Factors affecting the duration of nestling period and fledging order in Tengmalm's owl (Aegolius funereus): effect of wing length and hatching sequence
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25793880
PubMed Central
PMC4368509
DOI
10.1371/journal.pone.0121641
PII: PONE-D-14-47174
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- chov MeSH
- hnízdění fyziologie MeSH
- křídla zvířecí anatomie a histologie MeSH
- Stringiformes fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Finsko MeSH
In altricial birds, the nestling period is an important part of the breeding phase because the juveniles may spend quite a long time in the nest, with associated high energy costs for the parents. The length of the nestling period can be variable and its duration may be influenced by both biotic and abiotic factors; however, studies of this have mostly been undertaken on passerine birds. We studied individual duration of nestling period of 98 Tengmalm's owl chicks (Aegolius funereus) at 27 nests during five breeding seasons using a camera and chip system and radio-telemetry. We found the nestlings stayed in the nest box for 27 - 38 days from hatching (mean ± SD, 32.4 ± 2.2 days). The individual duration of nestling period was negatively related to wing length, but no formally significant effect was found for body weight, sex, prey availability and/or weather conditions. The fledging sequence of individual nestlings was primarily related to hatching order; no relationship with wing length and/or other factors was found in this case. We suggest the length of wing is the most important measure of body condition and individual quality in Tengmalm's owl young determining the duration of the nestling period. Other differences from passerines (e.g., the lack of effect of weather or prey availability on nestling period) are considered likely to be due to different life-history traits, in particular different food habits and nesting sites and greater risk of nest predation among passerines.
Zobrazit více v PubMed
Clutton-Brock TH. The evolution of parental care. Princeton, New Jersey: Princeton University Press; 1991.
Trivers RL. Parent-offspring conflict. Am Zool. 1974; 14: 249–264.
Trivers RL. Social evolution. Menlo Park, CA: Benjamin/Cummings; 1985.
Michaud T, Leonard M. The role of development, parental behavior, and nestmate competition in fledging of nestling Tree Swallows. Auk. 2000; 117: 996–1002.
Nilsson J-Å. What determines the timing and order of nest-leaving in marsh tit (Parus palustris)? In: Blondel J, Gosler A, Lebreton JD, McCleery R, eds. Population biology of passerine birds: An integrated approach. Berlin: Springer; 1990; 369–380.
Nilsson J-Å, Svensson M. Fledging in altricial birds—parental manipulation or sibling competition. Anim Behav. 1993; 46: 379–386.
Johnson LS, Rauch RL, Dellone SN. The process and causes of fledging in a cavity-nesting passerine bird, the house wren (Troglodytes aedon). Ethology. 2004; 110: 693–705.
Lemel J. Body-mass dependent fledging order in the Great tit. Auk. 1989; 106: 490–492.
Freed LA. Forced fledging: an investigation of the lengthy nestling period of tropical house wrens. Natl Geogr Res. 1988; 4: 395–407.
Miller DA. Morphological plasticity reduces the effect of poor developmental conditions on fledging age in mourning doves. Proc R Soc B-Biol Sci. 2010; 277: 1659–1665. 10.1098/rspb.2010.0022 PubMed DOI PMC
Cruz JB, Cruz F. Effect of el-nino southern oscillation conditions on nestling growth-rate in the Dark-rumped petrel. Condor. 1990; 92: 160–165.
Emlen ST, Wrege PH, Demong NJ, Hegner RE. Flexible growth-rates in nestling White-fronted Bee-eaters—a possible adaptation to short-term food shortage. Condor. 1991; 93: 591–597.
Searcy WA, Peters S, Nowicki S. Effects of early nutrition on growth rate and adult size in song sparrows Melospiza melodia . J Avian Biol. 2004; 35: 269–279.
Takenaka M, Niizuma Y, Watanuki Y. Resource allocation in fledglings of the rhinoceros auklet under different feeding conditions: an experiment manipulating meal size and frequency. Can J Zool-Rev Can Zool. 2005; 83: 1476–1485.
Stodola KW, Buehler DA, Kim DH, Franzreb KE, Linder ET. Biotic and abiotic factors governing nestling-period length in the ovenbird (Seiurus aurocapilla). Auk. 2010; 127: 204–211.
Lyons DE, Roby DD. Validating growth and development of a seabird as an indicator of food availability: captive-reared Caspian Tern chicks fed ad libitum and restricted diets. J Field Ornithol. 2011; 82: 88–100.
Lack D. The natural regulation of animal numbers. Oxford: Oxford University Press; 1954.
Killpack TL, Karasov WH. Growth and development of house sparrows (Passer domesticus) in response to chronic food restriction throughout the nestling period. J Exp Biol. 2012; 215: 1806–1815. 10.1242/jeb.066316 PubMed DOI
Ricklefs RE. Patterns of growth in birds. Ibis. 1968; 110: 419–451.
