Interactive influences of fluctuations of main food resources and climate change on long-term population decline of Tengmalm's owls in the boreal forest

. 2020 Nov 24 ; 10 (1) : 20429. [epub] 20201124

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33235236
Odkazy

PubMed 33235236
PubMed Central PMC7687899
DOI 10.1038/s41598-020-77531-y
PII: 10.1038/s41598-020-77531-y
Knihovny.cz E-zdroje

Recent wildlife population declines are usually attributed to multiple sources such as global climate change and habitat loss and degradation inducing decreased food supply. However, interactive effects of fluctuations in abundance of main foods and weather conditions on population densities and reproductive success have been studied rarely. We analysed long-term (1973-2018) data on Tengmalm's owl (Aegolius funereus) and the influence of prey abundance and weather on breeding densities and reproductive success in western Finland. We found that fledgling production per breeding attempt declined and laying date of the owl population delayed during the period between 1973 and 2018. The breeding density of the owl population decreased with increasing temperature in winter (October-March), fledgling production increased with increasing temperature and precipitation in spring (April-June), whereas the initiation of egg-laying was delayed with increasing depth of snow cover in late winter (January-March). The decreasing trend of fledgling production, which was mainly due to starvation of offspring, was an important factor contributing to the long-term decline of the Tengmalm's owl study population. Milder and more humid spring and early summer temperatures due to global warming were not able to compensate for lowered offspring production of owls. The main reason for low productivity is probably loss and degradation of mature and old-growth forests due to clear-felling which results in loss of coverage of prime habitat for main (bank voles) and alternative foods (small birds) of owls inducing lack of food, and refuges against predators of Tengmalm's owls. This interpretation was also supported by the delayed start of egg-laying during the study period although ambient temperatures increased prior to and during the egg-laying period.

Zobrazit více v PubMed

IUCN. IUCN Red list of threatened species. (www.iucnredlist.org, 2018).

Walther GR, et al. Ecological responses to recent climate change. Nature. 2002;416:389–395. doi: 10.1038/416389a. PubMed DOI

Parmesan C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006;37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100. DOI

Grosbois V, et al. Assessing the impact of climate variation on survival in vertebrate populations. Biol. Rev. 2008;83:357–399. doi: 10.1111/j.1469-185X.2008.00047.x. PubMed DOI

Gregory RD, et al. Population trends of widespread woodland birds in Europe. Ibis. 2007;149:78–97. doi: 10.1111/j.1474-919X.2007.00698.x. DOI

Jetz W, Wilcove DS, Dobson AP. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 2007;5:1211–1219. doi: 10.1371/journal.pbio.0050157. PubMed DOI PMC

Butler SJ, Boccaccio L, Gregory RD, Vorisek P, Norris K. Quantifying the impact of land-use change to European farmland bird populations. Agric. Ecosyst. Environ. 2010;137:348–357. doi: 10.1016/j.agee.2010.03.005. DOI

Laaksonen T, Lehikoinen A. Population trends in boreal birds: Continuing declines in agricultural, northern, and long-distance migrant species. Biol. Conserv. 2013;168:99–107. doi: 10.1016/j.biocon.2013.09.007. DOI

Guzzetti E, Sureda A, Tejada S, Faggio C. Microplastic in marine organism: Environmental and toxicological effects. Environ. Toxicol. Pharmacol. 2018;64:164–171. doi: 10.1016/j.etap.2018.10.009. PubMed DOI

Zeng YW, Yeo DCJ. Assessing the aggregated risk of invasive crayfish and climate change to freshwater crabs: a southeast Asian case study. Biol. Conserv. 2018;223:58–67. doi: 10.1016/j.biocon.2018.04.033. DOI

Gozlan RE, Britton JR, Cowx I, Copp GH. Current knowledge on non-native freshwater fish introductions. J. Fish Biol. 2010;76:751–786. doi: 10.1111/j.1095-8649.2010.02566.x. DOI

Lu YL, et al. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environ. Pollut. 2018;239:670–680. doi: 10.1016/j.envpol.2018.04.016. PubMed DOI

Mace GM, et al. Biodiversity targets after 2010. Curr. Opin. Environ. Sustain. 2010;2:3–8. doi: 10.1016/j.cosust.2010.03.003. DOI

Knape J, de Valpine P. Effects of weather and climate on the dynamics of animal population time series. Proc. R. Soc. B-Biol. Sci. 2011;278:985–992. doi: 10.1098/rspb.2010.1333. PubMed DOI PMC

Clusella-Trullas S, Blackburn TM, Chown SL. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 2011;177:738–751. doi: 10.1086/660021. PubMed DOI

Deutsch CA, et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. U. S. A. 2008;105:6668–6672. doi: 10.1073/pnas.0709472105. PubMed DOI PMC

Newton, I. Population limitation in birds. (Academic Press, 1998).

