel O, Weimerskirch H, Jouventin P. Body condition and seabird reproductive performance: A study of three petrel species. Ecology. 1995;76:2240–2246. doi: 10.2307/1941698. DOI
Grilli MG, Pari M, Ibanez A. Poor body conditions during the breeding period in a seabird population with low breeding success. Mar. Biol. 2018 doi: 10.1007/s00227-018-3401-4. DOI
Toland B. Hunting success of some Missouri raptors. Wilson Bull. 1986;98:116–125.
Masoero G, Morosinotto C, Laaksonen T, Korpimäki E. Food hoarding of an avian predator: Sex- and age-related differences under fluctuating food conditions. Behav. Ecol. Sociobiol. 2018 doi: 10.1007/s00265-00018-02571-x. DOI
Masoero G, Laaksonen T, Morosinotto C, Korpimäki E. Age and sex differences in numerical responses, dietary shifts, and total responses of a generalist predator to population dynamics of main prey. Oecologia. 2020;192:699–711. doi: 10.1007/s00442-020-04607-x. PubMed DOI PMC
Norrdahl K, Korpimäki E. Changes in population structure and reproduction during a 3-year population cycle of voles. Oikos. 2002;96:331–345. doi: 10.1034/j.1600-0706.2002.970319.x. PubMed DOI
Merritt JF, Lima M, Bozinovic F. Seasonal regulation in fluctuating small mammal populations: Feedback structure and climate. Oikos. 2001;94:505–514. doi: 10.1034/j.1600-0706.2001.940312.x. DOI
Solonen T. Overwinter population change of small mammals in southern Finland. Ann. Zool. Fenn. 2006;43:295–302.
Haapakoski M, Ylönen H. Snow evens fragmentation effects and food determines overwintering success in ground-dwelling voles. Ecol. Res. 2013;28:307–315. doi: 10.1007/s11284-012-1020-y. DOI
Berlioz J, Bergman G, editors. Proc., XII International Ornithological Congress, Helsinki 5–12. Tilgmannin Kirjapaino; 1960. pp. 586–591.
Fraixedas S, Linden A, Lehikoinen A. Population trends of common breeding forest birds in southern Finland are consistent with trends in forest management and climate change. Ornis Fenn. 2015;92:187–203.
Virkkala R. Long-term decline of southern boreal forest birds: Consequence of habitat alteration or climate change? Biodivers. Conserv. 2016;25:151–167. doi: 10.1007/s10531-015-1043-0. DOI
Björklund H, Valkama J, Tomppo E, Laaksonen T. Habitat effects on the breeding performance of three forest-dwelling hawks. PLoS ONE. 2015;10(9):e0137877. doi: 10.1371/journal.pone.0137877. PubMed DOI PMC
Koskimäki J, et al. Are habitat loss, predation risk and climate related to the drastic decline in a Siberian flying squirrel population? A 15-year study. Popul. Ecol. 2014;56:341–348. doi: 10.1007/s10144-013-0411-4. DOI
Suzuki N, Parker KL. Proactive conservation of high-value habitat for woodland caribou and grizzly bears in the boreal zone of British Columbia, Canada. Biol. Conserv. 2019;230:91–103. doi: 10.1016/j.biocon.2018.12.013. DOI
Venier LA, et al. Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests. Environ. Rev. 2014;22:457–490. doi: 10.1139/er-2013-0075. DOI
Thomas JW, et al. A Conservation Strategy for the Northern Spotted Owl. US Government Printing Office 791-171/20026; 1990.
Laaksonen T, Lehikoinen A. Population trends in boreal birds: Continuing declines in agricultural, northern, and long-distance migrant species. Biol. Conserv. 2013;168:99–107. doi: 10.1016/j.biocon.2013.09.007. DOI