Roff DA, Remeš V, Martin TE. The evolution of fledging age in songbirds. J Evol Biol. 2005; 18: 1425–1433. PubMed
Bosque C, Bosque MT. Nest predation as a selective factor in the evolution of developmental rates in altricial birds. Am Nat. 1995; 145: 234–260.
Martin TE. Avian life-history evolution in relation to nest sites, nest predation, and food. Ecol Monogr. 1995; 65: 101–127.
Remeš V, Martin TE. Environmental influences on the evolution of growth and developmental rates in passerines. Evolution. 2002; 56: 2505–2518. PubMed
Øyan HS, Anker-Nilssen T. Allocation of growth in food-stressed Atlantic Puffin chicks. Auk. 1996; 113: 830–841.
Durant JM, Anker-Nilssen T, Stenseth NC. Ocean climate prior to breeding affects the duration of the nestling period in the Atlantic puffin. Biol Lett. 2006; 2: 628–631. PubMed PMC
Davis SK. Renesting intervals and duration of the incubation and nestling periods of Sprague's Pipits. J Field Ornithol. 2009; 80: 265–269.
Johnson LS, Hebert RM, Napolillo FM, Allen A. The process of fledging in the Mountain bluebird. J Field Ornithol. 2013; 84: 367–376.
Bize P, Roulin A, Bersier LF, Pfluger D, Richner H. Parasitism and developmental plasticity in Alpine swift nestlings. J Anim Ecol. 2003; 72: 633–639. PubMed
Karell P, Pietiainen H, Siitari H, Pihlaja T, Kontiainen P, et al. Parental allocation of additional food to own health and offspring growth in a variable environment. Can J Zool-Rev Can Zool. 2009; 87: 8–19.
Korpimäki E, Hakkarainen H. The Boreal Owl: ecology, behaviour and conservation of a forest-dwelling predator. Cambridge: Cambridge University Press; 2012.
Korpimäki E. On the ecology and biology of Tengmalm’s Owl (Aegolius funereus) in southern Ostrobothnia and Soumenselkä, western Finland: Acta Univ Oul A. 1981; 118 Biol 13: 1–84. 10.1897/IEAM_2009-053.1 PubMed DOI
Korpimäki E. Diet of breeding Tengmalm’s Owls Aegolius funereus: long-term changes and year-to-year variation under cyclic food conditions. Ornis Fenn. 1988; 65: 21–30.
Zárybnická M, Riegert J, Šťastný K. The role of Apodemus Mice and Microtus Voles in the diet of the Tengmalm's Owl in Central Europe. Popul Ecol. 2013; 55: 353–361.
Zárybnická M. Activity patterns of male Tengmalm's owls, Aegolius funereus under varying food conditions. Folia Zool. 2009; 58: 104–112.
Zárybnická M, Sedláček O, Korpimäki E. Do Tengmalm's Owls alter parental feeding effort under varying conditions of main prey availability? J Ornithol. 2009; 150: 231–237. 10.1016/j.cbpc.2009.04.014 PubMed DOI
Eldegard K, Sonerud GA. Experimental increase in food supply influences the outcome of within-family conflicts in Tengmalm's owl. Behav Ecol Sociobiol. 2010; 64: 815–826.
Eldegard K, Sonerud GA. Sex roles during post-fledging care in birds: female Tengmalm's Owls contribute little to food provisioning. J Ornithol. 2012; 153: 385–398. PubMed
Zárybnická M, Vojar J. Effect of male provisioning on the parental behavior of female Boreal Owls Aegolius funereus . Zool Stud. 2013; 52: 36.
Zárybnická M. Parental investment of female Tengmalm's Owls Aegolius funereus: correlation with varying food abundance and reproductive success. Acta Ornithol. 2009; 44: 81–88.
Vacík R. Breeding biology of Tengmalm's Owl, Aegolius funereus, in Bohemia and Moravia (In Czech with English summary). Sylvia. 1991; 28: 95–113.
König C, Weick F. Owls of the world. Second edition New Haven and London: Yale University Press; 2008.
Valkama J, Korpimäki E, Holm A, Hakkarainen H. Hatching asynchrony and brood reduction in Tengmalm's owl Aegolius funereus: the role of temporal and spatial variation in food abundance. Oecologia. 2002; 133: 334–341. PubMed
Mikkola H. Owls of Europe. Calton: Poyser; 1983.
Drdáková-Zárybnická M. Breeding biology of the Tengmalm's Owl (Aegolius funereus) in air-pollution damaged areas of the Krušné hory Mts. (In Czech with English summary). Sylvia. 2003; 39: 35–51.
Kouba M, Šťastný K. Home ranges of Tengmalm’s Owl (Aegolius funereus) fledglings during post-fledging dependence period in polluted areas of the Krušné hory Mts. (In Czech with English summary). Sylvia. 2012; 48: 115–125.