Dunn, P. O. & Møller, A. P. Effects of climate change on birds. Second ed. (Oxford University Press, 2019).

Houghton, J. T. et al. Climate Change 2001: The Scientific Basis. (Cambridge University Press, 2001).

IPCC. in Climate Change 2014: Synthesis Report (eds R. K. Pachauri & L. A. Meyer) (IPCC) (2014).

Begon, M., Townsend, C. R. & Harper, J. L. Ecology, individuals, populations and communities, 4th edn. (Blackwell, 2006).

Krüger O. The importance of competition, food, habitat, weather and phenotype for the reproduction of Buzzard Buteo buteo. Bird Study. 2004;51:125–132. doi: 10.1080/00063650409461344. DOI

Lehikoinen A, et al. Reproduction of the common buzzard at its northern range margin under climatic change. Oikos. 2009;118:829–836. doi: 10.1111/j.1600-0706.2008.17440.x. DOI

Lehikoinen A, et al. The impact of climate and cyclic food abundance on the timing of breeding and brood size in four boreal owl species. Oecologia. 2011;165:349–355. doi: 10.1007/s00442-010-1730-1. PubMed DOI

Millon A, et al. Dampening prey cycle overrides the impact of climate change on predator population dynamics: a long-term demographic study on tawny owls. Glob. Change Biol. 2014;20:1770–1781. doi: 10.1111/gcb.12546. PubMed DOI PMC

Korpimäki E, Hongisto K, Masoero G, Laaksonen T. The difference between generalist and specialist: the effects of wide fluctuations in main food abundance on numbers and reproduction of two co-existing predators. J. Avian Biol. (in press) 2020 doi: 10.1111/jav.02508. DOI

Adamcik RS, Todd AW, Keith LB. Demographic and dietary responses of great horned owls during a snowshoe hare cycle. Can. Field Nat. 1978;92:156–166.

Korpimäki E, Hakkarainen H. Fluctuating food supply affects the cluch size of Tengmalm’s owl independent of laying date. Oecologia. 1991;85:543–552. doi: 10.1007/BF00323767. PubMed DOI

Korpimäki E, Norrdahl K. Numerical and functional-responses of Kestrels, Short-eared owls, and Long-eared owls to vole densities. Ecology. 1991;72:814–826. doi: 10.2307/1940584. DOI

Rohner C. The numerical response of great horned owls to the snowshoe hare cycle: consequences of non-territorial 'floaters' on demography. J. Anim. Ecol. 1996;65:359–370. doi: 10.2307/5882. DOI

Nielsen OK. Gyrfalcon predation on ptarmigan: numerical and functional responses. J. Anim. Ecol. 1999;68:1034–1050. doi: 10.1046/j.1365-2656.1999.00351.x. DOI

Therrien JF, Gauthier G, Korpimäki E, Bety J. Predation pressure by avian predators suggests summer limitation of small-mammal populations in the Canadian Arctic. Ecology. 2014;95:56–67. doi: 10.1890/13-0458.1. PubMed DOI

Clobert, J., Danchin, E., Dhondt, A. A. & Nichols, J. D. Dispersal. (Oxford University Press, 2001).

Kostrzewa R, Kostrzewa A. Winter weather, spring and summer density, and subsequent breeding success of Eurasian Kestrels, Common Buzzards, and Northern Goshawks. Auk. 1991;108:342–347.

Ludwig GX, et al. Short- and long-term population dynamical consequences of asymmetric climate change in black grouse. Proc. R. Soc. B-Biol. Sci. 2006;273:2009–2016. doi: 10.1098/rspb.2006.3538. PubMed DOI PMC

Both C, Bouwhuis S, Lessells CM, Visser ME. Climate change and population declines in a long-distance migratory bird. Nature. 2006;441:81–83. doi: 10.1038/nature04539. PubMed DOI

Martin TE. Climate correlates of 20 years of trophic changes in a high-elevation riparian system. Ecology. 2007;88:367–380. doi: 10.1890/0012-9658(2007)88[367:Ccoyot]2.0.Co;2. PubMed DOI

König, C. & Weick, F. Owls of the world. Second edition., (Yale University Press, 2008).

Mikkola, H. Owls of Europe. (Poyser, 1983).

Korpimäki, E. On the ecology and biology of Tengmalm's owl (Aegolius funereus) in southern Ostrobothnia and Soumenselkä, western Finland. (Acta Univ Oul A 118 Biol 13: 1–84, 1981).

Korpimäki E. Diet of breeding Tengmalm’s owls Aegolius funereus: long-term changes and year-to-year variation under cyclic food conditions. Ornis Fenn. 1988;65:21–30.

Korpimäki, E. & Hakkarainen, H. The Boreal owl: ecology, behaviour and conservation of a forest-dwelling predator. (Cambridge University Press, 2012).

Kouba M, Bartoš L, Šindelář J, St'astný K. Alloparental care and adoption in Tengmalm's owl (Aegolius funereus) J. Ornithol. 2017;158:185–191. doi: 10.1007/s10336-016-1381-z. DOI

Eldegard K, Sonerud GA. Experimental increase in food supply influences the outcome of within-family conflicts in Tengmalm's owl. Behav. Ecol. Sociobiol. 2010;64:815–826. doi: 10.1007/s00265-009-0898-z. DOI

Eldegard K, Sonerud GA. Sex roles during post-fledging care in birds: female Tengmalm's owls contribute little to food provisioning. J. Ornithol. 2012;153:385–398. doi: 10.1007/s10336-011-0753-7. DOI

Kouba M, Bartoš L, Šťastný K. Differential movement patterns of juvenile Tengmalm's owls (Aegolius funereus) during the post-fledging dependence period in two years with contrasting prey abundance. PLoS ONE. 2013;8(7):e67034. doi: 10.1371/journal.pone.0067034. PubMed DOI PMC

Kouba M, Bartoš L, Korpimäki E, Zárybnická M. Factors affecting the duration of nestling period and fledging order in Tengmalm's owl (Aegolius funereus): Effect of wing length and hatching sequence. PLoS ONE. 2015;10(3):e0121641. doi: 10.1371/journal.pone.0121641. PubMed DOI PMC

Laaksonen T, Hakkarainen H, Korpimäki E. Lifetime reproduction of a forest-dwelling owl increases with age and area of forests. Proc. R. Soc. B-Biol. Sci. 2004;271:461–464. doi: 10.1098/rsbl.2004.0221. PubMed DOI PMC

Hakkarainen H, et al. Habitat composition as a determinant of reproductive success of Tengmalm's owls under fluctuating food conditions. Oikos. 2003;100:162–171. doi: 10.1034/j.1600-0706.2003.11906.x. DOI

Hakkarainen H, Korpimäki E, Laaksonen T, Nikula A, Suorsa P. Survival of male Tengmalm's owls increases with cover of old forest in their territory. Oecologia. 2008;155:479–486. doi: 10.1007/s00442-007-0929-2. PubMed DOI

Lehikoinen A, et al. Impact of climate change and prey abundance on nesting success of a top predator, the goshawk. Oecologia. 2013;171:283–293. doi: 10.1007/s00442-012-2411-z. PubMed DOI

Korpimäki E. Effects of age on breeding performance of Tengmalm's owl Aegolius funereus in western Finland. Ornis Scand. 1988;19:21–26. doi: 10.2307/3676522. DOI

Laaksonen T, Korpimäki E, Hakkarainen H. Interactive effects of parental age and environmental variation on the breeding performance of Tengmalm's owls. J. Anim. Ecol. 2002;71:23–31. doi: 10.1046/j.0021-8790.2001.00570.x. DOI

Korpimäki E. Low repeatability of laying date and clutch size in Tengmalm's owl – an adaptation to fluctuating food conditions. Ornis Scand. 1990;21:282–286. doi: 10.2307/3676393. DOI

Korpimäki E. Highlights from a long-term study of Tengmalm’s Owls: cyclic fluctuations in vole abundance govern mating systems, population dynamics and demography. Br. Birds. 2020;113:316–333.

Peig J, Green AJ. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos. 2009;118:1883–1891. doi: 10.1111/j.1600-0706.2009.17643.x. DOI

Korpimäki E, Norrdahl K, Huitu O, Klemola T. Predator-induced synchrony in population oscillations of coexisting small mammal species. Proc. R. Soc. B-Biol. Sci. 2005;272:193–202. doi: 10.1098/rspb.2004.2860. PubMed DOI PMC

Huitu O, Norrdahl K, Korpimäki E. Landscape effects on temporal and spatial properties of vole population fluctuations. Oecologia. 2003;135:209–220. doi: 10.1007/s00442-002-1171-6. PubMed DOI

Burnham, K. P. & Anderson, D. R. Model selection and inference: A practical information-theoretical approach. (Springer-Verlag, 1998).

Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. ControlAC-19, 716–723 (1974).

Vaida F, Blanchard S. Conditional Akaike information for mixed-effects models. Biometrika. 2005;92:351–370. doi: 10.1093/biomet/92.2.351. DOI

Ward EJ. A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools. Ecol. Model. 2008;211:1–10. doi: 10.1016/j.ecolmodel.2007.10.030. DOI

Schwarz G. Estimating the dimension of a model. Ann. Stat. 1978;6:461–464. doi: 10.1214/aos/1176344136. DOI

Christensen, W. Agreeing to disagree: Using SAS to make reasoned decisions when information criteria select different models. SAS Conference Proceedings: Western Users of SAS Software 2018. September 5–7, 2018, Sacramento, California, Paper 099–2018 (2018).

Posada D, Buckley TR. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 2004;53:793–808. doi: 10.1080/10635150490522304. PubMed DOI

Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach. Second edition. (Springer-Verlag, 2002).

Buckland ST, Burnham KP, Augustin NH. Model selection: An integral part of inference. Biometrics. 1997;53:603–618. doi: 10.2307/2533961. DOI

Wagenmakers EJ, Farrell S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 2004;11:192–196. doi: 10.3758/bf03206482. PubMed DOI

Tao, J., Littel, R., Patetta, M., Truxillo, C. & Wolfinger, R. Mixed model analyses using the SAS system course notes. (SAS Institute Inc., 2002).

Björklund H, Saurola P, Valkama J. Petolintuvuosi 2019 oli kohtalainen (Summary: Breeding and population trends of common raptors and owls in Finland in 2019) Yearb. Linnut Mag. 2020;2019:44–59.

Jacobsen, B. V. & Sonerud, G. A. Home range of Tengmalm's owl: A comparison between nocturnal hunting and diurnal roosting. USDA For. Serv. Gen. Tech. Rep. RM142, 189–192 (1987).

Sonerud, G. A., Solheim, R. & Jacobsen, B. V. Home-range use and habitat selection during hunting in a male Tengmalm's owl Aegolius funereus. Fauna norv. Ser. C, Cinclus9, 100–106 (1986).

Santangeli A, Hakkarainen H, Laaksonen T, Korpimäki E. Home range size is determined by habitat composition but feeding rate by food availability in male Tengmalm's owls. Anim. Behav. 2012;83:1115–1123. doi: 10.1016/j.anbehav.2012.02.002. DOI

Savola S, Henttonen H, Lindén H. Vole population dynamics during the succession of a commercial forest in northern Finland. Ann. Zool. Fenn. 2013;50:79–88. doi: 10.5735/086.050.0107. DOI

Wegge P, Rolstad J. Cyclic small rodents in boreal forests and the effects of even-aged forest management: patterns and predictions from a long-term study in southeastern Norway. For. Ecol. Manage. 2018;422:79–86. doi: 10.1016/j.foreco.2018.04.011. DOI

Hansson L. Small rodent food, feeding and population dynamics – comparison between granivorous and herbivorous species in Scandinavia. Oikos. 1971;22:183–198. doi: 10.2307/3543724. DOI

Salemaa, M. in Kasvit muuttuvassa metsäluonnossa. [Changes in the frequency and abundance of forest and mire plants in Finland since 1950] (eds A. Reinikainen, R. Mäkipää, I. Vanha-Majamaa, & J.-P. Hotanen) 128–130 (Tammi, 2000).

Turtiainen M, Miina J, Salo K, Hotanen J-P. Modelling the coverage and annual variation in bilberry yield in Finland. Silva. Fenn. 2016;50(4):1512. doi: 10.14214/sf.1573. DOI

Virkkala R, Lehikoinen A, Rajasärkkä A. Can protected areas buffer short-term population changes of resident bird species in a period of intensified forest harvesting? Biol. Conserv. 2020;244:1. doi: 10.1016/j.biocon.2020.108526. DOI

Hinam HL, Clair CCS. High levels of habitat loss and fragmentation limit reproductive success by reducing home range size and provisioning rates of northern saw-whet owls. Biol. Conserv. 2008;141:524–535. doi: 10.1016/j.biocon.2007.11.011. DOI

Hayward GD. Forest management and conservation of boreal owls in North America. J. Raptor Res. 1997;31:114–124.