Eldegard K, Sonerud GA. Female offspring desertion and male-only care increase with natural and experimental increase in food abundance. Proc R Soc B-Biol Sci. 2009; 276: 1713–1721. 10.1098/rspb.2008.1775 PubMed DOI PMC
Kouba M, Bartoš L, Šťastný K. Differential movement patterns of juvenile Tengmalm's Owls (Aegolius funereus) during the post-fledging dependence period in two years with contrasting prey abundance. PLoS One. 2013; 8(7): e67034 10.1371/journal.pone.0067034 PubMed DOI PMC
Drdáková-Zárybnická M. Growth of Tengmalm's Owl offsprings (Aegolius funereus) in Krušné hory Mountains (In Czech with English summary). Buteo. 2005; 14: 37–50.
Korpimäki E. Reversed size dimorphism in birds of prey, especially in Tengmalm's Owl Aegolius funereus: a test of the "starvation hypothesis". Ornis Scand. 1986; 17: 326–332.
Korpimäki E, Hakkarainen H. Fluctuating food suplly affects the cluch size of Tengmalm’s Owl independent of laying date. Oecologia. 1991; 85: 543–552. PubMed
Zárybnická M, Korpimäki E, Griesser M. Dark or short nights: differential latitudinal constraints in nestling provisioning patterns of a nocturnally hunting bird species. PLoS One. 2012; 7(5): e36932 10.1371/journal.pone.0036932 PubMed DOI PMC
Kouba M, Bartoš L, Zárybnická M. Perching of Tengmalm’s Owl (Aegolius funereus) nestlings at the nest box entrance: effect of time of the day, age, wing length and body weight. PLoS One. 2014; 9(5): e97504 10.1371/journal.pone.0097504 PubMed DOI PMC
Bezouška V, Děd P, Drdáková M. The automatic system for monitoring of owls' nests. ITCE 2005 Conference Abstracts. 2005; 173–182.
Kouba M, Bartoš L, Šťastný K. Factors affecting vocalization in Tengmalm’s Owl (Aegolius funereus) fledglings during post-fledging dependence period: scramble competition or honest signalling of need? PLoS One. 2014; 9(4): e95594 10.1371/journal.pone.0095594 PubMed DOI PMC
Hipkiss T, Hörnfeldt B. High interannual variation in the hatching sex ratio of Tengmalm's owl broods during a vole cycle. Popul Ecol. 2004; 46: 263–268.
Fridolfsson AK, Ellegren H. A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol. 1999; 30: 116–121.
Tao J, Littell R, Patetta M, Truxillo C, Wolfinger R. Mixed model analyses using the SAS system course notes. Cary, NC, USA: SAS Institute Inc; 2002.
Radersma R, Tinbergen JM, Komdeur J. Do brood sex ratio, nestling development and sex affect fledging timing and order? An experimental study on great tits. Anim Behav. 2011; 81: 69–75.
Kuhk R. Schlüpfen und Entwicklung der Nestjungen beim Rauhfusskauzes (Aegolius funereus) (In German). Bonn Zool Beitr. 1969; 20: 141–150.
Pennycuick CJ. Mechanics of flight In: Farner DS, King JR, eds. Avian Biology. New York: Academic Press; 1975; 1–75.
Trent B. Tropical screech owl nest defense behavior and nestling growth-rate. Wilson Bull. 1977; 89: 609–612.
Wright J, Markman S, Denney SM. Facultative adjustment of pre-fledging mass loss by nestling swifts preparing for flight. Proc R Soc B-Biol Sci. 2006; 273: 1895–1900. PubMed PMC
Korpimäki E. Fluctuating food abundance determines the lifetime reproductive success of male Tengmalm’s Owls. J Anim Ecol. 1992; 61: 103–111.
Zárybnická M, Riegert J, Šťastný K. Diet composition in the Tengmalm's Owl Aegolius funereus: a comparison of camera surveillance and pellet analysis. Ornis Fenn. 2011; 88: 147–153.
Bize P, Metcalfe NB, Roulin A. Catch-up growth strategies differ between body structures: interactions between age and structure-specific growth in wild nestling Alpine Swifts. Funct Ecol. 2006; 20: 857–864.
Remeš V. Avian growth and development rates and age-specific mortality: the roles of nest predation and adult mortality. J Evol Biol. 2007; 20: 320–325. PubMed
Sonerud GA. Nest hole shift in Tengmalm's Owl Aegolius funereus as defence against nest predation involving long-term memory in the predator. J Anim Ecol. 1985; 54: 179–192.
Korpimäki E. Selection for nest-hole shift and tactics of breeding dispersal in Tengmalm's Owl Aegolius funereus . J Anim Ecol. 1987; 56: 185–196.
Granadeiro JP, Bolton M, Silva MC, Nunes M, Furness RW. Responses of breeding Cory's shearwater Calonectris diomedea to experimental manipulation of chick condition. Behav Ecol. 2000; 11: 274–281.
Risely A, Nightingale J, Richardson DS, Barr I. Wing length and age, but not tarsus or mass, independently determine spring arrival at breeding territories in a long-distance migrant the Common Whitethroat, Sylvia communis . Bird Stud. 2013; 60: 539–546.