Thomas, J. W. et al. A conservation strategy for the northern spotted owl. (US Government Printing Office 791-171/20026, 1990).

Pietiäinen H, Kolunen H. Female body condition and breeding of the Ural owl Strix uralensis. Funct. Ecol. 1993;7:726–735. doi: 10.2307/2390195. DOI

Solonen T, Karhunen J. Effects of variable feeding conditions on the tawny owl Strix aluco near the northern limit of its range. Ornis Fenn. 2002;79:121–131.

Korpimäki E. Body mass of breeding Tengmalm's owls Aegolius funereus: seasonal, between-year, site and age-related variation. Ornis Scand. 1990;21:169–178. doi: 10.2307/3676776. DOI

Korpimäki E. Timing of breeding of Tengmalm's owl Aegolius funereus in relation to vole dynamics in western Finland. Ibis. 1987;129:58–68. doi: 10.1111/j.1474-919X.1987.tb03159.x. DOI

Kouba M, Bartoš L, Šťastný K. Factors affecting vocalization in Tengmalm's owl (Aegolius funereus) fledglings during post-fledging dependence period: scramble competition or honest signalling of need? PLoS ONE. 2014;9(4):e95594. doi: 10.91371/journal.pone.0095594. PubMed DOI PMC

Korpela K, et al. Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles. Glob. Change Biol. 2013;19:697–710. doi: 10.1111/gcb.12099. PubMed DOI

Hunt KL, Fraser JD, Karpanty SM, Catlin DH. Body condition of piping plovers (Charadrius melodus) and prey abundance on flood-created habitat on the Missouri river, USA. Wilson J. Ornithol. 2017;129:754–764. doi: 10.1676/16-180.1. DOI

Sternalski A, et al. Carotenoids in nestling Montagu's harriers: variations according to age, sex, body condition and evidence for diet-related limitations. J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 2010;180:33–43. doi: 10.1007/s00360-009-0384-y. PubMed DOI

Solonen T. Timing of breeding in rural and urban tawny owls Strix aluco in southern Finland: effects of vole abundance and winter weather. J. Ornithol. 2014;155:27–36. doi: 10.1007/s10336-013-0983-y. DOI

Ferrero JJ, Grande JM, Negro JJ. Copulation behavior of a potentially double-brooded bird of prey, the black-winged kite (Elanus caeruleus) J. Raptor Res. 2003;37:1–7.

Sergio F. From individual behaviour to population pattern: weather-dependent foraging and breeding performance in black kites. Anim. Behav. 2003;66:1109–1117. doi: 10.1006/anbe.2003.2303. DOI

Dijkstra C, Daan S, Meijer T, Cave AJ, Foppen RPB. Daily and seasonal-variations in body-mass of the kestrel in relation to food availability and reproduction. Ardea. 1988;76:127–140.

Eldegard K, Sonerud GA. Female offspring desertion and male-only care increase with natural and experimental increase in food abundance. Proc. R. Soc. B-Biol. Sci. 2009;276:1713–1721. doi: 10.1098/rspb.2008.1775. PubMed DOI PMC

Korpimäki E. Poor reproductive success of polygynously mated female Tengmalm's owls: are better options available. Anim. Behav. 1991;41:37–47. doi: 10.1016/s0003-3472(05)80501-9. DOI

Korpimäki E, Salo P, Valkama J. Sequential polyandry by brood desertion increases female fitness in a bird with obligatory bi-parental care. Behav. Ecol. Sociobiol. 2011;65:1093–1102. doi: 10.1007/s00265-010-1118-6. DOI

Bustamante J, Hiraldo F. Factors influencing family rupture and parent-offspring conflict in the black kite Milvus migrans. Ibis. 1990;132:58–67. doi: 10.1111/j.1474-919X.1990.tb01016.x. DOI

Ferrer M. Regulation of the period of postfledging dependence in the Spanish imperial eagle Aquila adalberti. Ibis. 1992;134:128–133. doi: 10.1111/j.1474-919X.1992.tb08389.x. DOI

Dijkstra C, Daan S, Buker JB. Adaptive seasonal-variation in the sex-ratio of kestrel broods. Funct. Ecol. 1990;4:143–147. doi: 10.2307/2389333. DOI

Zijlstra M, Daan S, Bruinenbergrinsma J. Seasonal-variation in the sex-ratio of marsh harrier Circus aeruginosus broods. Funct. Ecol. 1992;6:553–559. doi: 10.2307/2390052. DOI

Sunde P. Parent-offspring conflict over duration of parental care and its consequences in tawny owls Strix aluco. J. Avian Biol. 2008;39:242–246. doi: 10.1111/j.2008.0908-8857.04194.x. DOI

Arroyo BE, De Cornulier T, Bretagnolle V. Parental investment and parent-offspring conflicts during the postfledging period in Montagu's harriers. Anim. Behav. 2002;63:235–244. doi: 10.1006/anbe.2001.1899. DOI

Laaksonen T, Lyytinen S, Korpimäki E. Sex-specific recruitment and brood sex ratios of Eurasian kestrels in a seasonally and annually fluctuating northern environment. Evol. Ecol. 2004;18:215–230. doi: 10.1023/b:evec.0000035081.91292.17. DOI

Dunn, P. O. & Winkler, D. in Effects of Climate Change on Birds (eds A. P. Møller, W. Fiedler, & P. Berthold) 113–126 (Oxford University Press, 2010).

Norrdahl K, Korpimäki E. Changes in population structure and reproduction during a 3-year population cycle of voles. Oikos. 2002;96:331–345. doi: 10.1034/j.1600-0706.2002.970319.x. PubMed DOI

Merritt JF, Lima M, Bozinovic F. Seasonal regulation in fluctuating small mammal populations: feedback structure and climate. Oikos. 2001;94:505–514. doi: 10.1034/j.1600-0706.2001.940312.x. DOI

Solonen T. Overwinter population change of small mammals in southern Finland. Ann. Zool. Fenn. 2006;43:295–302.

Haapakoski M, Ylönen H. Snow evens fragmentation effects and food determines overwintering success in ground-dwelling voles. Ecol. Res. 2013;28:307–315. doi: 10.1007/s11284-012-1020-y. DOI

Solonen T. Has owl prey availability deteriorated due to mild winters in southern Finland? (In Finnish with English summary) Linnut. 2001;36:6–9.

Aars J, Ims RA. Intrinsic and climatic determinants of population demography: the winter dynamics of tundra voles. Ecology. 2002;83:3449–3456. doi: 10.2307/3072093. DOI

Solonen T. Are vole-eating owls affected by mild winters in southern Finland? Ornis Fenn. 2004;81:65–74.

Fraixedas S, Linden A, Lehikoinen A. Population trends of common breeding forest birds in southern Finland are consistent with trends in forest management and climate change. Ornis Fenn. 2015;92:187–203.

Virkkala R. Long-term decline of southern boreal forest birds: consequence of habitat alteration or climate change? Biodivers. Conserv. 2016;25:151–167. doi: 10.1007/s10531-015-1043-0. DOI

Massimino D, Johnston A, Noble DG, Pearce-Higgins JW. Multi-species spatially-explicit indicators reveal spatially structured trends in bird communities. Ecol. Indic. 2015;58:277–285. doi: 10.1016/j.ecolind.2015.06.001. DOI

Björklund H, Valkama J, Tomppo E, Laaksonen T. Habitat effects on the breeding performance of three forest-dwelling hawks. PLoS ONE. 2015;10(9):e0137877. doi: 10.1371/journal.pone.0137877. PubMed DOI PMC

Callaghan TV, Jonasson S. Arctic terrestrial ecosystems and environmental change. Philos. T. R. Soc. A. 1995;352:259–276. doi: 10.1098/rsta.1995.0069. DOI

Edman M, Gustafsson M, Stenlid J, Ericson L. Abundance and viability of fungal spores along a forestry gradient—responses to habitat loss and isolation? Oikos. 2004;104:35–42. doi: 10.1111/j.0030-1299.2004.12454.x. DOI

Koskimäki J, et al. Are habitat loss, predation risk and climate related to the drastic decline in a Siberian flying squirrel population? A 15-year study. Popul. Ecol. 2014;56:341–348. doi: 10.1007/s10144-013-0411-4. DOI

Suzuki N, Parker KL. Proactive conservation of high-value habitat for woodland caribou and grizzly bears in the boreal zone of British Columbia Canada. Biol. Conserv. 2019;230:91–103. doi: 10.1016/j.biocon.2018.12.013. DOI

Venier LA, et al. Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests. Environ. Rev. 2014;22:457–490. doi: 10.1139/er-2013-0075. DOI

Brambilla M, et al. Species interactions and climate change: How the disruption of species co-occurrence will impact on an avian forest guild. Glob. Change Biol. 2020 doi: 10.1111/gcb.14953. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...